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Rebecca A. Hubbard1 Jing Huang1 Joanna Harton1 Arman Oganisian1

Grace Choi1 Levon Utidjian2,3 Ihuoma Eneli4 L. Charles Bailey2,3 Yong Chen1

1Department of Biostatistics,
Epidemiology & Informatics, University of
Pennsylvania, Philadelphia, Pennsylvania
2Department of Pediatrics, University of
Pennsylvania, Philadelphia, Pennsylvania
3Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
4Nationwide Children's Hospital,
Columbus, Ohio

Correspondence
Rebecca A. Hubbard, Department of
Biostatistics, Epidemiology & Informatics,
University of Pennsylvania,
Philadelphia, Pennsylvania.
Email: rhubb@pennmedicine.upenn.edu

Funding information
Patient-Centered Outcomes Research
Institute (PCORI), Grant/Award Number:
ME-1511-32666 and CDRN-306-01556

Phenotyping, ie, identification of patients possessing a characteristic of interest,
is a fundamental task for research conducted using electronic health records.
However, challenges to this task include imperfect sensitivity and specificity of
clinical codes and inconsistent availability of more detailed data such as lab-
oratory test results. Despite these challenges, most existing electronic health
records–derived phenotypes are rule-based, consisting of a series of Boolean
arguments informed by expert knowledge of the disease of interest and its cod-
ing. The objective of this paper is to introduce a Bayesian latent phenotyping
approach that accounts for imperfect data elements and missing not at random
missingness patterns that can be used when no gold-standard data are available.
We conducted simulation studies to compare alternative phenotyping methods
under different patterns of missingness and applied these approaches to a cohort
of 68 265 children at elevated risk for type 2 diabetes mellitus (T2DM). In sim-
ulation studies, the latent class approach had similar sensitivity to a rule-based
approach (95.9% vs 91.9%) while substantially improving specificity (99.7% vs
90.8%). In the PEDSnet cohort, we found that biomarkers and clinical codes were
strongly associated with latent T2DM status. The latent T2DM class was also
strongly predictive of missingness in biomarkers. Glucose was missing in 83.4%
of patients (odds ratio for latent T2DM status = 0.52) while hemoglobin A1c was
missing in 91.2% (odds ratio for latent T2DM status = 0.03 ), suggesting missing
not at random missingness. The latent phenotype approach may substantially
improve on rule-based phenotyping.
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1 INTRODUCTION

Electronic health records (EHR) have emerged as an important data resource for conducting observational studies of
health care and outcomes. However, analyses using these data must account for the imperfect and inconsistent quality
of EHR data in order to avoid erroneous inference.1,2 One important data quality issue for EHR-based research is high
levels of missing data that arise through a complex process.3-6 Missing data in this context are often missing not at random
(MNAR) because patients who are sicker tend to have more complete and extensive EHR data available due to their greater
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frequency of interaction with the health care system. Despite the near ubiquity of this complex missingness mechanism,
analyses of EHR data often do not explicitly and rigorously account for missing data.

Patient phenotyping, ie, characterizing patients with respect to the presence or absence of characteristics such as dis-
eases of interest, is a fundamental task that must be undertaken in order to make use of EHR data for research. Although
EHR data contain many potentially informative data elements, they often do not include gold-standard phenotypes, and
the most informative data elements, such as results of diagnostic tests, are often missing for the majority of patients. The
most commonly used approach to phenotyping using EHR data is rule-based phenotyping, in which an algorithm based
on clinical knowledge of the disease process and coding practices for the disease is prespecified.7 For instance, the Phe-
notype Knowledgebase (http://phekb.org) provides several dozen rule-based phenotypes for a variety of conditions of
interest. Approaches to handling missing data included in a rule-based phenotype include treating lack of information
as indicative of the absence of disease, excluding the patient from further analysis, or using more formal approaches to
handling missing data such as multiple imputation (MI). However, the implications of these alternative approaches for
bias and efficiency of phenotypes under different missing data mechanisms have not been explored in this setting.

Complete case analysis, ie, exclusion of all individuals with any missing data elements included in the phenotype
definition, is inefficient, potentially resulting in substantial losses of data, and can lead to bias if individuals with missing
information represent a nonrandom subset of the population. In the context of multisite research networks where some
data elements may be missing for all patients at a given site, excluding individuals with missing data elements is particu-
larly problematic since it would amount to the elimination of those sites from the analysis. Such exclusions are likely to
bias results by systematically eliminating subgroups of patients that may differ in important respects from patients who
have no missing data. One approach to handling this challenge is to use a phenotype that only includes data available for
all individuals. For instance, in the case of diabetes, biomarker measurements are likely to be missing for many patients.
A phenotype might therefore be based only on the presence or absence of clinical codes, which would be available for all
patients. While using a simplified phenotype obviates the need to address missing data in a potentially large subgroup
of individuals, it does so at the expense of discarding potentially more informative predictors that have been measured
among people without missing data.

An alternative to complete case analysis is to impute missing data elements and then apply the phenotype to the imputed
data. Multiple imputation via chained equations8 is a frequently used approach to imputing missing data because it allows
for multiple variable types and can be implemented easily. This flexibility is convenient for use in the context of EHR
data where multiple variable types are likely to be encountered. However, MI methods rely on an assumption of missing
at random (MAR) missingness, which is likely to be violated in EHR data. In cases in which receipt of a diagnostic test
is related to the phenotype of interest, which is unobserved, the assumption of MAR missingness is violated. Including
measures of comorbidity and healthcare utilization in the imputation model may help to mitigate bias.9 However, it is
unlikely that the missing data mechanism can be completely specified using available data elements.

