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Abstract: Mycobacterium tuberculosis, the causative agent of tuberculosis, is composed of several
lineages characterized by a genome identity higher than 99%. Although the majority of the lineages
are associated with humans, at least four lineages are adapted to other mammals, including different
M. tuberculosis ecotypes. Host specificity is associated with higher virulence in its preferred host
in ecotypes such as M. bovis. Deciphering what determines the preference of the host can reveal
host-specific virulence patterns. However, it is not clear which genomic determinants might be
influencing host specificity. In this study, we apply a combination of unsupervised and supervised
classification methods on genomic data of ~27,000 M. tuberculosis clinical isolates to decipher host-
specific genomic determinants. Host-specific genomic signatures are scarce beyond known lineage-
specific mutations. Therefore, we integrated lineage-specific mutations into the iEK1011 2.0 genome-
scale metabolic model to obtain lineage-specific versions of it. Flux distributions sampled from the
solution spaces of these models can be accurately separated according to host association. This
separation correlated with differences in cell wall processes, lipid, amino acid and carbon metabolic
subsystems. These differences were observable when more than 95% of the samples had a specific
growth rate significantly lower than the maximum achievable by the models. This suggests that
these differences might manifest at low growth rate settings, such as the restrictive conditions
M. tuberculosis suffers during macrophage infection.

Keywords: Mycobacterium tuberculosis; lineage; host association; genome-scale metabolic model;
metabolic networks

1. Introduction

Mycobacterium tuberculosis is the causative agent of tuberculosis disease (TB), which
affects a wide range of mammals, including humans. Tuberculosis is the second cause of
human infection-related death, right after COVID-19 [1]. The ability to produce disease in
livestock also makes M. tuberculosis a major concern from an economic point of view [2].

M. tuberculosis is composed of several phylogenetic lineages that can be broadly di-
vided into animal- and human-associated, according to the host they are commonly isolated
from. Human-associated M. tuberculosis lineages comprise L1 to L4 and L7, commonly
referred to as Mycobacterium tuberculosis sensu stricto, L5 and L6, traditionally known as
M. africanum, and recently described L8 and L9 [3-7]. On the other hand, there are four
animal-associated lineages that compose several ecotypes with specific host associations:
Al, A2, A3 and A4 [8,9]. Al to A3 infect primarily wild animals, whereas the members of
A4 are mainly isolated from cattle and goats and are referred to as M. bovis or M. caprae,
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respectively [8,10]. Host specificity in M. bovis originates host-dependent virulence, produc-
ing a mild version of tuberculosis disease in humans with human-to-human transmission
being extremely rare [11]. Conversely, M. tuberculosis is attenuated in cattle [12,13]. It is
unclear if this phenotype can be extended to other M. tuberculosis lineages or hosts, and
which molecular mechanisms are involved.

M. tuberculosis lineages have a high genomic identity (>99%), product of its clonal
evolution and absence of horizontal gene transfer [10,14]. Despite this similarity, they show
a wide range of pathogenicity-related phenotypes, including host association [15,16]. L5,
L6 and L9 are of particular interest in the study of host association from a phylogenetic
point of view, because they are the human-associated lineages that are closer to the animal-
associated ones [17]. Therefore, the study of the differences between L5, L6 and L9 and the
animal-associated lineages could shed light on the mechanisms of adaptation to different
hosts. However, the high genomic identity between M. tuberculosis lineages hinders the
identification of genomic signatures correlated to host adaptation phenotypes. The study
of metabolism, which is functionally closer to the phenotype, could reveal details about M.
tuberculosis infections and host association phenotypes. However, obtaining of metabolomic
or lipidomic data in the context of infection can be challenging. A suitable and alternative
approach is the use of genome-scale metabolic models (GEMs).

GEMs are metabolic networks built from genome annotations, which are used to
infer the possible reactions within the organism. After the application of constraints based
on stoichiometry and experimental data, the model can be used to predict metabolic
phenotypes in a determined medium composition [18]. Flux Balance Analysis (FBA)
is typically used for this purpose: steady state is assumed under an objective function,
commonly set to maximize growth rate [19]. This approach might not be optimal to study
M. tuberculosis infection, as the hostile environment within the macrophages” phagosomes
restricts bacterial growth [20]. Furthermore, growth is extremely limited during dormancy.
Therefore, metabolic strategies involved in M. tuberculosis’ virulence may be unrelated
to growth maximization. An alternative approach is the use of flux sampling, where the
solution space of the metabolic model is explored by random sampling without assuming
any objective reaction to be maximized [21].

GEMs have been used with success to predict phenotypes such as substrate utilization,
gene essentiality, production of virulence factors or response to oxidative stress in different
microorganisms [22-24]. In the context of M. tuberculosis, not only have they been used with
similar aims [25,26], but also to determine the metabolic rewiring produced by subinhibitory
concentrations of antibiotics, to assess the effect of SNPs in metabolic genes or to determine
condition-specific biomass compositions, such as during infection [27-29]. The metabolic
flux diverting from several pathways as a stress response has also been experimentally
validated [25]. However, most of these studies focus on the laboratory strain H37Rv, except
for the work of Jyas et al., which covers from L1 to L7 [29]. Studies analyzing how genomic
differences between animal and human M. tuberculosis lineages could impact their fluxomic
phenotypes are still lacking.

In this study, we analyzed the genomes of ~27,000 clinical isolates spanning all the
known lineages of M. tuberculosis with a combination of unsupervised and supervised
methods. We determined which genomic signatures contribute more strongly to the sep-
aration of animal- versus human-associated lineages. However, most of the signatures
were not exclusive of either human- or animal-associated lineages. We therefore adapted
a previously available M. tuberculosis GEM, iEK1011 2.0 [26,30], to model each one of the
M. tuberculosis lineages. With the obtained models we predicted how the genomic differ-
ences might translate into metabolic phenotypes. We observed that genomic differences
apparently uncorrelated to host specificity introduce perturbations that propagate through
the metabolic network, producing convergent metabolic phenotypes correlated with host
association and possibly involved in host adaptation.
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2. Results
2.1. M. tuberculosis Polymorphisms Allow to Partially Separate Isolates According to Host
Association with Unsupervised Methods

