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Abstract

A genome-wide association study (GWAS) can be conducted to systematically analyze the contributions of genetic
factors to a wide variety of complex diseases. Nevertheless, existing GWASs have provided highly ethnic specific data.
Accordingly, to provide data specific to Taiwan, we established a large-scale genetic database in a single medical
institution at the China Medical University Hospital. With current technological limitations, microarray analysis can
detect only a limited number of single-nucleotide polymorphisms (SNPs) with a minor allele frequency of >1%.
Nevertheless, imputation represents a useful alternative means of expanding data. In this study, we compared four
imputation algorithms in terms of various metrics. We observed that among the compared algorithms, Beagle5.2 ach-
ieved the fastest calculation speed, smallest storage space, highest specificity, and highest number of high-quality
variants. We obtained 15,277,414 high-quality variants in 175,871 people by using Beagle5.2. In our internal verification
process, Beagle5.2 exhibited an accuracy rate of up to 98.75%. We also conducted external verification. Our imputed
variants had a 79.91% mapping rate and 90.41% accuracy. These results will be combined with clinical data in future
research. We have made the results available for researchers to use in formulating imputation algorithms, in addition to
establishing a complete SNP database for GWAS and PRS researchers. We believe that these data can help improve
overall medical capabilities, particularly precision medicine, in Taiwan.

Keywords: Imputation, SNP array, Whole genome sequencing, CMUH genetic biobank

1. Introduction

A genome-wide association study (GWAS) can
systematically analyze the contributions of

genetic factors to a wide variety of complex diseases
and to quantitative human traits and conditions

such as height [1], body mass index [2], diabetes [3],
cancer [4,5], and high cholesterol [6]. These types of
studies have indicated new treatment pathways for
those conditions, such as the 10 novel genetic single-
nucleotide polymorphisms (SNPs) and 9 reported
SNPs that were identified for risk of familial short
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stature [1]. GWAS reports have also provided evi-
dence for previously suspected molecular mecha-
nisms. In short, GWASs have considerably changed
the analysis of human genetics in recent decades by
providing a systematic method for gaining deeper
insights into genetic diseases.
One limitation of such studies SNP genotyping

arrays is that only a small component of human
genetic variation is assayed, such as SNP [7]. Thus,
detecting signals of association from rare variants is
difficult. Whole-genome sequencing (WGS) with
sufficient coverage can detect the rarest of muta-
tions with remarkably high accuracy [8]. However,
for screening large numbers of people, WGS ser-
vices are prohibitively expensive. A more cost-effi-
cient method of genotyping rare variants is to
impute SNP array data [9].
Genotype imputation is commonly applied in

GWASs [10]. Imputation methods entail combining
a reference panel of SNP-genotyped individuals
with a study sample collected from a genetically
similar population and genotyped as a subset of
these SNP sites [7]. Imputation algorithms predict
unobserved genotypes in a study sample by using a
population genetic model to extrapolate allelic cor-
relations measured in the reference panel. Sophis-
ticated imputation algorithms have been proven to
provide clearer genetic information, which is helpful
for design replication and fine-positioning research
in GWAS study [11]. Imputation results can facili-
tate meta-analysis tasks because they enable
combining data sets collected using genotyping
chips from different sources for increased power
[1,7,9,11]. Imputation results can also be used in the
classification of HLA alleles [12] and pharmacoge-
netics-related gene research [13].
The problem of missing data is prevalent in sta-

tistics and in human genetic studies. However,
conventional methods cannot solve a new type of
imputation problem in GWASs; this problem in-
volves an extremely high rate of missing data in
genotyping results compared with the WGS data.
Less than 1% of most GWAS genotyping data
contain known genetic variants, and the remaining
>99% of the data contain missing information on
genetic variants that must be imputed [14].
Furthermore, common statistical imputation tech-
niques, such as regression, do not model the key
characteristics of genetic data. These challenges
necessitate the development of statistical methods
and computational tools created explicitly for ge-
notype imputation in GWASs.
Several state-of-the-art algorithms are available for