Latent variable methods have recently been suggested as an alternative approach to phenotyping10 that can handle
incomplete or inconsistently assessed patient characteristics. While MI approaches attempt to impute missing values for
each measurement based on the joint distribution of the measurements, latent variable models posit the existence of
an underlying characteristic through which the observed data are related. Several prior studies have used latent vari-
ables to address challenges arising from inconsistently available administrative data. For instance, He et al11 combined
data from chart abstraction and Medicare claims in which both data sources were considered imperfect and incomplete.
They proposed a Bayesian MI method via data augmentation for their latent variable model and estimated associations
between the underlying characteristic of interest and outcomes, even in the presence of substantial missingness. A similar
latent variable model was proposed by Chen and Zhou,12 who considered the additional complicating factor of complex
correlation structures due to nesting of observations within individuals and clinics. However, their estimation strategy
focused on marginal modeling, integrating over unobserved patient characteristics rather than explicitly estimating them.
Coley et al13 used EHR data to predict a latent prostate cancer recurrence phenotype using Bayesian estimation methods.
In their setting, this phenotype was explicitly observed for a subset of patients but selection into this subset was assumed
to be informative. Their model thus accommodated both inconsistently available data across individuals and MNAR miss-
ingness for some data elements. These prior approaches demonstrate the feasibility of a latent variables approach in the
analysis of EHR data.

In this paper, we propose a Bayesian latent class model for EHR-based phenotyping that addresses heterogeneity in
available data elements across patients and possibly MNAR missingness. The Bayesian approach bridges rule-based phe-
notypes, which are based entirely on expert knowledge and opinions, and data-driven approaches, which are derived
solely from information contained in the data. In comparison to commonly used rule-based phenotyping approaches,
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the Bayesian approach facilitates incorporation of expert knowledge via prior distributions while allowing for estima-
tion of relationships among variables included in the model based on the observed data. In contrast to the approach
of Coley et al,13 we consider an unsupervised context in which gold-standard phenotype information is not available
for any subjects. This is a common setting in EHR-based research where many studies are conducted without access to
validation data.

The structure of this paper is as follows. Section 2 introduces data from the PEDSnet consortium on a cohort of pedi-
atric patients at elevated risk of type 2 diabetes mellitus (T2DM), which we use to illustrate challenges arising due to
missing data and motivate parameter choices for our simulation studies. We then describe the proposed Bayesian latent
class model and alternative rule-based approaches to phenotyping. In Section 3, we present results of simulation stud-
ies comparing alternative phenotyping approaches and an analysis of the PEDSnet data on T2DM. Finally, we conclude
in Section 4 with a summary and discussion of methodological alternatives to addressing the challenges of EHR-based
phenotyping.

2 METHODS

2.1 Pediatric T2DM
Our investigation of alternative methods for EHR-based phenotyping was motivated by the case of pediatric T2DM.
Unlike T2DM in adults which has high prevalence, T2DM in children is rare, with estimated prevalence of <0.1%.14 Data
on pediatric T2DM came from one of eight sites in the Patient Centered Outcomes Research Institute-funded PEDSnet
consortium, the Children's Hospital of Philadelphia (CHOP). Included children were 9-18 years old, had at least two out-
patient clinical encounters captured in the CHOP EHR in 2001-2017, and had at least one body mass index (BMI) z-score
in excess of the 95th percentile for their age and sex. While biomarkers including hemoglobin A1c (HbA1c) and serum
glucose have good operating characteristics for diagnosing T2DM,15 biomarker data are not available for the majority of
children. In this sample, <9% of children had HbA1c data available and <17% had glucose data. In contrast, informa-
tion on presence or absence of diagnostic codes, comorbidities, healthcare utilization, and prescription medications is
available for all children. However, these data elements may not have good sensitivity or specificity with respect to under-
lying disease status. For this analysis, we included data from all in-person clinical encounters occurring within 2 years of
the first clinical encounter at which a patient met study inclusion criteria, which was defined as the baseline visit. Data
elements derived from the EHR and included in our analysis as potential predictors of pediatric T2DM were age, sex,
race/ethnicity, visit to an endocrinologist, metformin prescription, insulin prescription, age and sex standardized BMI
z-score, average glucose value, average HbA1c value, and diagnosis codes for type 1 diabetes mellitus (T1DM) and T2DM.

The University of Pennsylvania and CHOP Institutional Review Boards determined that this project did not constitute
human subjects research because it used only existing de-identified data resources.

2.2 Bayesian latent phenotype model
To address the missing data issues described in Section 1, we developed a Bayesian latent class model applicable to EHR
data that features variation in the number and type of observations available across individuals, where true disease status
may influence the type of data available for an individual, and in which the true disease status is assumed unobserved for
all patients. We allow for covariate dependence of the latent phenotype as well as the observed data elements, conditional
on the latent phenotype. Subsequently, we describe our approach to model specification and estimation.

Let Di represent a phenotype for i = 1, … n patients, which is assumed unobserved. Available data for estimating Di
include vectors of J biomarkers (Yi = (Yi1, … ,YiJ)), K clinical codes (Wi = (Wi1, … ,WiK)), L prescription medica-
tions (Pi = (Pi1, … ,PiL)), and M patient covariates such as demographics (Xi = (Xi1, … ,XiM)). Table 1 summarizes the
elements of the proposed Bayesian model for latent phenotypes, using T2DM as an illustrative example. Although our
development is motivated by pediatric T2DM, the general classes of EHR-derived variables used in this example are com-
mon to many phenotypes, allowing the latent phenotyping approach to be used beyond this specific context. Biomarkers
are assumed doubly informative in that not only the biomarker value but the availability of a biomarker measurement
(Ri = (Ri1, … ,RiJ)) may be indicative of the underlying phenotype. Availability of biomarkers, biomarker measure-
ments, clinical codes, and prescription medications are assumed conditionally independent given the underlying disease
status, Di, and patient characteristics.
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TABLE 1 Model specification for Bayesian latent variable model for EHR-derived phenotypes for the ith patient. g(·) = exp(·)∕(1+ exp(·))
Latent Phenotype Availability of Biomarkers Clinical Codes Prescription