To assess to what extent single nucleotide polymorphisms (SNPs) have a role in host
specificity, we retrieved the available [llumina genomes of M. tuberculosis: ~27,000 clinical
isolates spanning all the known lineages of the M. tuberculosis (L1, L2, L3, L4, L5, L6, L7,
L8, L9, Al, A2, A3 and A4) (Supplementary Table S1). We built a set of potentially delete-
rious SNPs including SNPs causing premature stop codons and non-synonymous SNPs
potentially affecting protein function (PROVEAN score < —2.5) [31]. A correspondence
analysis of these data shows that L7 and L8 are in the periphery of the bidimensional space
(Supplementary Figure S1). These two lineages are the ones with the longest phylogenetic
branches. L8, furthermore, is the most basal of the lineages [6]. This early separation in
phylogeny along with the branch length might explain the differential accumulation of
SNPs that separates these two lineages from the rest in the correspondence analysis. The
remaining lineages aggregate together. However, we can still detect that L6, L9 and the
animal-associated lineages are separated from the human lineages L1 to L5. This result
partially mimics phylogeny, where L5, L6, L9 and all animal-associated lineages form a
monophyletic group [8].

In parallel, we determined the percentage of deletion of each ORF, using the read
depth per genomic position, and analyzed it using Principal Component Analysis (PCA).
The two major components show a clear separation between the isolates belonging to either
animal- or human-associated lineages (Figure 1A). L6 and L9 are close to A1, A2 and A3,
which are the animal lineages that are closer to the human-associated ones in phylogeny.
As mentioned before, L6 and L9 emerge from a common ancestor of the animal-associated
clades. We are therefore obtaining an approximation of the M. tuberculosis phylogeny by
using only genomic deletions. This separation between animal- and human-associated
lineages becomes more evident when using only enzymatic gene deletions (Figure 1B).
In this case, L6 and L9 are still close to the animal lineages, but with less overlap. This
difference in enzymatic content suggests that animal- and human-associated lineages might
have distinct metabolic networks. The resulting metabolic profiles might have a role in
host adaptation.
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Figure 1. Principal Component Analysis of ORF deletion percentage. (A). All ORFs. (B). ORFs
annotated as enzyme-coding. Each point represents a genome, which is colored according to the
lineage it belongs to.
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2.2. Supervised Methods Do Not Identify Enough Genomic Signatures Correlated to Host
Association to Explain the Phenotype
We then used a supervised approach to determine what are the potentially deleterious
SNPs and gene deletions that are producing the separation of animal- and human-associated
isolates. Regarding the SNPs, we randomly selected a set of strains from each one of M.
tuberculosis lineages and trained a random forest classifier to determine what SNPs are
more strongly correlated with either animal- or human-associated lineages, keeping the
top 25 most important genes in the classification (Figure 2). The model correctly classified
all strains according to their host association (with 10-fold cross-validation). We could
not find a set of genes with potentially deleterious SNPs restricted to either animal- or
human-associated lineages. The most informative SNPs are present in all animal lineages,
but also in L6 and L9, meaning that they probably appeared just once in the common
ancestor of these lineages. There are also a couple of genes with potentially deleterious
mutations restricted only to animal-associated lineages, but not in the four of them. One
is iniA (Rv0342), which codes for an efflux pump involved in isoniazid and ethambutol
tolerance and its expression is induced after treatment with isoniazid [32,33]. This gene
has a single mutation in lineages A2, A3 and A4, probably appearing in their common
ancestor in a single event. The other is Rv0512 (hemB), which codes for delta-aminolevulinic
acid dehydratase, involved in the synthesis of cobalamin, a cofactor of many enzymes [34].
This gene has three different non-synonymous SNPs restricted to three out of four animal-
associated lineages (Figure 2). These SNPs might produce differences in virulence or lipid
metabolism. Most of the informative genes have potentially deleterious SNPs in the animal
lineages but also in L6 and L9, and some in L5. This suggests that these genes might not
actually be related to host specificity.
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Figure 2. Supervised analysis of potentially deleterious SNPs. Potentially deleterious SNPs included
amino acid substitutions predicted by PROVEAN to be deleterious (leftmost bar plot, score < —2.5,
indicated in dashed red line) and premature stop codon introducing SNPs. Top 25 genes were sorted
according to their importance in the classification (rightmost bar plot). The phylogenetic relationship
between the lineages is shown at the top.
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We also fitted a random forest model to deletion data, obtaining an accuracy higher
than 0.99. The most important genes in the classification fall within several M. tuberculosis
well-characterized long sequence polymorphisms known as regions of difference (RDs). In
particular, the RDs that are important in the classification are RD1, RD5, RD7, RD8, RD9,
RD10 (Figure 3) lost at different stages after the split of L5, L6, L9 and the animal lineages
from the rest [8,17]. This implies that most of these genes are absent in the animal-associated
lineages, but also in L5, L6 and L9. Despite the fact that some of the deleted genes in M.
africanum and animal lineages might have some role in M. tuberculosis host association, they
probably are not determinant, as they are not exclusive to a particular host. However, there
are some exceptions. First, esxA and esxB (Rv3874 and Rv3875, respectively), which are part
of RD1, have been lost independently in Al and A2. RD1 is the main genetic modification
involved in the attenuation of the BCG vaccine strain [35,36]. In the work by Brites et al.,
it was reported that these genes have been deleted at least four times in vivo: three times
in Al, and once in A2 [8]. These recurrent deletions might be related with host and/or
virulence adaptation, presumably linked to the jump from humans to animals. Rv3876, an
ESX-1-associated protein which is also part of RD1, also appears in the rank. This gene,
unlike esxA and esxB, is only completely deleted in Al (as well as in M. bovis BCG). A2 has
a partial deletion of Rv3876 in 77.5% of the isolates. Between 15% and 50% of the members
of the remaining lineages carry a partial deletion in this ORF, with the exception of L7 and
L8. L8 has this gene intact in all its members, whereas 7% of L7 isolates have lost 15 to
90% of this ORF. The other deletions showing a pattern of host association are part of RD5,
which spans from Rv2349c to Rv2353c. Genes in RD5 might have been deleted at least
four times independently, and it is the only marker deleted almost completely in all animal
lineages and not in human lineages (except for L8) [8]. Rv2349c-Rv2351c code for PlcC,
PlcB and PIcA, respectively, three phospholipases C linked to M. tuberculosis virulence and
to the obtention of phosphate in the first stages of infection in the depleted environment
of the phagosome [37,38]. Rv2352¢ and Rv2353c code for PPE38 and PPE39. PPE38 has
been related to secretion of antigenic proteins, producing an increase in virulence in M.
tuberculosis when mutated [39,40]. A big proportion of the isolates belonging to lineages A1l
and L8 has the 5 genes completely deleted. A4 lost the three plc genes, ppe38 and a fragment
of ppe39, whereas A3 lost plcA, a fragment of plcB, ppe38 and ppe39, whereas keeping plcC
intact. This indicates that these deletions occurred at least 4 times along the phylogeny,
concentrating mostly in animal clades [8,40]. The fact that L5, L6 and L9, despite being
closely related to animal-associated lineages, have these genes intact supports its possible
involvement in host specificity [8].

