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Abstract

The kidney is a complex organ whose excretory and regulatory functions are vital for maintaining 

homeostasis. Previous techniques used to study the kidney, including various animal models and 

2D cell culture systems to investigate the mechanisms of renal development and regeneration have 

many benefits but also possess inherent shortcomings. Some of those limitations can be addressed 

using the emerging technology of 3D organoids. An organoid is a 3D cluster of differentiated cells 

that are developed ex vivo by addition of various growth factors that result in a miniature organ 

containing structures present in the tissue of origin. Here, we discuss renal organoids, their 

development, and how they can be employed to further understand kidney development and 

disease.
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1. Introduction

Renal diseases currently affect epidemic numbers of people worldwide, and have continued 

to escalate in their prevalence globally in recent years, thus representing a significant public 

health problem for both developing and developed countries. Renal diseases pose 

immediate, life-threatening medical consequences because the kidneys are needed to carry 

out a battery of essential tasks that cooperatively maintain the daily homeostasis of the body. 

Humans have a pair of bean-shaped kidney organs that are responsible for vital functions 

that include (i) the excretion of metabolic wastes and other toxins, most notably being urea, 

(ii) the regulation of body fluids, which entails the precise control of osmolarity, acid-base 

balance, and electrolyte levels, and (iii) the production of various hormones and enzymes 

that regulate such processes as the control of blood pressure and erythrocyte maturation 

within the bone marrow [1]. As such, kidneys are incredibly complex organs, with their 
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diverse functions reliant on the proper development and maintenance of over twenty 

different epithelial and mesenchymal cell types [2].

1.1. Stages of the developing mammalian kidney

During embryogenesis there are three major germ layers: the endoderm, mesoderm, and 

ectoderm. Together these layers give rise to the initial tissues and structures that are further 

refined during development to create an organism. The mammalian kidney develops from 

the mesoderm, specifically presomatic mesoderm (PSM), also termed primitive streak, in a 

spatiotemporal manner (Figure 1) [3,4]. Cells from the PSM rely on Wnt signaling to 

migrate rostrally, forming the intermediate mesoderm (IM). At this point, retinoic acid (RA) 

signaling is imperative for anterior-posterior specification of the IM. Anterior IM forms the 

ureteric epithelium (UE), then later the ureteric bud (UB), which subsequently forms the 

collecting duct (CD). Additionally, posterior IM gives rise to metanephric mesenchyme 

(MM) after longer exposure to Wnt signaling [3].

As development progresses, the MM responds to elaborate signals from the UB that induce 

its condensation and mesenchymal-to-epithelial transition (MET) [5]. Progressive reciprocal 

crosstalk of these components leads to the elaboration of a branched kidney structure. 

During early nephrogenesis, the condensation of MM forms cap mesenchyme (CM) (Figure 

1). Subsequently, the CM will be induced to form pre-tubular aggregates (PTAs). From each 

PTA, a renal vesicle will form (Stage I), which develops into first a comma-shaped body 

(Stage II), then an S-shaped body (Stage III), and eventually the segmented nephron (Stage 

IV) [6,7]. Vascular progenitors, stromal progenitors, and CM are three MM cell types that 

later form the nephron and its supporting microenvironment [7]. The nephron is the 

functional unit of the kidney that is composed of a glomerulus, epithelial tubules, and 

collecting duct [8]. The nephron maintains homeostasis by filtering blood, reabsorbing water 

and nutrients, while secreting waste in the form of urine [9].

1.2. Models used to study the kidney: 2D cell culture and animal systems

Biomedical research has largely employed 2D cell culture and animal models to interrogate 

development and perform drug testing. Currently, each model has limitations with regard to 

determining the toxicity and efficacy of a drug before it reaches clinical trials [10]. Partly as 

a result of this, the cost of developing new pharmaceuticals is enormous [11,12]. A study by 

DiMasi and colleagues in 2003 calculated a drug’s average time in clinical trials to be 9 

years with an average cost of over 800 million dollars [11]. More recently, DiMasi et al. 

published an updated version of the study for drug development indicating a drastic increase 

in price of taking a drug from discovery to the clinic [12]. They calculated that drug 

development now costs approximately 2.56 billion dollars in pre-approval costs [12].