genotype imputation, including IMPUTE2 [15],

IMPUTE4 [16], IMPUTE5 [17], and Beagle5.2 [18].
These imputation algorithms aremostly based on the
hidden Markov model (HMM) implementation of
the Li and Stephens model [19]. Although IMPUTE2
is more dated than the other aforementioned impu-
tation programs, it can still achieve 99% accuracy
with the 1000 Genomes Project reference panel [20].
IMPUTE4 can also improve the run time of an algo-
rithm and was used in a large-scale imputation pro-
cess for the UK Biobank study [16]. Both IMPUTE5
and Beagle5.2 contain their own compact reference
panel formats designed to improve large-scale
imputation run time and memory usage. In addition,
IMPUTE5 utilizes the positional BurrowseWheeler
transform along with the HMM to increase the
speed and scalability of the imputation of large
reference panels [17].
These imputation algorithms have unique char-

acteristics. Nevertheless, no study has compared
their performance for the same data. Accordingly, in
this study, we used data collected at China Medical
University Hospital (CMUH) to conduct a compar-
ison of these algorithms.

2. Methods

2.1. Data source

WGS data (for 1463 individuals) were obtained
from the Taiwan Biobank (TWB) with the approval
of the respective ethical committees of CMUH and
the TWB (CMUH108-REC1-0910). The WGS data
were sequenced using Illumina Hi-Seq 2500. Reads
were mapped to the reference genome (hg38) by
using the Burrows-Wheeler Aligner (BWA) [21], and
variant calling was executed using GATK [22].
Finally, VEP was used for annotation [23,24]. All
analysis parameters were set at their default values.
Additionally, we obtained the TWB customized

SNP array data for all 1463 participants from the
TWB to validate the accuracy of each imputation
algorithm. We also collected 95 people WGS data
items from the CMUH database. These WGS data
were sequenced using Illumina NovaSeq 6000 and
analyzed using the Illumina DRAGEN Bio-IT Plat-
form (v3.6). We selected the DRAGEN DNA Pipe-
line to obtain the germline mutation variants. All
parameters were based on the default value in
DRAGEN.

2.2. Informed consent

The China Medical University Hospital Precision
Medicine Project was initiated in 2018 and remains

58 T.-Y. LIU ET AL
COMPARISON OF MULTIPLE IMPUTATION ALGORITHMS USED THE CMUH GENETIC BIOBANK

BioMedicine
2021;11(4):57e65

O
R
IG

IN
A
L
A
R
T
IC

L
E



operational. This project was approved by the
respective ethical committees of CMUH
(CMUH107-REC3-058 and CMUH110-REC3-005).
More than 170,000 people have contributed thus far.

2.3. Imputation workflow and experimental design

Before running the imputation programs, we first
constructed a haplotype reference panel and pre-
processed the SNP array data. Although WGS data
from the 1000 Genome Project are widely used to
assemble reference panels, Mitt et al. [25] and Wei
et al. [26] have achieved highly accurate imputation
results by using a population-specific reference
panel. Accordingly, we used WGS data from the
TWB (TWBWGS) as the reference to impute an SNP
array that was specifically designed for the Taiwa-
nese population. Developing the TWBWGS refer-
ence panel involved three main steps: ensuring
quality control of reference variants, phasing those
variants after quality control, and converting the
TWBWGS haplotypes to the corresponding refer-
ence panel format for each imputation program. The
preprocessing of SNP array data involved variant
quality control and prephasing. The quality control
step removed potential genotyping error variants,
and the prephasing step could significantly accel-
erate the imputation run time. After preprocessing
both the reference panel and SNP array data, we
could run the imputation programs.