2.3. Modeling M. tuberculosis Lineages Suggest Possible Alternative Metabolic Pathways

We observed genomic differences between animal- and human-associated lineages in
terms of enzymatic gene deletion and potentially deleterious SNPs. However, we could
not pinpoint a set of genes whose presence was sufficient to explain host association.
Consequently, we used a GEM to explore how these genomic signatures might translate
into metabolic differences. We chose iEK1011 2.0 [26,30] as the base reconstruction for
building 12 lineage-specific GEMs, as it is the most complete reconstruction at today’s date
and because the genetic diversity of the genes included in this reconstruction supported the
separation between human- and animal-associated strains using an unsupervised approach
(Supplementary Figure S2, genes included in the model shown in Supplementary Table S2).
iEK1011 2.0 models the H37Rv reference strain, an L4 strain, thus we used it as the model of
this lineage. To infer the models for the remaining lineages we first deleted the genes that
were absent in most of the genomes of the target lineage (see methods for details). Among
the 12 models obtained (one per lineage, except L4), 2 of them had no viable steady state flux
distribution: flux of biomass reaction was zero when running FBA in conditions simulating
Middlebrock 7H9 OADC medium. We used these conditions to identify the removed genes
whose absence was blocking growth, as Middlebrock 7H9 OADC is a medium commonly
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used in laboratory culture of mycobacteria and the isolates of all M. tuberculosis lineages
can grow there. The growth blockage was caused by individual gene deletions.
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Figure 3. Supervised analysis of the deletion data. Random forest of the percentage of each ORF
from the reference genome that was lost in each lineage, classifying the genomes as belonging to
animal- or human-associated lineages. The variables (genes) are sorted according to their importance
in the classification (rightmost barplot), and are colored depending on the RD they are located in.
RDs are named according to Brosch et al. 2002. The heatmap corresponds to the percentage of isolates
with a percentage of deletion higher of the 15% or 90% (magenta or blue, respectively, indicated in
leftmost colorbar).

Deletion of Rv1525 blocks growth of iEK1011 2.0 model. This gene has more than
90% of its sequence missing in 98.87% of L1 clinical isolates. Additionally, it appears
to be completely deleted in a closed PacBio genome of this lineage (Accession Number
AP018033.1) [41]. Rv1525 codes for a putative rhamnosyl transferase (wbbL2). This enzyme
catalyzes the first step in arabinogalactan synthesis, a component of M. tuberculosis cell
wall [42]. The last step of this pathway, three reactions downstream WbbL2, is the target
of the antimycobacterial drug ethambutol [43]. All the genes downstream Rv1525 are
essential in the H37Rv strain, both in rich and minimal medium, whereas Rv1525 is only
essential in minimal medium [44-47]. This gene has been reported to be lost in some clinical
isolates [48]. It is not clear if its absence produces a different biomass composition in these
lineages or if there are other enzymes compensating for this mutation in L1 strains. In
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the model, the rthamnosyl transferase reaction requires two genes to be active: wbbL2 and
wbbL1. It might be possible that wbbL1 (Rv3265c) is sufficient for catalyzing the reaction
in vivo/in vitro. Indeed, this gene is essential for H37Rv in vitro [44—47].

L8 model was also not able to grow. The growth-blocking gene was Rv3281. In
the available PacBio genome of L8 lineage (Accession Number CP048071.1) this gene
appears shorter than the reference due to an internal deletion [6]. Rv3281 codes for the
epsilon chain of bifunctional acetyl-/propionyl-coenzyme A carboxylase AccE5 [49]. This
enzyme catalyzes the carboxylation of propionyl-CoA or acetyl-CoA into malonyl-CoA or
methylmalonyl-CoA, respectively, in a biotin-dependent process [50]. Methylmalonyl-CoA
can be used as a building block to synthesize the methyl-branched lipids that form M.
tuberculosis cell wall, many of them involved in virulence [51,52]. The only two isolates
of lineage L8 have a deletion in Rv3281, affecting 25.47% of its sequence length with
respect to H37Rv’s ORE. This gene is essential for in vitro growth of H37Rv in several
conditions [44,45,53]. Therefore, it is likely that other enzymes present in L8 but not
accounted in the model are catalyzing this carboxylation. This might or not affect the lipidic
composition of the isolates belonging to the L8 lineage.

We decided to keep these reactions instead of changing the model’s biomass composi-
tion in these two cases, as we do not have evidence about a different composition in these
particular compounds for these two lineages. In the case of Rv1525, the fact that clinical
isolates have these genes deleted suggests that there might be other genes compensating
for the deletion [48].

We then deleted the genes affected by potentially deleterious SNPs that were prevalent
within each lineage. As before, we checked if the removal of any of these genes blocked
growth (see methods). Any of the models, besides L4 (the one that keeps all genes),
were able to produce biomass. The number of genes with non-synonymous potentially
deleterious SNPs that, when removed, blocked growth was: one for L1, seven for L2,
four for L3, fourteen for L5, eighteen for L6, fifteen for L7, six for L8, fifteen for L9, eight
for Al, seven for A2, twenty-nine for A3 and ten for A4. Again, we decided to keep
all of them in the respective models. The description of what these genes code for and
their PROVEAN score is included in Supplementary File S1. The curated lineage-specific
GEMs are available in Supplementary File S2. The proportion of genomes per lineage
sharing all genomic features that led to gene removal in each GEM was 100% for Al,
91.25% for A2, 87.25% for A3, 92.75% for A4, 99.44% for L1, 94.38% for L2, 84.27% for L3,
100% for L4, 93.82% for L5, 93.82% for L6, 96.07% for L7, 100% for L8 and 100% for L9.
Therefore, our models are a good representation of the enzymatic gene content of each
lineage’s isolates. FBA with the curated models yielded similar specific growth rate for
all of them: between 0.35 and 0.37 h~1, except for L7, which had a specific growth rate of
0.21 h~!. This biomass production was considered sufficient for this lineage, as it grows
at approximately half the speed of other M. tuberculosis lineages [54]. The models had
approximately the same minimum medium requirements for sustaining the growth rate of
L7 (Table 1). An exception was L7, which needed an additional 1 mmol/(gDW-h) of citrate
and also consumed H".

