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Abstract

The pathophysiology of extensive cortical tissue destruction observed in hemispheric hypodensity, 

a severe type of brain injury observed in young children, is unknown. Here, we utilize our unique, 

large animal model of hemispheric hypodensity with multifactorial injuries and insults to 

understand the pathophysiology of this severe type of traumatic brain injury, testing the effect of 

different stages of development. Piglets developmentally similar to human infants (1 week old, 

“infants”) and toddlers (1 month old, “toddlers”) underwent injuries and insults scaled to brain 

volume: cortical impact, creation of mass effect, placement of a subdural hematoma, seizure 

induction, apnea, and hypoventilation or a sham injury while anesthetized with a seizure-

permissive regimen. Piglets receiving model injuries required overnight intensive care. 

Hemispheres were evaluated for damage via histopathology. The pattern of damage was related to 

seizure duration and hemorrhage pattern in “toddlers” resulting in a unilateral hemispheric pattern 

of damage ipsilateral to the injuries with sparing of the deep brain regions and the contralateral 

hemisphere. While “infants” had the equivalent duration of seizures as “toddlers”, damage was 

less than “toddlers”, not correlated to seizure duration, and was bilateral and patchy as is often 

observed in human infants. Subdural hemorrhage was associate with adjacent focal subarachnoid 

hemorrhage. The percentage of the hemisphere covered with subarachnoid hemorrhage was 

positively correlated with damage in both developmental stages. In “infants”, hemorrhage over the 

cortex was associated with damage to the cortex with sparing of the deep gray matter regions; 

without hemorrhage, damage was directed to the hippocampus and the cortex was spared. 

“Infants” had lower neurologic scores than “toddlers”. This multifactorial model of severe brain 

injury caused unilateral, wide-spread destruction of the cortex in piglets developmentally similar 
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to toddlers where both seizure duration and hemorrhage covering the brain were positively 

correlated to tissue destruction. Inherent developmental differences may affect how the brain 

responds to seizure, and thus, affects the extent and pattern of damage. Study into specifically how 

the “infant” brain is resistant to the effects of seizure is currently underway and may identify 

potential therapeutic targets that may reduce evolution of tissue damage after severe traumatic 

brain injury.
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1. Introduction

Brain injury due to abusive head trauma (AHT) is the leading cause of injury-related death 

in children under the age of 4. Out of the 1.1 million documented cases of child abuse and 

neglect in the United States annually, 1200 cases result in death and 50% of these deaths are 

the result of AHT (Giardano et al., 1997). AHT is a silent epidemic stimulating little 

translational research to date. It results in long-term morbidity that may be as mild as 

learning disabilities and behavioral disorders, but is often severe with post-traumatic 

epilepsy, blindness, inability to speak, cognitive impairment, motor dysfunction, persistent 

vegetative state, or death (Duhaime et al., 1996). No interventions have been discovered to 

prevent the development of parenchymal damage after AHT (Foster et al., 2014).

Acute subdural hemorrhage (SDH) is the most common intracranial abnormality resulting 

from AHT and is observed in 80–90% of victims entering the pediatric intensive care unit; 

for reasons yet unknown, hemispheric hypodensity (HH) develops in 25–50% of cases, 

doubling the mortality rate (Foster et al., 2014; Dias et al., 1998; Gilles and Nelson Jr, 1998; 

Khan et al., 2017). HH is an injury pattern observed that is unique to infants and toddlers. 

Radiologically, SDH is associated with uniform swelling and loss of gray-white 

differentiation of the entire underlying hemisphere. These changes span multiple vascular 

territories, later followed by severe cortical atrophy. Subarachnoid hemorrhage (SAH) is 

often observed with the SDH (Foster et al., 2014; Duhaime and Durham, 2007). Unilateral 
HH is a striking radiological pattern where the SDH is restricted to one hemisphere and only 

the hemisphere underlying the SDH is hypodense (on CT). In the acute period, children 

often have seizures (overt or subclinical) with episodes of apnea and hypoventilation (Foster 

et al., 2014; Duhaime et al., 1998). The pathophysiology of unilateral HH remains largely 

unknown. There is no therapy.