2.4. Preprocessing of imputation reference panel

The quality control procedures for WGS data
were based on the conducted studies by Mitt et al.
[25] and Wei et al. [26]. In addition to the WGS in-
formation, data for the East Asian (EAS) participants
of the 1000 Genomes Project (HG38 phase 3) [27]
were used to boost the imputation accuracy of
IMPUTE2. For both WGS and EAS data, we used
bcftools [28] to exclude variants with a minor allele
count (MAC) of <3, variants with missing geno-
types, variants other than SNP/INDEL, and multi-
allelic variants. In the EAS panel, we used vcftools
[29] to exclude variants with a Hardy-Weinberg
equilibrium of less than 1e-7 (–hwe 1e-7). Finally,
the WGS data were phased using SHAPEIT2 [30].
After the variant quality control and phasing steps,
the WGS data contained 15,471,490 variants and the
EAS data contained 9,984,021 variants.
To validate the imputation accuracy, we randomly

formed a group subset (100 individuals) from the
WGS data for internal testing. The remaining WGS
data (1363 individuals) were used to construct a
reference panel for each imputation program.

IMPUTE2 and IMPUTE4 require the hap/legend
reference panel format, and the newer IMPUTE5
and Beagle5.2 support the vcf reference panel
format. However, the developers of both IMPUTE5
and Beagle5.2 recommend using their own unique
reference panel formats (imp5 and bref3, respec-
tively) to optimize memory usage and run time.
Consequently, we converted the WGS data into
imp5 and bref3 formats.

2.5. SNP array data quality control

The SNP array was determined to contain
approximately 714,457 SNPs. We used PLINK1.9 for
this analysis [31]. We excluded samples and SNPs
with missing rates (–geno 0.1 for SNPs and –mind
0.1 for samples). We filtered out variants with a
HardyeWeinberg equilibrium p value of <1e-6
(–hwe 1e-6) and minor allele frequency (MAF) of
<1e-4 (–maf 0.0001). Therefore, 515,310 variants and
175,871 people passed the filters and the quality
control process. Because our imputation reference
panel was phased using SHAPEIT2, we used the
same tool to prephase the SNP array data. In addi-
tion, we prephased the SNP array data with
SHAPEIT4 to determine whether the newer haplo-
type estimation tool would produce the same
imputation accuracy. The default parameters of both
SHAPEIT2 and SHAPEIT4 [32] were applied, and
reference WGS was used as the phasing reference.

2.6. Genotype imputation

All imputation programs, namely IMPUTE2,
IMPUTE4, IMPUTE5, and Beagle5.2, were imple-
mented using their default parameters, except for the
effective population size and the buffer region. The
effective population size (-ne) indicates the genetic
diversity of the model; a large effective population
size represents an extensive population of diverse
individuals. For this study, we set the effective pop-
ulation size to 20,000 for all imputation programs. To
reduce memory usage, all imputation programs
impute small chunks of each chromosome separately
and merge all the imputed chunks at the end of the
process. The buffer region represents the number of
bases that overlap between chunks; it was set to
500,000 bases in this study. All imputation programs
were executed on the Azure Cloud HB120rs_v2 vir-
tual machine with 120 vCPUs and 480 GiB of RAM.
By using different combinations of multithreads and
multiprocesses, we could impute each chunk in
parallel to optimize the machine's run time.
Because IMPUTE2 includes the feature of merging

two different reference panels, we imputed the SNP

BioMedicine
2021;11(4):57e65

T.-Y. LIU ET AL
COMPARISON OF MULTIPLE IMPUTATION ALGORITHMS USED THE CMUH GENETIC BIOBANK

59

O
R
IG

IN
A
L
A
R
T
IC

L
E



Fig. 1. Overview of study pipeline. WGS data of TWB and EAS were used for model construction. For the TWB data, 100 WGS data items were in the
validation cohorts and 1363 WGS data items were in the reference cohorts. For the 1000 Genome Project data, 504 EAS WGS data items were
obtained.
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array data based on two reference panels separately
derived from the TWB and 1000 Genomes EAS
WGS data. Other imputation programs only allow
one reference panel; therefore, we used WGS data
from the TWB reference panel for each program.
The accuracy of the imputation result was

measured using BCFtools gtcheck [28] to assess the
concordance rate between the imputed genotypes
and the WGS data. The BCFtools gtcheck default
error probability assumes 1 sequencing error in
10,000 genotypes. The parameter –error-probability
was set to 0 to compare the discordance between
imputed and validation genotypes.