In the nephrology field, there remains a tremendous need in particular to understand more 

about renal toxins, as they cause 30–50% of acute kidney injury cases [13,14]. However, 

while cell culture is fairly simple and affordable, it fails to replicate the complexities of an in 
vivo system, and usually needs extremely high concentrations to result in any toxic effect 

[15–17]. Although animal models can address some of the limitations inherent with 2D 

culture systems, they are more expensive, pose ethical issues, and do not always replicate 
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what is seen in humans. While human patients are from varied genetic backgrounds, have 

different environmental factors, and are different ages, many studies employing animal 

models do not have ways to address these complex levels of diversity [10].

Specific examples of these models and their shortcomings can be illustrated. A study 

completed by Jenkinson and colleagues (2012) highlights some weaknesses of using cell 

lines to test toxicity in the nephron [18]. Several shortcomings of the HK-2 proximal tubule 

cell line are illustrated including inconsistent expression of known transporter genes [18]. 

Furthermore, another study used HK-2 cells and primary human renal proximal tubule 

epithelial cells to compare expression levels of three accepted biomarkers of nephron 

damage (KIM-1, NGAL, M-CSF). This study found discrepancies between the cell lines and 

between the biomarker signatures as well [19]. Greek and Menache (2013) noted several 

weaknesses in the translatability of animal models [20]. For example, HIV and 

neuroprotective drugs have been repeatedly discovered to work in animals, while their 

benefits were not translated to humans [20]. Taken together, the need for other 

nephrotoxicity testing methods is evident. One such method has come to light in recent 

years. This new technology of generating an organoid has endless possibilities from 

nephrotoxicity assays, developmental investigations, transplantation possibilities, and many 

more.

Organoids can be described as a 3D cluster of cells that resemble a particular organ both 

genetically and functionally. An organoid is constructed by first isolating cells from a 

source, plating these cells in 2D culture, adding combinations of growth factors to mimic in 
vivo development, and replating the cells in 3D culture where spontaneous organoid 

formation is observed (Figure 2). After organoid formation, testing functionality is crucial to 

validate the resulting product’s physiological behavior. Many advances have been made in 

various organ systems, however the complexity of the kidney has delayed advancement in 

this specific field of research. Here, we discuss how researchers have generated organoids 

that mimic in vivo nephrogenesis.

2. Creation of Kidney Organoids Through Re-Aggregation Approaches

A major breakthrough that inspired later research on organoids was the discovery that 

certain tissues and organs could be dissociated through enzymatic digestion to permit single 

cell culturing. More importantly, when reaggregated, these cells would form structures 

similar to those seen in their complex tissue of origin [21–28]. In 2010, Unbekandt and 

Davies demonstrated that embryonic kidneys harvested from mice could be dissociated and 

reaggregated via centrifugation to form renal structures such as immature glomeruli and 

tubule rudiments [29]. Mouse kidneys at stage E11.5 that had not undergone nephrogenesis 

in the developing embryo were used as a cell source. Immediately after reaggregation, both 

mesenchymal and epithelial cells were identified based on calbindin and E-cadherin double 

positive and double negative staining. Yet, more advanced structures were absent. After 

being cultured for three days in medium supplemented with the ROCK inhibitor H1152, a 

large degree of calbindin positive epithelial cells formed branched structures and produced a 

laminin positive basement membrane, indicative of UB epithelia. Interestingly, removal of 

the ROCK inhibitor after 24 hours in culture led to the formation nephrogenic structures 
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such as comma-shaped and S-shaped bodies, identifiable by their characteristic morphology. 

Additional mature structures were also identified based on the expression of Megalin for 

proximal tubules, E-cadherin for distal tubules, and Wt1 expression at the glomerular pole. 

The authors proceeded to knockdown Wt1 with siRNA and showed that re-aggregated cells 

formed fewer nephron structures, but produced UB epithelia in the same manner as 

untreated cells, mirroring previous studies showing that genetic knockouts of Wt1 causes 

renal agenesis [29–31].