Biomarkers Medications
Example Type 2 Diabetes Availability of glucose Glucose or Diabetes ICD-9 code; Diabetes

or HbA1c data HbA1c values Endocrinologist visits medication
Variable Di Ri j, j = 1, … , J Yi j, j = 1, … , J Wik, k = 1, … ,K Pil, l = 1, … ,L

Model Di ∼ Bern(g(X i𝜷
D + 𝜂i)) Ri𝑗 ∼ Bern(g((1,X i,Di)𝜷R

𝑗 )) Yi𝑗 ∼ N((1,X i,Di)𝜷Y
𝑗 , 𝜏

2
𝑗
) Wik ∼ Bern(g((1,X i,Di)𝜷W

k ) Pil ∼ Bern(g((1,X i,Di)𝜷P
l ))

Priors 𝜷D ∼ MVN(0,ΣD) 𝜷R
𝑗 ∼ MVN(𝝁R,ΣR) 𝜷Y

𝑗 ∼ MVN(𝝁Y ,ΣY ) 𝜷W
k ∼ MVN(𝝁W ,ΣW ) 𝜷P

l ∼ MVN(𝝁P ,ΣP)

𝜂i ∼ Unif(a, b)
𝜏2
𝑗
∼ InvGamma(c, d)

Abbreviations: N, normal; Bern, Bernoulli; MVN, multivariate normal; Unif, uniform; InvGamma, inverse gamma, HbA1c, Hemoglobin A1c.

Without loss of generality, we assume that binary indicators of the presence of clinical codes and prescription medica-
tions are available for all patients while biomarkers are only available for a subset. The likelihood for the ith patient is
given by

L
(
𝜂i, 𝛽

D, 𝜷R, 𝜷Y ,𝜷W , 𝜷P, 𝜏2 |X i
)
=

∑
d=0,1

P
(

Di = d |𝜂i, 𝛽
D,X i

) J∏
𝑗=1

𝑓
(

Ri𝑗 |Di = d,X i, 𝜷
R
𝑗

)
𝑓
(

Yi𝑗 |Di = d,X i,𝜷
Y
𝑗 , 𝜏

2
𝑗

)Ri𝑗

K∏
k=1

𝑓
(

Wik |Di = d,X i, 𝜷
W
k
) L∏

l=1
𝑓
(

Pil |Di = d,X i,𝜷
P
l
)
,

where 𝛽D denotes the association between patient characteristics and the phenotype of interest; 𝜂i denotes a subject-
specific random effect for the phenotype; and 𝜷R

𝑗 = (𝛽R
𝑗0, … 𝛽R

𝑗,M+1), 𝜷
Y
𝑗 = (𝛽Y

𝑗0, … 𝛽Y
𝑗,M+1), 𝜷

W
k = (𝛽W

k0 , … 𝛽W
k,M+1), and,

𝜷P
l = (𝛽P

l0, … 𝛽P
l,M+1) denote the association between patient characteristics and the underlying phenotype and availability

of biomarkers, biomarker values, clinical codes, and medications, respectively. Using the specifications in Table 1 yields
a model in which mean biomarker levels are shifted by a quantity 𝛽Y

𝑗,M+1 for patients with the phenotype of interest
compared to those who do not possess this characteristic. Similarly, sensitivity and specificity of binary indicators for
clinical codes, medications, and presence of biomarkers are given by combinations of regression parameters. For instance,
in a model with no patient covariates, specificity of the kth code is given by 1-expit (𝛽W

k0 ) while sensitivity is given by
expit (𝛽W

k0 +𝛽W
k1 ), where expit (·) = exp(·)∕(1+exp(·)). Additionally, the proposed model allows for a unique combination

of available data elements for each patient. The likelihood for each individual consists of the product of the likelihood
contributions for all available measurements for that individual for each variable type. If the jth biomarker is missing,
Ri j = 0, which results in exclusion of the likelihood contribution for Yi j.

Prior knowledge about the classification accuracy of biomarkers and codes can be encoded through suitable choice
of priors for these parameters. In the case of normally distributed biomarkers, the proposed model implies a binormal
receiver operating characteristic (ROC) model. In general, for a normally distributed biomarker with mean and variance
given by 𝜇1 and 𝜎2

1 in diseased individuals and 𝜇0 and 𝜎2
0 in controls, the area under the curve (AUC) is given by Φ((𝜇1 −

𝜇0)∕(𝜎2
1 + 𝜎2

0 )
1∕2), where Φ(·) represents the standard normal cumulative distribution function.16 In our specific case in

which we assume a common variance for cases and controls and a difference in means for the jth biomarker of 𝛽Y
𝑗,M+1,

the AUC is given by Φ(𝛽Y
𝑗,M+1∕(2𝜏

2
𝑗
)1∕2). If prior information on AUC for a given biomarker is available, this can be used

to inform selection of a prior for 𝛽Y
𝑗,M+1.