Table 1. Minimum growth requirements of lineage-specific models for sustaining the growth rate of
the L7 model. The unit is mmol/(gDW-h).

Lineage
L1 L2 L3 L4 L5 L6 L7 L8 L9 Al A2 A3 A4
Nutrient
Citrate 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D-Glucose 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.60 1.00 0.37 1.00
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Table 1. Cont.

Lineage
L1 L2 L3 L4 L5 L6 L7 L8 L9 Al A2 A3 A4
Nutrient

L-Glutamate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Glycerol 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
H* 0.00 0.00 0.00 0.00 0.00 0.00 11.02 0.00 0.00 0.00 0.00 0.00 0.00
NH,* 0.33 0.33 0.41 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
O, 1090 1090 1093 1090 1090 1141 1056 11.39 1090 1263 1090 1220 10.90
octadecanoate 0.45 0.45 0.46 0.45 0.45 0.38 0.05 0.46 0.45 0.73 0.45 0.63 0.45
phosphate 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
SOy 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

2.4. Analysis of Sampled Fluxes Shows Differences in Cholesterol Degradation, Central Carbon
Metabolism and Mycolic Acids and Mycobactin Biosynthesis

We could not see any separation between animal- and human-associated FBA flux
distributions, neither with Principal Component Analysis (Supplementary Figure S3) nor
with a random forest model. As the differences in metabolic fluxes between models of
either animal- or human-associated models might manifest in conditions other than maxi-
mum growth, we decided to sample the solution space of each model. We obtained 1000
samples for each model, simulating Middlebrock 7H9 OADC medium supplemented with
cholesterol. Cholesterol is an important nutrient within the macrophages and we wanted
to explore possible associations between fluxes in cholesterol pathways and host prefer-
ence [55,56]. PCA was not able to clearly separate samples by lineage or by host association
(Supplementary Figure S4), despite the fact that lineages occupied distinct areas in the
bidimensional space. However, fitting an orthogonal partial least squares discriminant
analysis (OPLS-DA) [57], which is a supervised approach, showed a significant correla-
tion between sampled fluxes and host association (R? =0.778, Q* = 0.774, p-value = 0.01,
Accuracy = 0.98) (Figure 4A). Using OPLS-DA’s variable importance in projection (VIP)
values, we determined 385 differential reactions (VIP > 1.0) (Supplementary Table S5).
The differences in fluxes of these reactions across samples contributed significantly to the
sample separation by host association. Finally, we used these reactions to perform an over-
representation analysis (ORA). OPLS-DA model loadings for the predictive component
were used to determine the contribution of each reaction in the perturbed subsystems for
the separation by host association (Supplementary Figure S5 and Table S4). We found eight
subsystems significantly altered between human- and animal-associated models (Table 2).
The subsystem with the lowest p-value was cholesterol degradation. Other altered sub-
systems are related to carbon metabolism: glycolysis/gluconeogenesis, citric acid cycle,
pyruvate metabolism and propanoate metabolism. Additionally, we also found altered
subsystems related to cell wall and membrane processes such as mycolic acid pathway and
membrane metabolism. Finally, mycobactin biosynthesis was also perturbed.
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Figure 4. Comparative fluxomics between sampled flux distributions of genome-scale metabolic mod-
els of human- and animal-associated lineages. (A). Score plot of OPLS-DA (Orthogonal Partial Least
Square Discriminant Analysis). The predictive component separates samples of animal-associated
models from samples of human-associated models. (B). Proportion of reactions fluxes within each
one of the altered subsystems positively correlated either to human or animal association (determined
by the sign of the loading value of predictive component of each reaction, positive means correlated

to human, negative to animal).

Table 2. Altered subsystems between animal- and human-associated models. Each model’s flux
space was sampled in conditions mimicking Middlebrock 7H9 OADC supplemented with cholesterol.
The significantly differential reactions between models of animal- and human-associated lineages
were determined with a multivariate analysis (OPLS-DA, VIP > 1.0), and an over-representation

analysis was carried out with a Fisher exact test (adjusted p-value < 0.05).

Subsystem Adjusted p-Value
Cholesterol degradation 2,67 x 1077
Glycolysis/Gluconeogenesis 6.90 x 104
Citric Acid Cycle 2.89 x 1073
Pyruvate Metabolism 1.47 x 1072
Mycolic acid pathway 2.07 x 1072
Membrane Metabolism 2.56 x 1072
Mycobactin biosynthesis 3.97 x 1072
Propanoate Metabolism 3.97 x 1072

Glycolysis/gluconeogenesis and pyruvate metabolism have a similar number of reac-
tion fluxes positively correlated with animal-associated models and with human-associated
models, indicating differential flux diverting between human- and animal-associated mod-
els (Figure 4B). However, most reaction fluxes within cholesterol degradation are positively
correlated to human-associated sampled models. The same is observed for citric acid cycle
and propanoate metabolism. On the other hand, all the reaction fluxes within mycobactin
biosynthesis are higher in animal-associated sampled models. Membrane metabolism
and mycolic acid pathway have more reaction fluxes correlated to animal models than to
human ones (Figure 4B).

2.5. The Reactions Removed from the Models Are Not Correlated to Host Association

One reaction may be catalyzed by the product of multiple genes, and one gene product
may catalyze multiple reactions. As such, gene absence does not necessarily imply reaction
absence. We therefore investigated if flux differences in the altered subsystems were caused
by similar numbers of absent reactions in each subsystem among lineages associated with
the same host. A hierarchical clustering analysis was performed on the number of reactions
removed within each subsystem per lineage (Figure 5, Supplementary Table S3). The sub-
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systems with more removed reactions were transport, glycolysis/gluconeogenesis, purine
and pyrimidine biosynthesis and cofactor and prosthetic group biosynthesis. The lineages
did not aggregate according to host association: two main clusters were formed, both
consisting of a mix of animal- and human-associated lineages. Therefore, the differences
of fluxes observed in the OPLS-DA analysis should be caused by perturbations in the
metabolic network introduced by mutations. These mutations affect distinct parts of the
metabolic network but propagate through it and produce convergent fluxomic phenotypes
correlated with host association.
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Figure 5. Hierarchical clustering analysis of the number of reactions removed of each subsystem
within each lineage. Each row represents the number of reactions within each subsystem that were
shut down when the genes were removed from the models, whereas the columns are the lineage-
specific models. The clustering was performed with Euclidean and Ward D aggregation method.