3. Results

3.1. Established imputation models and
comparisons between IMPUTE and Beagle

We collected WGS and SNP array data from the
TWB and downloaded the WGS data of the EAS
participants in the 1000 Genome Project (HG38
phase 3). We used four algorithms (IMPUTE2,
IMPUTE4, IMPUTE5, and Beagle5.2) and two
reference bases (TWB and EAS) to construct our

imputation model (Fig. 1). Our results revealed that
Beagle5.2 exhibited the fastest calculation speed,
smallest storage space, highest specificity, and
highest number of high-quality variants. This algo-
rithm required only 0.68 min per case to complete
the imputation and only 1 GB of storage. Beagle5.2
made no extraneous imputations of SNPs, meaning
that it displayed 100% specificity. Although the
sensitivity of Beagle5.2 was slightly lower than that
of the other algorithms, its accuracy was still up to
98.75%, and it could obtain the greatest number of
high-quality variants (15,277,414) (Table 1).
We also compared the algorithms in terms of their

accuracy in each chromosome (Fig. 2A). Beagle5.2
exhibited the lowest accuracy on chromosome 22;
nevertheless, its overall accuracy still reached
98.75%. The average accuracy on each chromosome
was approximately 99.75% for IMPUTE2, IMPUTE4,
and IMPUTE5. Furthermore, we examined the
specificity of the different algorithms. Because extra
variants were produced by IMPUTE2, IMPUTE4,
and IMPUTE5 but not by Beagle5.2 (Fig. 2B), the
specificity levels of IMPUTE2 (81.1%), IMPUTE4
(89.51%), and IMPUTE5 (99.5%) were lower than

Table 1. Imputation algorithms. Asterisks indicate the best value in this item.

IMPUTE2 (WE) IMPUTE2 (W) IMPUTE4 IMPUTE5 Beagle5.2

Imputation Time (min) 133 8.5 1.68 1.22 0.68*
Storage (Gb) 26 23 14.5 1.5 1*
Total Imputed Variants 16,298,564* 14,757,187 14,763,606 15,548,597 15,471,490
Intersection with WGS 13,218,326 13,208,509 13,212,007 15,471,490 15,471,490*
Extra 3,080,238 1,548,678 1,551,599 77,107 NA*
Specificity 0.8110 0.8951 0.8949 0.9950 1.0000*
Accuracy 0.9973 0.9971 0.9976* 0.9873 0.9875
High Quality Variants 13,182,597 13,169,683 13,180,755 15,275,732 15,277,414*

Fig. 2. Imputation accuracy rates and number of imputed variants. (A) Accuracy breakdown of whole-genome imputation per chromosome for each
imputation algorithm; (B) intersection of imputed genotype with WGS ground truth.
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that of Beagle5.2 (100%; Table 1). Accordingly, we
selected the Beagle5.2 algorithm to impute the
CMUH SNP array data.

3.2. Imputation of SNP array data from CMUH by
using Beagle5.2

We collected genotyping data for 175,871 in-
dividuals from the CMUH genetic database. Before
imputation, 515,310 variants passed quality control.
The MAF for most variants was 0%e1% (Fig. 3A).
The MAF for most variants in the TWB reference
data was 0%e1% (Fig. 3B). After imputation, the
distribution of the MAF in the imputation data was
similar to that in the TWB reference data (Fig. 3C).

We observed an R2 value of approximately 0.96 and
concordance of 0.99e0.95. The R2 value exhibited an
upward trend as the MAF increased (Fig. 4A). By
contrast, the concordance exhibited a downward
trend as the MAF increased (Fig. 4B). Finally,
15,277,414 variants passed quality control.

3.3. Use of external WGS to verify the results of the
imputation

We collected 95 WGS data from the CMUH ge-
netic database. These WGS data were the germline
mutation variants produced by Illumina DRAGEN.
The imputed data were filtered out using an alter-
nate allele dose of <0.3 and a genotype posterior

Fig. 3. Variant distributions of MAF. (A) MAF of TPMv1 variants; (B) MAF of WGS reference panel variants; (C) MAF of imputed variants.