In order for renal organoids to be of use in clinical settings, it is important that they be able 

to form essential nephron functions. Further, the ability for these organoids to integrate with 

the host vasculature in a safe and efficient way would likely be necessary. Xinaris and 

colleagues undertook a study to test the ability of organoids derived from mouse embryonic 

kidneys to form functional organoids in vivo after transplantation into rats [32]. First, E11.5 

embryonic mouse kidneys were enzymatically dissociated and single cells were cultured and 

pelleted. These cells produced UB epithelium expressing calbindin and a laminin positive 

basement membrane. Nephrogenic structures were also observed including renal vesicles, 

comma-shaped bodies, and S-shaped bodies based on morphology and the presence of Ncam 

and Pax2 proteins. While Wt1+ cells were present at the glomerular pole of nephron 

structures, mature glomeruli with properly developed slit diaphragms were not observed. 

The researchers achieved implantation of the cellular suspensions by growing cells in vitro 
for five days, then transplanting the clusters underneath the renal capsule of athymic rats. 

The organoids were allowed to grow in this setting for three weeks and subsequently showed 

many tubular structures and histological evidence for immature glomeruli. To increase the 

efficiency of glomerular differentiation, organoids were supplemented with VEGF after 

transplantation into rats. VEGF was found to increase the degree of vasculature within the 

organoids based on RECA-1 and α-SMA immunohistochemistry. More importantly, the 

robust formation of mature glomeruli was noted based on expression of the slit diaphragm 

marker, claudin-1 and vascular positive structures within Wt1+/Synaptopodin+/Nephrin+ 

glomeruli. Also, the functionality of the glomeruli was shown to be intact as these structures 

contained red blood cells, and they were able to take up fluorescently conjugated BSA and 

dextrans injected into the host vascular system [32]. However, the need for continuous 

treatment of organoids with chemicals in order to obtain the proper formation of 

physiological structures is a limitation of this method for clinical applications [32].

In a follow up study, Xinaris et al. considered the ability of amniotic fluid stem cells 

(AFSCs) to induce the formation of mature glomeruli within murine embryonic kidney 

derived organoids [33]. First, more in-depth analyses were performed to characterize the 

sub-structure of glomerular components within the organoids formed using their previous 

method of initial differentiation in culture followed by implantation under the renal capsule 

of athymic rats. Electron microscopy showed the presence of immature podocytes as well as 

more mature structures containing interdigitating foot processes and filtration slits. Intricate 

assessment of function was performed using injection of fluorescent conjugated dextrans of 

large (155 kDA), small (10 kDA), and intermediate sizes (70 kDA) into the host vasculature. 

Under normal physiological circumstances the glomerulus is able to filter dextrans and other 

molecules up to 70 kDA in size [34]. While all of the dextrans were able to reach the 

glomeruli within the transplanted organoids, indicating proper connections with the host 
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vasculature, only 10 kDA and 70 kDA conjugated dextrans were observed within the 

proximal tubules. Furthermore, the dextrans that entered into the tubular compartments were 

found to co-label with Megalin. After performing these analyses, the authors utilized 

transgenically modified human AFSCs expressing glial cell line-derived neurotrophic factor 

(GNDF), known for its role as a key regulator of the MM. After two days of integrated 

culture, AFSCs were found in PAX2+ structures within the organoids. AFSCs were present 

in glomerular structures, specifically a podocyte lineage, and capable of establishing foot 

processes based on expression of α-actin-4, Podocin, and human specific Nestin [33].

These chimeric organoids hold great promise for future studies of diseases, cell autonomous 

processes, and clinical uses because they do not need continuous treatment with exogenous 

chemical factors. However, questions remain based upon the method and animal model used 

in these studies. One of these questions involves the use of embryonic serum in media, 

which contains a number of growth factors, whose exact role in the differentiation and 

survival of organoids remains unknown. These questions can also be applied to signals, 

which may originate from the host environment, but as of yet remain unidentified. Secondly, 

these studies were performed in athymic rats, which fail to produce T-cells and therefore do 

not have adverse reactions to cells from other exogenous sources. The use of induced 

pluripotent stem (iPS) cells to produce renal organoids would provide further benefit and 

circumvent the need for anti-rejection medications in clinical settings.

3. Creation of Kidney Organoids Using Different Sources of Stem Cells

As previously described, specific renal lineages arise during ontogeny when the IM 

differentiates into MM, from which nephron cell types emerge, or into the UB lineage which 

forms the collecting duct system. Xia et al. reported a method to create UB in vitro [35]. 