We recommend the use of a uniform prior, Uniform(a, b), for log(𝜂i∕(1 − 𝜂i)) to constrain prevalence of the phenotype
of interest within some plausible range. For instance, in the case of pediatric T2DM, past studies suggest that prevalence
is very low.14 Thus, setting a < b < 0 is appropriate in this case. Constraining 𝜂i via a prior with finite range is useful to
prevent “label switching,” which can otherwise present a problem for model identifiability17 and Bayesian latent variable
models.18

Estimation can be carried out using Markov Chain Monte Carlo (MCMC) methods. Specifically, in simulation studies
and analyses of PEDSnet data, we used JAGS via the R package runjags to obtain samples from the posterior distribution
of model parameters. Samples from the posterior distribution of expit (X i𝜷

D +𝜂i), the patient-specific probability of mem-
bership in the Di = 1 class, were used to describe a patient's latent phenotype. Example R and JAGS code used for the
analysis of PEDSnet data are provided in our GitHub repository (https://github.com/rhubb/Latent-phenotype/).

https://github.com/rhubb/Latent-phenotype/
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2.3 Clinical decision rules for T2DM
We compared the performance of the above described latent phenotype approach to three classification rules based on
biomarkers and clinical codes. These comparator approaches were motivated by a prior study that explored data elements
used in T2DM phenotypes for adults19 as well as existing clinical decision rules for T2DM.20 Three alternative classification
rules were considered in which a patient was classified as having T2DM (ie, D̂i = 1) if he or she had:

1. biomarker in the abnormal range, ie, glucose ≥ 200 mg/dl or HbA1c ≥ 6.5%;
2. presence of clinical codes or prescriptions related to T2DM;
3. biomarker in the abnormal range OR presence of clinical codes or prescriptions related to T2DM.

In typical applications of T2DM rule-based phenotyping, if glucose or HbA1c are missing they are assumed to be in
the normal range. In addition to this approach, we also explored the use of MI for missing biomarkers. We used MI via
chained equations to impute missing biomarkers conditional on patient characteristics, diagnosis codes, and prescription
medications. In simulation studies and analyses of PEDSnet data, five imputed data sets were generated, biomarker values
were averaged across imputations, and mean imputed biomarker values were then included in the rule-based approaches
above. In application of rule-based phenotypes to PEDSnet data, we additionally required no occurrence of T1DM codes
to account for the much higher prevalence of T1DM in pediatric cohorts compared to T2DM.

2.4 Simulation study
We evaluated the performance of alternative phenotyping approaches using a series of simulation studies. The objective
of our simulations was to produce simulated data sets that resembled real EHR data on pediatric patients in the PEDSnet
cohort in terms of the types, distributions, and missingness patterns of variables. In our simulated example motivated by
the context of pediatric T2DM, we simulated fully observed patient covariates age, race, BMI z-score; binary indicators
for presence of clinical codes for T2DM and making a visit to an endocrinologist; and a binary indicator for presence of a
medication prescription for metformin. We also simulated two biomarkers, glucose and HbA1c. Data were simulated for
1000 patients according to the distributions provided in Table 2. Standard deviations for the two biomarkers were selected
to correspond to an AUC of approximately 0.95 for each biomarker.

We next introduced missingness in biomarkers according to two alternative missingness mechanisms. Under MAR
missingness, missignness was simulated according to a Bernoulli distribution with patient-specific missingness prob-
abilities that varied according to age, race, and BMI. Under MNAR missingness, these missingness probabilities were
additionally allowed to depend on T2DM status. Availability of data on the jth biomarker was simulated according to a
Bernoulli distribution with probability, P(Ri 𝑗 = 1) = expit (𝛽R

𝑗0 + 𝛽R
𝑗1Xi1 + 𝛽R

𝑗2Xi2 + 𝛽R
𝑗3Xi3 + 𝛽R

𝑗4Di). Across all simulations,
we set 𝛽R

1k = 0.5 and 𝛽R
2k = 0.6, for k = 1, 2, 3. These values were selected to represent a moderately strong effect of

patient risk factors on biomarker missingness, with less frequent missingness in glucose (Yi1) and more frequent miss-
ingness in HbA1c (Yi2). Specifically, patients with clinical characteristics associated with T2DM were more likely to have
available biomarker data, with the strength of this risk factor effect greater for HbA1c (Yi2) than for glucose (Yi1). We then

TABLE 2 Distributional assumptions and parameter values used in simulation studies. Normal
distributions are parameterized using mean and standard deviation. expit (·) = exp(·)∕(1 + exp(·))

Variable Distribution

Age (Xi1) Uniform (9, 18)
White race (Xi2) Bernoulli (0.524)
T2DM (Di |Xi1,Xi2) Bernoulli (expit(𝜂i + 0.01Xi1 − 0.07Xi2)), 𝜂i ∼ Normal( − 2.64, 0.04)
BMI percentile (Xi3 |Di) Truncated Normal (2.2Di + 2.0(1 − Di), 0.3, lowerbound = 1.645)
T2DM code (Wi1|Di) Bernoulli (0.8Di + 0.004(1 − Di))
Endocrinologist visit code (Wi2 |Di) Bernoulli (0.5Di + 0.078(1 − Di))
Metformin code (Pi1|Di) Bernoulli (0.2Di + 0.0112(1 − Di))
Glucose (Yi1|Di) Normal (90.6 + 42Di, 16.93)
HbA1c (Yi2|Di) Normal (5.4 + 1.00Di, 0.45)

Abbreviations: BMI, body mass index; T2DM, type 2 diabetes mellitus.



HUBBARD ET AL. 79

investigated four different scenarios for missing data:

1. Low MAR missingness: 𝛽R
𝑗0 = −8, 𝛽R

𝑗4 = 0 ;
2. High MAR missingness: 𝛽R

𝑗0 = −12, 𝛽R
𝑗4 = 0 ;

3. Low MNAR missingness: 𝛽R
𝑗0 = −8, 𝛽R

𝑗4 = 1 ;
4. High MNAR missingness: 𝛽R

𝑗0 = −12, 𝛽R
𝑗4 = 1.