Fig. 4. R2 and concordance of MAF. (A) R2 of imputed SNP array data; (B) concordance of imputed SNP array data. Horizontal axis represents MAF.
The vertical axis represents R2 and concordance.
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probability of <0.9 as the criteria. We analyzed the
mapping rate and accuracy in 95 samples. Overall,
we observed a 79.91% mapping rate and 90.41%
accuracy in our imputed variants. Most of the
imputed variants had an MAF of >10%. Therefore,
accuracy showed a downward trend as the MAF
increased (Fig. 5).
In summary, we compared four imputation algo-

rithms in this study. For timeliness and accuracy, we
used Beagle5.2 to impute our SNP data. We ob-
tained 15,277,414 high-quality variants from 175,871
samples. We also used external WGS to verify the
imputation results. The verification results revealed
a 79.91% mapping rate and 90.41% accuracy in our
imputed variants. In future research, these results
will ideally be combined with clinical data to assist
in improving the provision of precision medicine in
Taiwan.

4. Discussion

In recent years, the public health benefits of genetic
research have been greatest at the population level.
Most countries have been establishing their own ge-
netic databases, such as the UK Biobank [16] and the
Japan Biobank [33]. Ethnic specificity is critical in
genetic research [34]. Accordingly, establishing a

genetic database specific to Taiwanese society is
essential. Before our study, no large genetic databases
belonging to a single institution was available,
although a genetic database integrating data from
multiple institutions was already established [35].We
can efficiently combine our genetic database with
more than 10 years of electronic medical records
including clinical laboratory, image, diagnosis, oper-
ation, and hospitalization information [36]. Therefore,
we can inexpensively and effectively execute genetic
tests on participants while simultaneously collecting
genetic profiles. The database can also be used for
polygenic risk score (PRS) calculations for common
diseases and for future GWASs [37].
The extremely high rate of missing data in geno-

typing results compared with the whole-genome
data remains problematic. Specifically, <1% of most
GWAS genotyping data contain known genetic
variants, and the remaining >99% of the data
contain missing information on genetic variation
that must be imputed. We compared several com-
mon algorithms with unique advantages and limi-
tations. The algorithm we selected as ideal was
Beagle5.2. There was poorer accuracy Beagle5.2 al-
gorithm than the other algorithm although there
was the best specificity. If the unpaired SNPs were
included in the error rate, Beagle5.2 will have the

Fig. 5. External WGS data for verifying the imputation results. Horizontal axis represents MAF. The left vertical axis represents mapping rate and
accuracy for the line chart. The right vertical axis represents allele count for the graph.
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best accuracy. It possessed the most efficient
computing speed and the highest specificity (Table
1) and was perfectly suitable for use with large-scale
genetic databases.
In previous studies, few researchers have used

WGS to verify the results of imputation [38]. In the
present study, we used 95 WGS data to verify the
results of the imputation. Even if the internal veri-
fication was as high as 98.75%, the accuracy was
only 90.41% in the external verification. We also
observed that the numbers of imputed variants were
positively correlated with the MAF and that the
matching rate was negatively correlated with the
MAF. We observed almost no change in accuracy.
We found that the accuracy (90.41%) of externally
verified data was consistent with the GP (0.9) value
(Fig. 5) [39]. The reason for the difference between
internal and external verification is that the data
provided by two different organization. In addition,
the predicted imputation data can be adjusted for
accuracy using GP value. It would get the fewer
SNPs in the higher the accuracy. Accuracy and
number of variants were negatively correlated. We
observed fewer variants under conditions involving
higher accuracy. Therefore, decisions about whether
to prioritize quantity and accuracy depend on the
research [40]. Although we choose GP greater than
0.9, there will be a 10% error rate. Based on an
article in Nature Reviews Methods Primers, Uffel-
mann et al. recommended to remove SNPs less than
0.7(Info Score) [41]. This standard is lower than the
0.9 which we set. In summary, our study compared
four imputation algorithms. Our results are freely
available for others to use in selecting suitable al-
gorithms for their own research purposes. We also
provide a complete SNP database for GWAS and
PRS researchers.
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