2.6. The solution Space of iEK1011 2.0 and Derived Models Is Biased to Low Growth-Rate

We analyzed the distribution of biomass reaction flux across the sampled solutions of
each model to assess the typical growth rate when the differences in fluxes are correlated to
host association. We observed that at least 95% of the sampled flux distributions have a
specific growth rate in the range of 0-0.05 h~! for all the models (Figure 6). The models,
as assessed by FBA, can support a much higher growth rate in simulated 7H9 medium
supplemented with OADC and cholesterol (~0.37 h=1). It is in these low growth conditions
where the differences between animal- and human-associated model fluxomes are observed.
These differences should manifest in conditions where the bacteria are growing slowly.
We compared the fluxes of exchange reactions between sampled and FBA solutions for
each lineage’s model and found similar values (Supplementary Figure S6). With FBA
all models were importing the maximum allowed flux of citrate, glucose, glutamate and
glycerol (1 mmol/(gDW-h)), whereas for octadecenoate the import was 0.7 mmol/(gDW-h)
when the maximum allowed is 1. The only model that imports cholesterol in FBA is L7.
So, in FBA the models are consuming most of the carbon resources available, except for
cholesterol. The fact that the import fluxes are similar in sampled solutions and in FBA
indicates that the former are not in a starvation-like situation: they could grow at a higher
rate with the carbon they are importing. This indicates that in the sampled solutions the
carbon resources are being diverted to reactions other than biomass production. The import
fluxes that are more different between the sampled solutions and FBA distributions are
H,0 and H* (EX_h20_e and EX_h_e). For all the models, sampled solutions import more
H,O than the flux distributions obtained with FBA, except for L4 and L9 models. Regarding
H*, import flux is always higher in FBA (Supplementary Figure S6).
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Figure 6. Density plots of biomass fluxes of the samples of each one of the lineage-specific genome-
scale metabolic models. The solution space of each one of the models was sampled 1000 times
in conditions mimicking Middlebrock 7H9 OADC + cholesterol and densities were obtained for
each model.

3. Discussion

Human- and animal-associated strains of M. tuberculosis are highly similar at genomic
level, and very few differences between lineages associated with different hosts could be
found using both supervised and unsupervised methods. We corroborated that only two
regions are lost in animal-associated lineages compared with humans: RD5 and RD1 [39].
RD5 has been deleted multiple times in animal-associated lineages [8,58,59], suggesting
a possible involvement in host association. This region of difference includes three phos-
pholipase C and two PPE genes that have been linked to virulence, nutrient obtention and
antigen exposure [37-40]. The other genomic region which is absent from animal-associated
lineages compared with human-associated ones is RD1, which has been deleted multiple
times in animal clades: in A1 and A2 [8]. RD1 is the main modification involved in the
attenuation of BCG vaccine strain [35,36,60,61]. SNPs distribution between animal- and
human-associated strains show a similar pattern to what is observed for deletions, with
few common SNPs to all animal-associated lineages but absent from all human-associated
lineages. One of the SNPs markers found was the N88S substitution in the iniA gene,
present in all the members of A2, A3 and A4 (Figure 1). The product of this gene is an
efflux pump involved in the tolerance to isoniazid and ethambutol [33]. Another gene with
potentially deleterious SNPs that affects only animal-associated lineages is hemB. All the
members of Al, A3 and A4 are affected by different potentially deleterious SNPs in this
gene. HemB protein participates in an early step of the synthesis of cobalamin and my-
cobactins, among other compounds [34,62-64]. Cobalamin is a cofactor of many enzymes
and regulates gene expression [34]. Mycobactins are small molecules that sequester iron
ions from ferritin, transferrin, lactoferrin and hemoglobin, the major sources of iron within
the host’s cells [64—66]. A known mechanism of innate immune response for impairing
bacterial proliferation consists of reducing iron availability [67]. M. tuberculosis has evolved
to produce molecules with high affinity to iron, overcoming this limitation [68]. The SNPs in
porphobilinogen synthase could be related to host adaptations, obtaining this nutrient from
different host-specific sources. Finally, unsupervised analysis of the deletion data and the
potentially deleterious SNPs shows a phylogeny-like pattern, where animal lineages form
a monophyletic cluster with L5, L6 and L9 [8]. The identified genomic signatures might be
partially involved in host association, but they are not sufficient to explain host specificity.

Although random forest models can detect gene to gene interaction [69], small-effect
interactions that happen between genes that are distant in the metabolic network might
not be detected. Additionally, different combinations of genomic features, apparently
unrelated in the genome or in the metabolic network, could result in convergent metabolic
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phenotypes that correlate to host association. In this study, we integrated the genomic
signatures characteristic to each one of M. tuberculosis lineages into a GEM, iEK1011 2.0,
to build lineage-specific adaptations of it. We sampled the solution space of each one
of the GEMs to assess if there were any flux differences correlated with host association
without assuming the maximum growth rate. We determined the significantly perturbed
metabolic subsystems between animal- and host-associated lineages. These convergent
perturbations are not directly caused by deleted reactions within those subsystems, as the
number of absent reactions within each subsystem was not correlated with host association.
This indicates that host-correlated fluxes result from the convergent effect of removed
reactions propagated through the metabolic network. These propagated effects produce
flux distributions that allow for an accurate classification of each model’s host association.