Setting 𝛽R
𝑗4 = 1 in MNAR scenarios represents a strong dependence of biomarker availability on underlying presence

of T2DM. We also note that, while we refer to these scenarios as “low” and “high” missingness, these terms are applied
relatively. Missingness was high in an absolute sense across all simulations with, on average, 25% missingness in Yi1 and
48% missingness in Yi2 in the “low missingness” scenarios and 81% missingness in Yi1 and 95% missingness in Yi2 in the
“high missingness” scenarios. In data from PEDsnet, missingness in biomarkers was more similar to the high missingness
scenario than the low missingness scenario.

For the Bayesian latent phenotype approach, we used normal priors with variance 100 for parameters in biomarker mod-
els and normal priors with variance 10 for parameters in logistic models for binary indicators. We placed a Uniform(−5,−1)
prior on 𝜂i. For each simulated data set, we drew 1000 samples from the posterior distribution for expit(X i𝜷

D+𝜂i) for each
patient after 1100 burn-in iterations. Based on this posterior sample, we computed the posterior mean for each patient
and classified the patient according to diabetes status.

A cutpoint for dichotomous classification as to T2DM status was chosen such that patients with posterior mean prob-
ability of T2DM in the top 5% of the distribution were classified as diabetic and all others were classified as nondiabetic.
This cutpoint was chosen because the prevalence of T2DM in simulated data was approximately 5%. This represents the
type of dichotomization that could be made in a latent phenotype if an approximate population prevalence was known.
This dichotomous classification for the latent phenotype approach was compared to classification based on (1) biomark-
ers only, (2) codes only, (3) biomarkers and codes, (4) biomarkers with missing values replaced via MI, and (5) biomarkers
and codes with missing biomarker values replaced via MI.

We characterized the performance of alternative methods applied to simulated data in terms of their predictive accuracy
relative to underlying true T2DM status. Sensitivity, specificity, and proportion of patients misclassified were calculated
for each method relative to underlying true T2DM status. In addition, the Bayesian latent phenotype model and biomark-
ers provided continuous measures of disease risk. Discrimination for these measures was additionally evaluated using an
ROC analysis and the mean area under the ROC curve (AUC) was calculated across simulations. In ROC analyses, indi-
viduals with missing biomarkers were assigned a biomarker value of zero in order to ensure that they were classified as
nondiseased across all biomarker thresholds.

We conducted a series of sensitivity analyses to evaluate the robustness of our results to (1) the prevalence of the phe-
notype of interest, (2) the choice of cutpoint for the Bayesian latent phenotyping approach, and (3) the violation of the
assumption of equal variance of the biomarkers in cases and controls. To address (1), we repeated the simulation study
using the parameter values and distributional assumptions described above but increasing the prevalence of the T2DM
phenotype in the simulated data to ∼20%. For (2), we used the simulation settings described above but, rather than
dichotomizing posterior probabilities at the known population prevalence, we dichotomized the posterior probabilities
at the estimated population prevalence based on the mean of the posterior means,

∑
i p̃(Xi, 𝜷

D, 𝜂i)∕N, where p̃(Xi, 𝜷
D, 𝜂i)

is the posterior mean probability of T2DM for the ith subject. Finally, to investigate (3), we used the simulation settings
described above but increased the biomarker variance by a factor of four in cases only. In this scenario, we continued to
carry out estimation using the Bayesian model assuming a common variance for cases and controls in order to investi-
gate the effect of model misspecification on our results. All sensitivity analyses were conducted in the setting of MAR
missingness.

Each simulation scenario was repeated 100 times and results were summarized across simulations.

2.5 Analysis of PEDSnet data
We used the alternative methods described above to identify patients with T2DM using the PEDSnet data described in
Section 2.1. Clinical codes included in our analysis were T2DM and an endocrinologist visit. We selected these variables to
illustrate two types of information available in EHR data (diagnosis codes and utilization information). Two prescription
medications, metformin and insulin, were included in the latent phenotype model. Continuous biomarkers included in
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the analysis were glucose and HbA1c. For binary measures, we evaluated all medical records within two years of a patient's
baseline visit to PEDSnet for presence or absence of corresponding codes. For continuous biomarkers, we took the average
of available measures within two years of baseline, if any. To account for possible MNAR missingness in biomarkers, we
also included binary indicators of presence of any glucose or HbA1c measurement, modeled separately, within two years
of baseline. Patient characteristics, ie, age, nonwhite race or hispanic ethnicity, and BMI, were included in the model for
Di, the latent T2DM status and in models for missingness in biomarkers.

To explore the value of MI in this setting, we estimated patient phenotypes using the two biomarker-based approaches
with and without missing values imputed via MI. Variables included in our MI model were patient age, year, gender,
race, ethnicity, number of endocrinologist visits, number of metformin prescriptions, number of insulin prescriptions,
whether metformin was prescribed prior to insulin, BMI, height, weight, cholesterol, glucose, HbA1c, number of T1D
codes, and number of T2D codes. We imputed missing data five times and calculated the average glucose and HbA1c
across imputations. These average biomarker levels were then included in the two phenotyping approaches.

For parameters in logistic regression models for binary measures, we used Normal (0,100) priors. For biomarkers, we
used Normal(0,100) priors for the mean biomarker value in nondiabetics. To incorporate known information about the
predictive accuracy of glucose and HbA1c, we used informative priors for the additive difference in the biomarker for
diabetic patients compared to nondiabetics. The value for this mean shift was selected to correspond to an AUC of 0.95
under the binormal model. For glucose, we used a Normal(75.6, 10) prior and for HbA1c a Normal(2.9, 1) prior. We
discarded the first 2000 iterations of the MCMC sampler and based all results on a subsequent sample of 5000 draws
from the posterior distribution of the model parameters. Posterior probability of T2DM was characterized based on the
posterior mean of p̃(Xi,𝜷

D, 𝜂i) for each child. The sum of the posterior means was used to estimate the number of children
expected to have T2DM and the mean of the posterior means provided an estimated prevalence.