Though mechanisms of pathophysiology are heavily studied in single-injury models of 

moderate TBI, there remains an urgent need to study the pathophysiology of multi-factorial, 

severe TBI in children. To date, modeling AHT has been studied by shaking gyrencephalic 

species, but the resulting damage does not include a substantial SDH, seizures, nor large 

areas of tissue damage (Finnie et al., 2012; Coats et al., 2017). Models that place an SDH 

alone do not result in the extensive damage pattern that occurs after AHT, including HH 

(Timaru-Kast et al., 2008; Shaver et al., 1996; Duhaime et al., 1994). We have created a 
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model of unilateral HH in piglets induced with cortical impact, placement of a SDH, local 

induction of seizures by kainic acid, and brief apnea and hypoventilation while subjects are 

anesthetized with a seizure-permissive protocol (Costine-Bartell et al., 2019a). In one-month 

old piglets (similar in development to human toddlers; “toddlers”), the HH model injuries 

result in cerebral edema, depressed neurologic status and metabolic acidosis requiring 

prolonged intensive care and results in a unilateral HH injury developing by 24 h in which 

the tissue damage encompasses the majority of the cortical ribbon, spanning multiple 

vascular territories (i.e., not hypoxic ischemic due to vessel occlusion), with relative sparing 

of the deep brain regions and the contralateral hemisphere. Though the resulting pattern of 

tissue damage is similar to hypoxic-ischemic damage and displays vasogenic edema, it is 

distinct from a classic asphyxial pattern as evidenced by with the sparing of one entire 

hemisphere (Costine-Bartell et al., 2019a; Bjorkman et al., 2010). The pathophysiological 

mechanisms by which damage affects the hemisphere underlying the SDH with relative 

sparing of the contralateral hemisphere, in the context of localized insults with global apnea, 

remain unknown.

In children, AHT is superimposed upon the individual’s stage of brain development in which 

the brain’s response to injury is influenced by inherent age differences. For reasons yet 

unknown, in infants, the damage is more typically bilateral while the injury is more 

commonly unilateral in toddlers (Gilles and Nelson Jr, 1998; Duhaime and Durham, 2007). 

The infant brain may be more resilient to focal injuries (Missios et al., 2009; Durham et al., 

2000; Durham and Duhaime, 2007), but more susceptible to diffuse injuries compared to 

toddlers (Ibrahim et al., 2010; Tremblay et al., 1984). In infants, the majority of seizures are 

subclinical due to an immature neocortex (Clancy et al., 1988). The infant brain is less 

susceptible to experimentally induced seizures (Tremblay et al., 1984) but has less oxygen 

reserve during apnea. Infants have the lowest cerebral blood flow of all ages while toddlers 

are entering the development stage with a peak of cerebral blood flow (Takahashi et al., 

1999). In our model of focal contusion, piglets of similar development to toddlers have 

greater swelling than piglets of similar development to infants (Duhaime et al., 

2003).Therefore, the infant brain may be more susceptible to apnea but resistant to seizures 

while the toddler brain may be more prone to edema, but the specific factors that result in 

unilateral vs. bilateral HH are not known.

Here, we use our unique model of HH that replicates the potentially synergistic, 

multifactorial injury cascades within comparable developmental stages and brain 

morphology of human infants (one week old piglets; “infants”) and toddlers (1 month old 

piglets; “toddlers”) using a gyrencephalic species, physiological monitoring, and clinically 

relevant outcomes in our multi-injury, multi-insult model requiring overnight critical care 

management that mirrors the pediatric intensive care unit (Costine-Bartell et al., 2019a). The 

objective of this experiment is to utilize innate developmental differences to determine the 

role of seizures and edema in development of tissue damage after AHT. We demonstrate that 

combined insults lead to a bilateral “patchy” distribution of injury in “infants” but created a 

unilateral wide-spread distribution of injury in “toddlers” similar to the pattern observed in 

human children (Gilles and Nelson Jr, 1998; Duhaime et al., 1993). Age-specific therapies 

that abort the cascades of the pathophysiology and prevent injury progression after AHT in 
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children might reduce the severity of neural damage and reduce morbidity and mortality 

from these severe injuries.