This project began with iPS cells that were reprogrammed from human fibroblasts. Then, 

they established a four day protocol using both iPS and embryonic stem (ES) cells in 

monolayer while adding several growth factors including BMP4 and FGF2 to lead the cells 

to a mesoderm-committed fate. They would then add BMP2, RA, and Activin A that 

resulted in IM and renal lineages. The mRNA expression data from these cells showed the 

closest match to UB-like cells. Next, Xia et al. used reaggregation assays with murine 

embryonic kidneys to find mouse MM cells were sufficient to enable iPS to UB-like cells. 

The researchers were further able to direct patient derived polycystic kidney disease iPS 

cells down a renal lineage and form chimeric UB structures. This research played a critical 

role in advancing the field of renal organoid studies [35].

Lam et al. (2013) developed a technique to efficiently differentiate human ES and human 

iPS cells into cells that express IM and renal tubular structure markers [36]. After using 

immunofluorescence and quantitative PCR, Lam et al. found that a Wnt agonist, CHIR 

works best to mimic gene expression during gastrulation leading to proper development 

through primitive streak with consistent epithelial-to-mesenchymal transitions (EMT). After 

adjusting CHIR treatment, the scientists conclude that CHIR duration is important as it 

results in varied endoderm levels. From there the authors screened growth factors that would 

result in IM and found that FGF2 is able to induce PAX2 expression in CHIR treated cells. 

Combining FGF2 with RA results in PAX2+LHX1+ cells, both markers of IM. After 
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optimizing the protocol with these added factors, they tested the procedure on three human 

ES cell lines and two human iPS cell lines where they found all but one iPS line had over 

80% of PAX2+LHX1+ cells. RT-PCR results showed expression profiles of these cells were 

consistent with data of high IM gene expression on day three, which then decreased on day 

five. Inversely, WT1 expression increased from day three to day five. Similarly, both 

PAX2+LHX1+ iPS cell lines and ES cell lines show decreased expression of IM markers, 

while epithelial tubules form that stained positive for LTL, KSP, and N-cadherin. Other 

markers including those of the podocytes, collecting duct, proximal tubules, and loop of 

Henle were identified by immunostaining.

To further developing their protocol to increase CM levels, Lam et al. screened a number of 

growth factors as well [36]. Using immunostaining they found that FGF9 and Activin A 

increased SIX2 expression, a marker of CM. Staining for two other CM markers, SALL1 
and WT1, further supported this increase in CM. During kidney development, CM induction 

is caused by Wnt signaling. Lam et al. mimicked this phenomenon using SIX2+ cells and 

adding CHIR on day six of differentiation. The CHIR treatment resulted in decreased SIX2 
expression and increased LTL expression indicating mature cells. While Lam and colleagues 

did complete a reaggregation study, similar to previously mentioned studies, they did not test 

the functionality of their products [36]. Testing for kidney-like function would add another 

layer of complexity and support the theory that the identity of these structures is truly kidney 

[36].

In a follow up study, Morizane et al. (2015) describes their system for differentiating human 

iPS and ES cells into what they term ―nephron progenitor cells‖ (NPCs) via mimicking 

metanephric development [37]. These NPCs are multipotent and can further differentiate 

into several nephron tissue types. Throughout their article they detail how they optimized the 

concentrations and durations of chemical treatments. Beginning with the stem cells, ES cells 

were treated with 8 uM CHIR, while iPS cells were augmented with 10uM CHIR and 5 

ng/ml noggin treatment. This treatment resulted in T+TBX6+ late primitive streak cells that 

were treated with Activin from day four to day seven developing into 

WT1+HODX11+PAX2−LHX1− cells, indicative of IM.

Next, the researchers wanted to create MM and found the addition of FGF9 results in SIX2+ 

cells [37]. They used immunocytochemistry and flow cytometry to determine that other MM 

markers, SALL1, WT1, and EYA1 present in these cells. Quantitative PCR revealed OSR1 
levels remained constant in these cells from days 7–9 differentiation. However, SIX2 

expression decreased between days 10–14 as these NPCs differentiated into clusters of 

PAX8+LHX1+ cells, defined by the authors as renal vesicles. At this point Morizane et al. 

kept some cells in 2D culture while also replating some NPCs in 3D round bottom wells and 

removed FGF9. Both 2D and 3D cells formed clusters that were LTL+NPHS1+PODXL+. 