3 RESULTS

3.1 Simulation results
Under MAR missingness, the latent phenotype, codes only, and codes or biomarkers approaches all achieved high sen-
sitivity with mean sensitivity across simulations in excess of 90% for all three approaches (Figure 1). Imputing missing
biomarkers had little effect on sensitivity of the codes or biomarkers approach. In contrast, the biomarkers only approach
had poor sensitivity. Sensitivity of biomarker-based classification is strongly influenced by missingness. Therefore, unsur-
prisingly, sensitivity of this approach is poor under high levels of missingness and decreases with increasing missingness.
Imputing missing biomarkers had little effect on the mean sensitivity of biomarkers in the low missingness scenario. In
the high missingness scenario, imputing missing biomarkers improved mean sensitivity from 1.8% to 23.6%. As expected,
specificity was inversely related to sensitivity with the codes only, codes or biomarkers, and codes or biomarkers with
MI approaches achieving fair specificity while the biomarkers and biomarkers MI strategies had near perfect specificity
(>99%). The latent phenotype approach achieved very high specificity (99.7% in the high missingness scenario) in addition
to its good sensitivity. Because our simulation scenarios investigated a rare condition (average prevalence of 5%), overall
classification accuracy was more highly influenced by specificity than sensitivity. As a result, the Bayesian approach out-
performed all other methods on this measure. Under the low missingness scenario, mean classification accuracy of the
latent phenotype approach was 99% compared to 94% for the next best method (biomarkers with MI). Results for classifi-
cation accuracy were similar in the high and low missingness scenarios. Notably, the latent phenotype approach was the
only classification method that was able to achieve both good sensitivity and good overall classification accuracy. Results
for simulations conducted under MNAR missingness were very similar (Figure 2). The only notable difference was that
both the latent phenotype and biomarkers with MI strategies displayed increased variability under MNAR missingness.
Results of sensitivity analyses investigating the effect of higher prevalence, dichotomization of the latent phenotyping
approach using the estimated prevalence, and higher biomarker variance among cases were extremely similar to results
of the primary analysis (Web Figures 1 to 3).

We also compared the classification accuracy of continuous measures (posterior means from Bayesian latent pheno-
type approach, biomarkers, and biomarkers with missing values imputed via MI) using AUC. Figure 3 provides example
ROC curves for one simulated data set from each of the four simulation scenarios. Classification accuracy based on the
latent phenotype posterior probabilities is very good in all four scenarios. In the low missingness scenario, glucose with
imputed missing values also performs very well. Because of the higher proportion of missing values for HbA1c compared
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FIGURE 1 Sensitivity and specificity of methods for identifying patients with type 2 diabetes based on 100 simulations per scenario.
Biomarkers were simulated under MAR missingness with average missingness in biomarkers of 48% for HbA1c and 25% for glucose in
Scenario 1 (Panel A) and 95% for HbA1c and 81% for glucose in Scenario 2 (Panel B). Circle = sensitivity, Triangle = specificity, Star = percent
misclassified. MI, multiple imputation

to glucose, this biomarker performs relatively more poorly both with and without imputation. Table 3 summarizes AUC
across simulations for each approach in each of the four simulation scenarios.

3.2 Application to pediatric T2DM
Data from the PEDSnet sample included 68 265 children. Characteristics of patients included in the study sample are
provided in Table 4. This sample included 5043 patients (7.4%) who had biomarkers or codes suggestive of possible T2DM
(ie, no T1DM codes and at least one of abnormal glucose, abnormal HbA1c, T2DM codes, or a metformin prescription).
Children with codes or biomarkers suggestive of possible T2DM were more likely to be female and to have made visits to
an endocrinologist. Overall, only 16.6% of patients had glucose measurements and 8.8% had HbA1c measurements.

We applied the Bayesian latent phenotyping approach to the PEDSnet data to obtain posterior probabilities of T2DM
for this sample. The model indicated large shifts in the means of glucose (90.6, 95% credible interval [CI] [90.2-91.0])
and HbA1c (3.2, 95% CI [3.1-3.2]) associated with assignment to the latent T2DM class (Table 5). Making a visit to an
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FIGURE 2 Sensitivity and specificity of methods for identifying patients with type 2 diabetes based on 1000 simulations per scenario.
Biomarkers were simulated under missing not at random missingness with average missingness in biomarkers of 48% for HbA1c and 25% for
glucose in Scenario 3 (Panel A) and 95% for HbA1c and 81% for glucose in Scenario 4 (Panel B). Circle = sensitivity, Triangle = specificity,
Star = percent misclassified. MI, multiple imputation

endocrinologist had high sensitivity and fair specificity, while presence of codes for T2DM, metformin prescriptions, and
insulin prescriptions had lower sensitivity and nearly perfect specificity relative to the latent T2DM status. The very high
specificity for T2DM codes and prescription medications is likely due to their low prevalence in the data set (∼ 1%).
The latent T2DM class was also negatively associated with missingness in biomarkers suggesting an MNAR missingness
mechanism. Glucose was less likely to be missing for patients assigned to the latent T2DM class (OR= 0.52). This negative
association between latent T2DM status and missingness was even stronger for HbA1c (OR = 0.03). The mean posterior
probability of T2DM was 4.5% among patients with codes or biomarkers suggestive of T2DM and 3.4% among patients
with no codes or abnormal biomarkers.