The vast majority of the samples from all the models grew significantly slower than
the maximum growth rate estimated by FBA. As host-correlated fluxes were observed in
sampled solutions and not in FBA flux distributions, the differences between reaction fluxes
of animal- and human-associated models are observed in a situation of low growth-rate.
This slow growth was not caused by a lower carbon uptake. We hypothesize that the low
growth-rate dependent correlation between the fluxome and host association might reflect
host-specific adaptations to stress or differences in dormancy state. The altered subsystems
were related with lipid / carbon metabolism and to cell wall/membrane processes, except for
mycobactin biosynthesis. Cholesterol, whose degradation is the most significantly altered
and is positively correlated to human association, is an important carbon source during
macrophage infection [55,56]. Another lipid related subsystem significantly altered was the
mycolic acid pathway. Mycolic acids are important in evading host immune response and
have been shown to be upregulated in stress conditions [70,71]. Central carbon metabolism
has also been shown to be altered in stress conditions. In particular, glycolysis, citrate cycle,
and pyruvate metabolism, which we found altered in our models, have been shown to be
impacted in oxidative and acidic stress and in starvation conditions [25]. Finally, as we
mentioned before, mycobactins mediate the obtention of iron in depleted environments
such as the phagosome [64-66]. The SNPs detected in hemB gene were not finally included
in the models, as this gene is necessary for the gain of biomass flux.

Altered subsystems such as mycolic acid pathways have products that are included in
the model’s biomass composition. However, we did not alter it during the adaptation of
iEK1011 2.0. Biomass composition differences in mycolic acids have been described in L1,
L2, L4 and L6 [72], however we lack information about other compounds and other lineages.
The flux differences in these pathways suggest that differences in cell wall components are
likely to exist between animal- and human-associated lineages.

The process of building lineage-specific metabolic models has some limitations. The
reference for the mapping of the sequencing reads is a reconstructed ancestral sequence
based on the genomic content of a reference strain (H37Rv). [73]. Therefore, we are lacking
the few genes present in other strains that might be absent from H37Rv genome. Further-
more, the base GEM we used to build the models is also based in H37Rv. We are therefore
only accounting for genes that are absent in each one of the lineages compared with H37Ryv,
but we are not adding any reaction that might exist in lineages different than L4. This
limitation led us to detect genes that are essential in H37Rv but appear deleted in some
lineages: Rv1525 (wbbL2) in L1 and Rv3281 (accE5) in L8, both involved in the synthesis
of cell wall components. These lineages must have other genes not present in H37Rv that
are compensating for the deletions. The annotation of the complete genomes available
of these lineages does not account for genes with the same functional category we report
as missing [6,41]. Because an important proportion of M. tuberculosis genes is not anno-
tated (NC_000962.3), it is likely that the genes filling the detected metabolic gaps remain
unknown. Our approach has been proven useful in the detection of such gaps. However,
we might not be seeing the full array of metabolic differences between the lineages due
to the absence of genes in our reference. However, the lack of complete genomes of some
M. tuberculosis lineages, including almost all animal lineage and the incompleteness of its
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annotation, hampers the task of including these genes in our models. Nevertheless, in a
species such as M. tuberculosis, where the genomic identity is higher than 99% [14], the
number of genes which are absent in H37Rv but present in other lineages might be very
small. Therefore, the impact of not including them in our GEMs should not be important, if
their presence is not necessary for bacterial viability.

Regarding the impact of SNPs, premature stop codons are likely affecting protein func-
tion but assessing the functional effect of missense SNPs is difficult. In this study we used
PROVEAN, one of the best performing sequence homology-based tools [31,74]. However,
still, among the genes affected by non-synonymous SNPs predicted to be deleterious we
needed to keep some of them in order to have functional models. Inaccuracies in prediction
of such impact could explain this. Other explanation could be the existence of other genes
in the lineage carrying the missing function, or that promiscuous enzymes included in
the model can catalyze a reaction that is not considered in the model. Alternatively, the
function could be impaired but not totally suppressed. Furthermore, some of the genes
with predicted deleterious SNPs were non-essential in the experimental datasets of H37Rv
but essential in the model, indicating model inaccuracies.

As the fluxomic differences we observed happen in a growth range expected in
situations where the bacterium is stressed or in dormancy state, the model could be
expanded to integrate processes within the host. Previous attempts to build models
reproducing host-pathogen dynamics have been useful to study how the metabolic network
is rewired in response to antimycobacterial drugs [27]. This integration could serve to
analyze if there are drug-induced responses correlated to host association. Another layer of
complexity would be adding gene expression data to further constrain reaction flux values.
Altogether, the workflow used in this study might serve as a platform for the study of other
complex phenotypes related in some way to metabolism in other microorganisms.

4. Materials and Methods
4.1. Computational Workflow Overview

We designed a computational workflow (Figure 7) to predict metabolic phenotypes
for collections of bacterial strains, using their genomic sequences to adapt a reference GEM.
The main aim was to generate explanatory hypotheses connecting genomic variants to
complex phenotypes through their impact in the organism’s metabolic network.

The input data for the workflow are a collection of genomes organized in groups. Each
group should contain phylogenetically related strains with a common phenotype of interest,
which in our case was the host association of the lineage. One of the groups should contain
a reference strain with an available GEM. All genomes are compared with the reference to
identify SNPs and deleted regions. SNPs are filtered to keep only the ones with potential
deleterious effects. Within each group of related strains, metabolic genes that are frequently
deleted or targets of deleterious SNPs are identified. The high frequency of alterations
within the group suggests that it is a conserved event with functional consequences. The
metabolic reactions associated with these frequently altered genes are blocked in the
reference GEM to originate a model specific for that group of strains. Group-specific GEMs
are tested for their ability to generate biomass in appropriate culture media. Some of the
blocked reactions can be essential for growth, which suggests that the strains lacking the
corresponding genes should have alternative genes not present in the reference genome to
catalyze such reactions. In those situations, the list of blocked reactions is redefined, keeping
intact the minimum number of reactions affected by potentially deleterious polymorphisms
to allow the model to generate a steady-state flux distribution with biomass formation.
The set of group-specific viable GEMs is used to predict metabolic phenotypes under
various conditions: using different culture media, optimizing growth-rate, or sampling
the solution space of each model. The aim of these variations is to find conditions where
the predicted metabolic phenotypes (the steady-state metabolic fluxes) discriminate the
groups of strains according to the complex phenotypes under study. The trial-and-error
search for these discriminating conditions is guided by the analysis of unsupervised and
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supervised learning models applied to the generated metabolic flux distributions. Once
the discriminating conditions are found, the supervised learning models are analyzed to
extract the individual metabolic fluxes that have an important contribution to the accuracy
of phenotype classification. These most important fluxes and the associated pathways
can suggest new hypotheses explaining how the complex phenotype of interest can be
influenced by changes in metabolic network activity. In the remaining sections of this
section, we detail the methods used to apply this workflow to discover potential metabolic
network determinants of host association in M. tuberculosis strains.
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Figure 7. Workflow used in the analysis. We started with genomic sequences of Mycobacterium
tuberculosis that aggregate in lineages and exhibit a complex phenotype (host association), and a
reference sequence with a genome-scale metabolic model (GEM) available. Short reads mapping
to reference served to identify deletions and potentially deleterious SNPs. We identified which of
them were prevalent within each lineage and adapted the reference GEM to build lineage-specific
versions. The resulting models were used to predict metabolic phenotypes, to later check if they can
be used to separate lineages according to the complex phenotype (host association in our case). By
identifying the most discriminant fluxes and the enriched subsystems in these fluxes, we can generate
hypotheses relating the discriminant fluxes and the complex phenotype.