2. Materials and methods

2.1. Surgery to create HH model injuries or sham surgery

Male, Yorkshire piglets were housed and fed as previously described (Costine-Bartell et al., 

2019a; Missios et al., 2009). All protocols and procedures were in accordance with the 

guidelines of the American Veterinary Association and the National Institutes of Health and 

were approved by the Institutional Animal Care and Use Committee at Massachusetts 

General Hospital.

A series of 31, 1-week (“infants”) or 1-month old (“toddlers”) piglets were alternatively 

assigned to receive model injuries or sham surgery. Shams served as controls. Surgery and 

anesthesia protocols were employed as previously described and adjusted to the age of the 

piglets (Table 1) (Costine et al., 2015). Briefly, general anesthesia was induced with 

isoflurane and oxygen then switched to room air. Prior to seizure induction, piglets were 

switched to a seizure-permissive anesthetic protocol with infusion of morphine and 

dexmedetomidine (Table 1), and then isoflurane was withdrawn. A combination of injuries 

scaled to brain volume and insults were induced to reflect the physiologic events in children 

with severe AHT as previously described: cortical impact, mass effect, placement of SDH, 

administration of kainic acid, apnea, and hypoventilation (Table 1) (Costine-Bartell et al., 

2019a; Durham et al., 2000; Durham and Duhaime, 2007).

EEG was recorded with an Olimex device (Plovdiv, Bulgaria; recorded in BrainBay, version 

1.9; open source BioSignal Software; Open EEG project) with scalp electrodes or with an 

XL Tech EEG machine (recorded in NeuroWorks, Natus Neurology) using epidural strips 

containing 4 electrodes on each hemisphere (8 total, AdTech). EEG’s were analyzed in a 4 

bipolar montage. The duration of EEG recording was limited when using the Olimex device 

due to the difficulty of maintaining prolonged contact with electrodes, which required 

suturing to the scalp and the limited lifespan of the electrodes where signal: noise ratio was 

sufficient. Once the XL Tech EEG machine was obtained, pigs were recorded while sedated 

and instrumented. Additional convulsions and apneic episodes were observed in extubated, 

de-instrumented pigs and were included in the “total estimated seizure duration”. Due to the 

limited EEG at the beginning of the experiment, “estimated seizure duration” was calculated 

by seizure-induced tachycardia that was a 40% increase of the baseline heart rate in each 

individual piglet prior to kainic acid administration. A 40–50% of heart rate above baseline 

has been previously shown to provide 35–99% sensitivity for electrographic seizures in 

human patients (Boon et al., 2015; Hampel et al., 2015). As expected, “infant” piglets had a 

greater heart rate baseline than “toddler” piglets (170 ± 6.4 vs. 128 ± 7.5 bpm, P = 0.003), 

and therefore, the heart rate threshold for seizures was 225 ± 6.2 bpm for “infant” piglets 

and 180 ± 9.0 bpm “toddler” piglets (P = 0.001). Seizure duration, seizure amplitude, and 

seizure type (focal vs. general) were determined using NeuroScore™ (Data Sciences 

International, St. Paul, MN). The efficacy of using elevated heart rate as a biomarker for 

seizures was tested in the subset of piglets that had EEG and the seizure duration as 
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measured via EEG or heart rate did not differ within “infants” (EEG: 80.4 ± 26.0 vs. HR: 

160 ± 61.8, P = 0.26) or “toddlers” (EEG: 74.8 ± 23.5 vs. HR: 60 ± 17.3, P = 0.64).