The removal of FGF9 shows these cells were intrinsically programmed to differentiate into 

nephron structures. Initially this process was not efficient, but upon further optimizing the 

procedure they were able to produce 76% PAX8+LHX1+ cells that organized into clusters. 

With no additional factors added, by day 21 of differentiation the clusters formed nephron 

structures that stained positive for markers of distinct cell types including glomerulus, 

proximal tubules, distal tubules, and Loop of Henle, with collecting duct noticeably absent. 
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The absence of collecting duct shows this method is specific for NPCs, the result of MM. 

However, the study does not illustrate the ability to form a complete kidney with all cell 

types.

Interestingly, all organoids formed lasted for a minimum of 56 days and they were over 20 

times more efficiently constructed compared to the lab’s previous protocol [36]. These 

organoids were also tested for function to further prove the inherent differentiation of the 

cells. Morizane et al. used DAPT to inhibit notch signaling, resulting in a dysfunctional 

system. The organoids were treated with gentamicin or cisplatin, known nephrotoxins, and 

assayed for functionality. The gentamicin injured proximal tubules in a dose dependent 

manner as determined by real time PCR levels of kidney injury molecule-1 (KIM-1). Using 

γH2AX, a DNA damage marker, the researchers found cisplatin treatment also damaged 

proximal and distal tubules in a dose dependent manner [37].

In a similar study completed by Takasato et al. (2014) human ES cells (hESCs) were used to 

generate kidney organoids [38]. In order to induce the formation of primitive streak from 

hESCs, the cells were treated by one of two methods. In the first method, hESCs were 

treated with BMP4 and Activin A, which are key signaling molecules known to be important 

for the formation of the primitive streak in vivo. The second technique relied upon 

stimulation of canonical Wnt signaling with the chemical CHIR. Both approaches resulted in 

robust formation of primitive streak based upon expression of MIXL1, T, and SOX17 and 

led to spontaneous differentiation of the primate streak tissue into IM. However, while 

robust expression of OSR1 was noted, other markers such as PAX2 and LHX1 were absent 

based on PCR and immunofluorescence, indicating the need for further refinement of the 

differentiation method.

Based on its physiological role, posterior streak induced hESCs were subsequently treated 

with fibroblast growth factors (FGFs) [38]. FGF2 or FGF8 caused the cells to give rise to IM 

expressing PAX2 and LHX1 after four days of culture. A direct role for FGF signaling was 

shown by knockdown of FGFR1 and FGFR3 that inhibited IM induction. To further direct 

differentiation potential to a nephrogenic fate, IM was treated with FGF9, BMP7, and RA 

for an additional 12 days. This allowed for differentiation into MM, which was identified 

based on SIX2, WT1, GDNF, and HOXD11 indicating the presence of tubular progenitors, 

renal stroma, and nephric duct. At day 14 ECAD+PAX2+ epithelial structures were 

surrounded by SIX2+WT1+ mesenchyme [38]. This represents a mesenchymal field that 

contributes to nephrogenesis in the developing kidneys of the embryo [5]. At day 22, the 

expression of mature nephron makers was present based on RT-PCR including makers for 

podocytes (SNPO, NPHS1 and WT1), proximal tubules (AQP1 and SLC3A1), as well as 

collecting ducts (AQP2 and SCNNB1). At this point, RA and FGF treated posterior streak 

generated from treatment with CHIR created robust UE at the expense of MM.

In order to determine the ability of single cells to reproduce nephrogenic structures, mouse 

embryonic kidneys were dissociated and the cell suspensions mixed with hESCs that had 

undergone the differentiation protocol to day 12 [38]. Upon sectioning of aggregates 

cultured for four days, the hESCs produced via CHIR and FGF9 were shown to integrate 

into all major structures of the developing kidney including UE (PAX2+CALB+), renal 
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vesicle (CDH6+JAG1+) and progenitor mesenchyme (SIX2+WT1+). However, hESCs that 

had undergone differentiation with the sequential treatment of BMP4 and Activin A, 

followed by FGF9 treatment, and finally with exposure to FGF9, BMP7, and RA only 

contributed to UE and MM. Taken together, these results illustrate the ability of hESCs to 

successfully differentiate and form nephrogenic and mature nephron structures [38]. An 

advantage of this technique is that mutations can be introduced at distinct stages of 

development and the resulting effects can be observed. Unfortunately, this study did not 

investigate the maturity of glomerular structures or functionality of tubular components, and 

vasculature was not noted [38].