4.2. Genomic Data from Clinical Isolates

The accession numbers of the Illumina sequences analyzed in this study (n = 26,972),
the lineage each isolate belongs to and the details about the sequencing run are included in
the Supplementary Table S1.
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4.3. Mapping and Variant Calling

Mapping and variant calling was performed as in Coscolld et al. 2021 [7]. Briefly,
the FASTQ were trimmed with Trimmomatic v 0.33 (SLIDINGWINDOW 5:20) to remove
Ilumina adaptors and low quality reads [75], excluding from downstream analysis the
ones shorter than 20 bp. Overlapping paired-end reads of 15 nucleotides size were merged
with SeqPrep v1.2 (https://github.com/jstjohn/SeqPrep, accessed on 23 June 2020). The
resultant reads were aligned to the reconstructed ancestral sequence of M. tuberculosis
obtained by Comas et al. [73] using BWA v 0.7.13 (mem algorithm) [76]. Duplicated
reads were marked by the Mark Duplicates module of Picard v 2.9.1 (https://github.com/
broadinstitute/picard, accessed on 23 June 2020) and excluded. Reads with an alignment
score corresponding to more than 7 mismatches per 100 bp were excluded using Pysam
v 0.9.0 to avoid false positives (https:/ /github.com/pysam-developers/pysam, accessed
on 23 June 2020). SNPs were called with SAMtools v 1.2 mpileup [77] and VarScan v
2.4.1 [78]. Only SNPs that reached fixation within an isolate were considered (within-
host frequency, i.e., SNP frequency within the reads of the same sample, higher 90%),
calling the ancestor state otherwise. Mixed infections or contaminations were discarded:
genomes with more than 1000 variable positions with within-host frequencies between
90 and 10% and genomes for which the number of within-host SNPs was higher than the
number of fixed SNPs (SNPs with within-host frequency higher than 90%) were excluded.
Additionally, genomes with mean read depth <15x (after all the referred filtering steps)
were excluded too. All SNPs were annotated using snpEff v4.11 [79], in accordance with
the M. tuberculosis H37Rv reference annotation (NC_000962.3). SNPs within regions such as
PPE and PE-PGRS, phages, insertion sequences and in regions with at least 50 bp identities
to other regions in the genome were excluded from the analysis, as in the paper by Stucki
et al. [80]. Customized scripts were used to calculate mean coverages per gene corrected by
the size of the gene. Gene deletions were determined as regions of the reference genome
without read coverage.

4.4. Determination of Potentially Deletereous SNPs

The total set of SNPs observed in all the isolates was filtered to keep only SNPs that
produced a premature stop codon. In parallel we kept non-synonymous SNPs and used
PROVEAN to predict if the substitution will have a deleterious effect (score < —2.5) [31].
The potentially deleterious SNP dataset consisted of a mix of these two datasets. 178 and
400 genomes were randomly selected from each one of the human- or animal-associated
lineages, respectively, with sample replacement in the cases where the sample size is
higher than the number of available sequences in the lineage. In this way, a representative
sample of each lineage was achieved, and class imbalance was avoided. We determined
the presence or absence of each potentially deleterious SNP within each genome. These
data constituted the starting point for downstream SNPs analysis.

4.5. Unsupervised and Supervised Analyses of Potentially Deleterious SNPs

For the unsupervised analysis we first counted how many times each gene was
affected by potentially deleterious SNP within a lineage and obtained the average per
lineage. A correspondence analysis was then performed using FactoMineR R package. For
the supervised analysis we fitted a random forest model to the sampled genomes matrix
obtained in 4.4. We used the caret R package for this purpose [81]. Accuracy was assessed
with 10-fold cross validation.

4.6. Unsupervised Analysis of the Deletion Data

Principal Component Analysis was performed with R’s base function on deletion
percentage of each one of H37Rv ORFs. Results were plotted with factoextra R package.
The PCAs of enzymatic genes and of genes included in iEK1011 GEM were performed
analogously, previously filtering the ORFs to keep the ones that had either an entry in
KEGG with an Enzyme Commission (EC) number assigned or the ones that appear in
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iEK1011 2.0 model. Correspondence Analysis was carried out with FactoMineR, with
previous binarization of deletion data with a 15% threshold (gene is deleted if 15% or more
of the sequence is lost). The input data were the counts of isolates within each lineage
carrying deletions on each one of the genes included in iEK1011 2.0 model.

4.7. Random Forest of Deletion Data

We used the caret R package [81] for random forest analysis of lineage-specific dele-
tions, determined by the deletion percentage of each one of the clinical isolates. A sampling
of the isolates was performed to avoid class imbalance and lineage underrepresentation
(lineages like L2 and L4 are overrepresented, whereas others such as L8, L9 and Al are
underrepresented). For this we computed the rounded median of the number of isolates
per human lineage to determine the number of sequences sampled from each human-
associated lineage. We multiplied this number by the total number of human-associated
isolates and divided it by the total number of animal-associated isolates to obtain the
number of isolates to sample from each animal-associated lineage. If the number of samples
was bigger than the number of sequences available for the lineage, sampling was carried
out with replacement. This sampling was carried out in each one of the 10 rounds of cross
validation.