We applied the six approaches described in Section 2.3 to estimate prevalence of T2DM in the PEDSnet data set (Table 6).
Relying on biomarkers alone, with or without MI, resulted in very low prevalence estimates (<1%). Similarly, in this
sample, few patients had T2DM codes or metformin prescriptions leading to low prevalence estimates based on these
codes (1.1%). The Bayesian latent phenotyping approach estimated the prevalence of T2DM in this cohort to be 3.5%.
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FIGURE 3 Receiver operating characteristic curves for identifying patients with type 2 diabetes from four example simulated data sets.
Biomarkers were simulated under missing at random (MAR) (first row) and missing not at random (MNAR) (second row) missingness with
average missingness in biomarkers of 48% for HbA1c and 25% for glucose in Scenario 3 (left column) and 95% for HbA1c and 81% for glucose
in Scenario 4 (right column). AUC, area under the curve.

TABLE 3 Mean and standard deviation (SD) for area under the curve (AUC) based on posterior probability of type 2 diabetes mellitus
from latent phenotype analysis, glucose, hemoglobin A1c (HbA1c), glucose with missing imputed via multiple imputation (MI), and
HbA1c with missing imputed via MI based on simulated data. Means and standard deviations were computed across 100 simulated data
sets for each scenario

AUC (SD×103)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Low MAR Missingness High MAR Missingness Low MNAR Missingness High MNAR Missingness

Latent phenotype 0.999 (5.98) 1.000 (2.60) 0.998 (4.66) 0.997 (7.40)
Glucose 0.761 (40.11) 0.513 (28.64) 0.851 (36.45) 0.592 (31.62)
HbA1c 0.571 (102.88) 0.499 (12.14) 0.735 (42.67) 0.530 (19.36)
Glucose MI 0.954 (14.01) 0.920 (28.66) 0.959 (13.20) 0.931 (21.97)
HbA1c MI 0.933 (18.12) 0.811 (107.93) 0.944 (15.78) 0.883 (69.61)

Abbreviations: MAR, missing at random; MNAR, missing not at random.

4 DISCUSSION

In this paper, we investigated alternative strategies for constructing EHR-derived phenotypes when no gold-standard
validation data are available and in the presence of high levels of possibly MNAR missingness in important predictors.
Overall, we found that the latent phenotyping approach incorporating explicit models for availability of missing predictors
in relation to the underlying condition of interest achieved better discrimination than any of the comparator approaches.
In simulation studies, this approach was able to correctly classify the majority of cases while still retaining high speci-
ficity and overall classification accuracy. This approach combines information from high quality biomarkers, which are
available for only a limited subset of patients, with information from weaker predictors that is broadly available. In com-
parison to a strict dichotomization on the basis of diagnostic or procedure codes, the Bayesian approach allows for the
possibility that these codes may be related to the condition of interest without requiring a deterministic classification of
the condition of interest. This greater flexibility improved on the specificity of clinical decision rules without sacrificing
sensitivity.
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TABLE 4 Characteristics of study population of pediatric patients at risk for type 2
diabetes mellitus (T2DM) stratified according to absence of codes for type 1 diabetes
mellitus and presence of codes for T2DM, metformin prescription, or elevated hemoglobin
A1c or glucose

Total Codes or Biomarkers Suggesting T2DM
Yes No

N = 68 265 N = 5043 N = 63 222
N (%) N (%) N (%)

Male 36 836 (53.96) 2026 (40.17) 34 810 (55.06)
White 35 740 (52.35) 2886 (57.23) 32 854 (51.97)
Endocrinologist 5338 (7.82) 510 (63.43) 4828 (7.16)
Metformin 764 (1.12) 675 (83.96) 89 (0.13)
Insulin 727 (1.06) 154 (19.15) 573 (0.85)
T1D codes 632 (0.93) 0 (0) 632 (0.94)
T2D codes 275 (0.4) 221 (27.49) 54 (0.08)
Any glucose measurement 11 325 (16.59) 355 (44.15) 10 970 (16.26)
Any HbA1c measurement 6031 (8.83) 397 (49.38) 5634 (8.35)

Mean (SD) Mean (SD) Mean (SD)
Age 11.90(2.50) 13.79 (2.58) 11.87 (2.49)
BMI 2.02 (0.30) 2.27 (0.36) 2.01 (0.30)
Glucose 94.31 (32.51) 141.39 (104.47) 92.79 (27.44)
Hemoglobin A1c 5.79 (1.25) 6.93 (1.94) 5.71 (1.15)

Abbreviations: BMI, body mass index; SD, standard deviation; T1D, type 1 diabetes; T2D, type 2 diabetes.

TABLE 5 Posterior means and 95% credible intervals (CI) for model parameters for
analysis of pediatric T2DM in the PEDSnet sample

Posterior 95% CI
Mean

Mean shift in glucose (𝛽Y
11) 90.62 (90.25, 91.00)

Mean shift in HbA1c (𝛽Y
21) 3.15 (3.06, 3.24)

T2DM code sensitivity (expit (𝛽W
10 + 𝛽W

11 )) 0.17 (0.15, 0.20)
T2DM code specificity (1-expit (𝛽W

10 )) 1.00 (1.00, 1.00)
Endocrinologist visit code sensitivity (expit (𝛽W

20 + 𝛽W
21 )) 0.94 (0.92, 0.95)

Endocrinologist visit code specificity (1-expit (𝛽W
20 )) 0.93 (0.93, 0.94)

Metformin code sensitivity (expit (𝛽P
10 + 𝛽P

11)) 0.31 (0.28, 0.35)
Metformin code specificity (1-expit (𝛽P

10)) 0.99 (0.99, 0.99)
Insulin code sensitivity (expit (𝛽P

20 + 𝛽P
21)) 0.66 (0.61, 0.70)

Insulin code specificity (1-expit (𝛽P
20)) 1.00 (1.00, 1.00)

OR missing glucose (exp(𝛽R
11)) 0.52 (0.44, 0.61)

OR missing HbA1c (exp(𝛽R
21)) 0.03 (0.02, 0.04)

Abbreviations: HbA1c, hemoglobin A1c; T2DM, type 2 diabetes mellitus; OR, odds ratio.