Takasato et al. (2015) adapted their technique from the previously described study (2014) to 

accomplish kidney differentiation from human iPS and ES cells [3,38]. Their adaptations 

were focused on further understanding the mechanisms regulating induction of collecting 

duct compared to kidney mesenchyme progenitors. The end result was a renal organoid 

complete with collecting duct, renal interstitium including indications of vasculature, and 

epithelial cells. The authors use quantitative PCR to illustrate that kidney mesenchyme 

progenitors are the result of MM, derived from posterior IM, the fate of presomitic 

mesoderm cells when exposed to Wnt signaling longer. Accordingly, the presomitic cells 

exposed to Wnt via CHIR for a shorter duration resulted in anterior IM, followed by UE, 

resulting in collecting duct.

Using this information, Takasato et al. altered their procedure to increase the MM formed in 

both iPS and ES cells [3]. After four days of CHIR treatment, FGF9 was added to the MM 

and UE in monolayer and the mixtures were transferred to organoid culture where they were 

cultured for 20 days and formed kidney organoids. Immunofluorescence showed organized 

clusters of kidney cell types including collecting duct, early distal tubule, early proximal 

tubule, and glomerulus. Using confocal microscopy and z-stack images, the authors illustrate 

correct 3D positions of the developing nephrons with collecting duct at the bottom and 

glomerulus at the top. Furthermore, RNA sequencing on whole organoids was performed at 

days 0, 3, 11, and 18. While observing the expected inverse relationship of renal progenitors 

and segment markers, the authors also noted that organoids from days 11 and 18 were 

comparable to the RNA transcript profile of a first trimester human embryonic kidney [3].

Next, Takasato et al. showed that the developing kidney organoids displayed unique 

characteristics [3]. Some of these included immunofluorescence of developing proximal 

tubules, glomeruli with podocytes, and renal interstitium. Further detail is shown with TEM, 

such as to show tight junctions in distal tubules, brush borders in proximal tubules, and foot 

processes in podocytes. After showing presence of these fine details, the researchers 

performed functional tests of the organoids. Taking advantage of the prime reabsorption 

ability of the proximal tubules, Dextran-Alexa488 was endocytosed by the tubules assumed 

to be proximal tubules (LTL+) exhibiting the functionality of these organoids. Another 

example of a conserved physiological response was testing the apoptotic result of cisplatin 

treatment. As expected, the mature proximal cells underwent apoptosis after being treated 

with cisplatin. Taken together, these two tests illustrate that these organoids are a potential 

tool for future uses such as renal toxicity assays, modeling kidney development and diseases, 

and cell therapies [3].

Chambers et al. Page 8

AIMS Bioeng. Author manuscript; available in PMC 2017 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, the findings reported by several independent research groups to date have 

indicated very similar steps in the directed formation of renal organoid structures from iPS 

cells, thus cumulatively suggesting a shared working model for this procedure (Figure 3) 

[3,36–38]. This common workflow entails the progressive exposure of the cell source using 

a combination of different growth factors in particular sequences and for defined durations 

to lead to comparable outcomes to coax them to renal lineages. The critical series of culture 

conditions involves factors that modulate Wnt signaling, followed by combinations of FGFs 

and RA signaling (Figure 3).

4. Conclusion

The complexity of the kidney offers tremendous difficulty to the field trying to study this 

vital integral organ. With advances in technology such as organoids, researchers have a new 

opportunity to explore critical questions that may not be appropriately addressed or 

answered with currently existing models. As the refinement of these organoids evolves, the 

number of possible applications grows. The easily accessible nature of organoids positions 

them for use in therapeutic studies.

One major application of kidney organoids will be their use for nephrotoxicity assays. Due 

to the similarities between 3D kidney cell clusters and in vivo nephrotoxic results, many 

believe organoids can provide a better model than using 2D cell culture and animal models 

[39,40]. Another benefit of using organoids compared to 2D cell culture is the ability to test 

chronic exposures of potential nephrotoxins [10]. Kidney organoids have also been 

combined with nanoparticles in a nephrotoxicity assessment, something that would not be as 

complete of a study using a 2D cell culture system [41].