4.8. Lineage-Specific Model Construction and Curation

We used COBRApy for obtaining all the GEMs, curate them and to carry out the
simulations [82]. The lineage-specific GEMs were adapted from iEK1011 2.0, an improved
version of the iEK1011 model [26,30]. This model is a representation of the H37Rv strain,
which belongs to L4; therefore, the intact model was considered to be the L4 model. To build
the lineage-specific models, the deletions and the potentially deleterious SNP characteristics
of each lineage were included in each model. Deletion data were binarized with a threshold
of 85% of coverage in the reference. A chi-squared test was used to obtain differentially
deleted genes between each lineage and L4 (Benjamini-Hochberg adjusted p-value < 0.05).
The lists of differentially deleted genes were filtered to keep just the ones that are deleted
in more than the 85% of the target lineage. This constituted the first list of genes to remove
per lineage model. To these lists the SNPs annotated as stop gain codon and the missense
SNPs predicted to be deleterious by PROVEAN that were present in more than the 85% of
each lineage were added. We then removed the reactions associated with these genes and
simulated the resulting models maximizing growth rate in media conditions simulating
Middlebrock 7H9 supplemented with OADC [30]. None of the models grew at this point;
therefore, we found the minimum combination of removed genes that needed to be kept to
obtain a growth rate comparable with the observed for the L4 model. When there were
different options, i.e., different sets of genes with the same size that restore growth when
kept, the genes kept were the ones with a higher PROVEAN score. Once we determined
the genes that need to be removed from iEK1011 2.0 to obtain a lineage-specific functional
model, we assessed how representative the model was for the whole lineage. For that, we
determined the proportion of the genomes we sampled in 4.4 within each lineage that had
either deletions or potentially deleterious SNPs in all the genes we removed for generating
each GEM.

4.9. Model Media Composition

The model’s medium settings for simulating Middlebrock 7H9 supplemented with
OADC medium were obtained from Lopez-Agudelo et al. [30]. The maximum allowed
uptake flux for the compounds in the medium were: EX_glu__L_e (L-glutamate) = 1,
EX_cu2_e (Cup) = 1000, EX_btn_e (biotin) = 1, EX_pydxn_e (pyridoxine) = 1, EX_ca2_e
(Cap) = 1000, EX_mg2_e (Mgy) = 1000, EX_h_e (H*) = 1000, EX_k_e (K*) = 1000, EX_nh4_e
(NH4*) = 10, EX_h20_e (H,0) = 1000, EX_pi_e (phosphate) = 1, EX_cl_e (CI") = 1000,
EX_02_e (O,) =20, EX_nal_e (Na*) = 1000, EX_so4_e (5042_) = 1000, EX_cit_e (citrate)
=1, EX_fe3_e = 5, EX_glyc_e (glycerol) = 1, EX_glc_ D_e (D-glucose) = 1, EX_ocdca_e



Biomolecules 2022, 12, 376

17 of 22

(octadecanoate) = 1. Flux units are mmol/(gDW-h). For the simulations with cholesterol, a
maximum import flux of 1 mmol/(gDW-h) was allowed.

4.10. Model Simulations

FBA was performed setting “BIOMASS__2” reaction as objective, simulating growth
in Middlebrock 7H9 supplemented with OADC. PCA of the obtained flux distributions
was carried out with R 3.6. Flux sampling was carried out with optGpSampler method
within COBRApy (N = 1000) [83]. The medium was 7H9 supplemented with OADC and
cholesterol (1 mmol/gDW /h). The medium settings represent the maximum flux that can
be imported into the system, but each value is not fixed.

4.11. Sampled Flux OPLS-DA

OPLS-DA model of sampled flux distributions was carried out with ropls R pack-
age [84] aiming to predict the host association of the corresponding lineage. The number of
orthogonal components was fixed to 3. R? and Q?, key parameters for assessing the validity
of the model, were assessed with 7-fold cross validation. The significance of the model
was determined by permutation test (n = 100). The p-value corresponds to the proportion
of szerm above Q2. With a p-value below 0.05 we considered the model significant. The
accuracy was computed by dividing the number of observations correctly classified by
the model by the total number of observations. The loadings of the predictive component
of the model were extracted to determine the correlation of each reaction flux to host
association. Variable Importance in Projection (VIP) values were also obtained, to assess
the contribution of each reaction flux to the classification.

4.12. Subsystem Over-Representation Analysis

Differential reaction fluxes between samples of human- and anima-associated GEMs
were determined with VIP values. VIP is defined as the weighted sum of squares of the
PLS weight, reflecting the importance of the variable to the entire model. We considered
reaction fluxes with VIP > 1.0 as significant [25,85,86]. An over-representation analysis
was used to determine metabolic subsystems enriched in reactions with differential fluxes
between animal- and human-associated models, based on a one-sided Fisher exact test
(adjusted by Benjamini-Hochberg method, significant with an adjusted p-value lower or
equal to 0.05) [87]. The subsystems tested were the ones iEK1011 2.0 has assigned to each
one of the reactions.

4.13. Removed Reactions Hierarchical Clustering Analysis

The reactions that were blocked in each model, when the genes affected by potentially
deleterious mutations were removed, were determined according to iEK1011 2.0 Gene
Protein Reaction (GPR) rules. The reactions were grouped by subsystem and a count of how
many reactions were lost in each subsystem per lineage model was obtained. A hierarchical
clustering analysis was performed on this dataset, using Euclidean distance and Ward D
aggregation method. The heatmap was obtained with gplots R package [88].

4.14. Biomass Density Plots

The densities of the biomass sampled fluxes for each one of the lineage-specific GEMs
were obtained with the ggplot2 R package [89].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom12030376/s1, Figure S1: Correspondence Analysis of all the potentially deleterious
SNPs, Figure S2: Unsupervised analysis of the deletion data of the genes included in iEK1011
2.0 genome-scale metabolic model, Figure S3: Principal Component Analysis of FBA flux distri-
butions of the lineage-specific genome-scale metabolic models, Figure S4: Principal Component
Analysis of the sampled solution space of each one of the lineage-specific genome-scale metabolic
models, Figure S5: OPLS-DA loadings for the significantly altered subsystems between animal-
and human-associated sampled models, Figure S6: Difference of exchange fluxes between sam-
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pled models and FBA flux distribution of metabolites in Middlebrock 7H9 OADC + cholesterol
for each lineage’s model, Table S1: Illumina genomes information, Table S2: iEK1011 2.0 reaction
information, Table S3: Removed reactions per lineage model, Table S4: OPLS-DA variable coefficients,
Table S5: Statistically significant reaction fluxes between samples of animal- and human-associated
models, File S1: Description of the genes removed from iEK1011 2.0 to generate lineage-specific
GEMs, File S2: Lineage-specific genome scale metabolic models.
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