In the case of adult T2DM, many prior studies have explored phenotypes based on claims codes or EHR data (see, eg,
other works7,19-23). In general, prior approaches have treated missing data as indicative of no evidence of T2DM. A review
of data elements commonly included in T2DM phenotypes identified clinical codes for diabetes, HbA1c, fasting plasma
glucose, random plasma glucose, oral glucose tolerance test results, and use of diabetes-associated medications.19 Diabetes
codes can be further subdivided into codes that are specific to T2DM and those that are either nonspecific or specific
to T1DM. Alternative rule-based uses of these codes result in substantial disagreement between diabetes phenotypes.19

The latent phenotyping approach proposed here has the advantage of potentially learning from the data in settings such
as pediatric T2DM where the information content of some potential predictors may be uncertain. For instance, in our
analysis of the PEDSnet data, we incorporated information on visits to an endocrinologist, which is likely to be related
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TABLE 6 Prevalence of pediatric type 2 diabetes
mellitus in the PEDSnet sample according to six
phenotyping approaches

N Prevalence (%)

Latent phenotype 2362 3.5
Codes 722 1.1
Biomarkers 209 0.3
Codes or biomarkers 804 1.2
Biomarkers MI 424 0.6
Codes or biomarkers MI 995 1.5

Abbreviation: MI, multiple imputation.

to T2DM diagnosis but may be nonspecific since patients with T1DM and other conditions would also be treated by an
endocrinologist.

Latent class approaches are subject to the label switching problem. We have addressed this problem by constraining the
prevalence of the phenotype of interest to be <50% by using a prior distribution with mass on a finite range. While this
proved effective in simulation studies for phenotypes with prevalence of approximately 5% and 20%, it may be less effective
for phenotypes with prevalence close to 50%. Several alternative approaches to the label switching problem in Bayesian
mixture models have been proposed.18 In cases with prevalence close to 50%, a relabeling approach may be preferable.24

A strength of the proposed approach is that it provides a probability of case status rather than a dichotomous classifica-
tion. While these probabilities can be dichotomized, there are several advantages to preserving the posterior probability in
continuous form. This probability encapsulates information about the relative certainty of disease classification. If incor-
porated as a predictor or outcome in subsequent analyses, this uncertainty can be propagated through the analysis to
achieve valid inference. Several prior studies have proposed approaches to incorporating predicted probabilities derived
from EHR data into subsequent research studies in order to decrease bias and improve efficiency.25-27 If a dichotomous
classification is required, for instance, to identify patients for inclusion in a survey or patient outreach effort, a cut point
can be chosen by the investigator in order to identify a target number or proportion of patients or to achieve a desired
balance between sensitivity and specificity. In simulation studies, we found that dichotomizing based on either a known
population prevalence or estimated population prevalence based on the mean of the posterior means resulted in good
classification accuracy. In practice, the choice of cut point can be varied depending on the objective of a given project and
the relative costs of false-negative and false-positive classifications.

This study has several limitations. Our Bayesian latent class model assumed conditional independence of data ele-
ments related to an underlying T2DM phenotype. Prior work has noted that latent class–based estimates of sensitivity
and specificity of diagnostic tests are sensitive to violation of the conditional independence assumption.28 In the case of
an EHR-based study, because the number of available data elements related to the underlying phenotype is potentially
very large, it should be possible to distinguish between alternative dependence structures. Patient-specific random effects
could be introduced into the model formulation to induce dependence if needed. Additionally, data from PEDSnet do not
include gold-standard information on T2DM diagnosis. Thus, while we were able to estimate posterior probabilities and
compare these to data elements suggestive of possible T2DM, we cannot compute operating characteristics of the poste-
rior probabilities relative to true T2DM status. However, simulation studies indicated that classification accuracy of this
approach is good and superior to rule-based approaches. Additionally, the proposed Bayesian model is relatively complex,
requiring MCMC estimation methods that are computationally intensive and may be infeasible in extremely large data
sets. Our analysis of the PEDSnet data that includes approximately 70 000 patients took 29 hours to run on a desktop com-
puter with a 3.5 GHz Intel Core i7 processor and 32 GB memory. In larger data sets including millions of patients, simpler
models making use of conjugate priors to obtain closed form posterior distributions or variational Bayes approximations
are recommended to avoid the computational challenges of MCMC.

There are a variety of future directions for EHR-based phenotyping that can be explored. Notably, we have investigated
the case of a phenotype that was assumed to be time invariant. In longitudinal studies of disease onset or progression,
it is necessary to make both a disease status classification and to identify a time of onset. Additionally, there are a vari-
ety of ways that EHR-derived phenotypes can be incorporated into subsequent research studies including as outcomes,
exposures, or inclusion/exclusion criteria. Work is needed to characterize bias and efficiency of alternative approaches to
using EHR-derived phenotypes in each of these settings.
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In conclusion, the proposed latent phenotyping approach provides a means of combining data elements with variable
availability across patients and can perform well even when some data elements are missing for almost all patients and
when data are MNAR. Given the complexity of the processes that give rise to data in the EHR, a flexible approach to
incorporating variably available information that takes into account data provenance, the process by which data are gen-
erated and captured, may improve our ability to identify patients with phenotypes of interest relative to existing rule-based
approaches.
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