Disease modeling with organoids has shown promise as well. Batchelder et al. (2015) were 

able to sustain 3D organoids of human renal cell carcinoma in culture for 21 days. This 

enables a new avenue for testing patient specific cancer treatments [42]. Also, using 

intestinal stem cell organoids in combination with the CRISPR/CAS9 system, scientists 

were able to correct the cystic fibrosis transmembrane conductor receptor (CFTR) [43]. 

Similarly, the CRISPR/Cas9 technology has been used to induce mutations in organoids to 

study developmental disorders using kidney organoids [44]. Combining organoid technology 

with other innovative techniques like CRISPR/CAS9 and nanoparticles is only the beginning 

of the possible studies that can help further understand the complexity of kidney 

development and disease.

One important goal in developing kidney organoids is the prospect that this technology 

could be used for personalized medicine. For example, a patient’s own cells could be 

converted to iPS cells, and then differentiated down a lineage with the intention of kidney 

replacement or individualized nephrotoxicity assays [45]. This would avoid long wait times 

on donor lists, the need for life-long dialysis treatments, and potentially reduce the risk of 

acute kidney injury. Further refinement will be needed before the field reaches the point of 

human kidney organoid transplants. One such area for further research should focus on 

biomechanical stresses that the transplanted organoid may encounter in vivo. For example, 

how will this transplanted organoid respond to blood pressure? Does the anatomical position 
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in the human body affect signaling within the kidney? While these questions and many more 

will need to be answered before kidney organoids could be applied in clinical settings, there 

is no doubt that organoid technology has endless possibilities. These possibilities are sure to 

occupy the field of kidney research for the near future.
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Figure 1. 
The lineages and anatomical stages of the developing mammalian kidney. A) Cell lineages 

are depicted beginning with the presomatic mesoderm (PSM) which gives rise to the 

intermediate mesoderm (IM). The IM will differentiate into stromal, vascular, metanephric 

mesenchyme (MM), and ureteric epithelium (UE). MM develops into the podocyte (P), 

proximal tubule (PT), Loop of Henle (LOH), and distal tubule (DT), while the UE results in 

the collecting duct (CD). B) Anatomical stages are shown first with condensation resulting 

in cap mesenchyme (CM) and pretubular aggregates (PTA) around the ureteric bud (UB). 

CM and PTA are followed by formation of the renal vesicle (I), comma-shaped body (II), S-

shaped body (III), and vascularized nephron (IV).
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Figure 2. 
General schematic of an organoid creation procedure. Cells are harvested from the cell 

source, such as induced pluripotent stem (iPS) cells. These cells are plated in monolayer cell 

culture. Subsequently, they form early renal clusters when they are replated into 3D culture 

with the appropriate media conditions, where they spontaneously form organoids, depicted 

here as a renal organoid complete with podocyte (P), proximal tubule (PT), distal tubule 

(DT), and collecting duct (CD) segmentation. There are typically functional tests and 

transplants performed to determine efficacy of the protocol.
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Figure 3. 
A working model of current common intermediate differentiation steps used to guide 

pluripotent stem cells to adopt a renal lineage in vitro for creation of kidney organoids. The 

schematic outlines the approximate time interval for each progressive culture condition and 

the resulting lineage specification of the cells that is associated with the sequence of 

provided factors, where the lineage state is surmised based on the accrual of particular 

combinations of molecular hallmarks. Beginning with OCT4+SOX2+ iPS cells, modulation 

of Wnt signaling for four days induces the cells to adopt a primitive streak identity based on 

expression of T and TBX6. Upon subsequent FGF2 and RA treatment for three days, 

intermediate mesoderm (IM) cells result, which express WT1, OSR1, HOXD11, PAX2, and 

LHX1. After this, two days of treatment with FGF9 and Activin A leads IM to metanephric 

mesenchyme (MM) that is distinguished based on expression of SIX2, SALL1, WT1, and 

PAX2. Following the removal of Activin A but continued exposure to FGF9 for 2 additional 

days, the MM is observed to form pre-tubular aggregates that express PAX8 and LHX1. This 

model is largely based on schemes reported by references [3,36–38].
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