Arterial blood was collected prior to injury, at regular intervals within the first 8 h post-

injury, at 12–14 h post-injury and 24 h post-injury and a portion was analyzed with an i-

STAT Handheld device (Abbott, Abbott Park, Illinois) for blood gases, which informed 

ventilation status in extubated piglets in the overnight ICU, glucose, and metabolites. In 

subjects that had a missing pre-injury sample the mean of the other pre-injury values within 

the age group was used. The post-injury peak or nadir was used for means comparisons.

As previously described, piglets were recovered from anesthesia six hours after cortical 

impact or sham surgery and were survived 24 h from injury to allow evolution of the 

pathophysiological cascades that might induce HH (Costine-Bartell et al., 2019a). All piglets 

receiving model injuries were constantly monitored and received critical care overnight 

either intubated or extubated as neurologic function allowed (Costine-Bartell et al., 2019b). 

If piglets did not have neurologic function sufficient for extubation, they were ventilated 

overnight and infused with an analgesic dose of morphine. Piglets that were able to be 

extubated received buprenorphine every 4 h and blood gases were analyzed every 2 h to 

determine if mechanical ventilation was required. After anesthetic recovery or a similar 

timepoint if not able to be extubated, neurologic function was tested at 8 and 20 h post-

injury using an assessment previously described (Costine-Bartell et al., 2019a).

2.2. Brain collection and processing

Twenty-four hours after the injury, piglets were deeply anesthetized and euthanized via 

exsanguination by transcardial perfusion with saline followed by phosphate buffered 

formalin. The brain was removed and post-fixed for 5–7 days. Brains were weighed, 

photographed with and without dura. SDH was removed, cerebral hemispheres divided and 

weighed separately to detect any hemispheric swelling. Cerebral hemispheres were 

coronally sliced, photographed to determine SAH area, and processed into 8–9 large paraffin 

embedded tissue blocks spanning the entire hemisphere. The percentage of hemisphere 

covered by SDH or SAH was determined as previously described (Costine-Bartell et al., 

2019a).

The percent of hemisphere damaged was calculated by adding the areas of damage among 

sections per hemisphere and dividing by the sum of the total areas of the sections (Costine-

Bartell et al., 2019b). For our purposes here, unilateral HH was defined as >100% increase 

ipsilateral vs. contralateral with damage in the ipsilateral hemisphere >25%. To determine 

the interaction of hemorrhage and seizures on the location of damage, damage from piglets 

with >30-min seizure was determined in the cortex, deep gray matter, and hippocampus on 

two sections that included the hippocampus. The percentage of damage in each brain region 

was determined by taking the area of damage and dividing by the area of the brain region 

and averaging the two sections. Because the resulting SDH from injected blood was 

variable, piglets were binned into the groups: no SDH (< 15% of the hemisphere covered by 

SDH) or SDH (> 15% of the hemisphere covered by SDH). Because SDH resulting from 

blood injected into the dura on the ipsilateral hemisphere would sometimes result in a 

bilateral SDH (particularly in “infants”), unilateral subdural hematoma was defined when 
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the percentage of the ipsilateral hemisphere covered by SDH was 40% greater than the 

contralateral hemisphere.

2.3. Histology

Sections (10 μm) were mounted on poly-L-lysine-coated glass slides dried and stored in slide 

boxes. Sections were stained with hematoxylin and eosin (H&E) and the area of damage per 

section was determined utilizing a previously described mapping protocol (Costine-Bartell et 

al., 2019a). Briefly, an area was considered damaged if the tissue had 1.) “red neurons” 2.) 

acute tissue hemorrhage, or any of the following changes in combination with or adjacent to 

areas of “red neurons”: 3.) vacuolization around blood vessels or 4.) vacuolization of 

interstitial neuropil, or 5.) vacuolization around neurons. “Red neurons” were classified by 

the presence of all three of the following features: 1.) cell shrinkage with perineuronal 

vacuolization, 2.) cytoplasmic hyper-eosinophilia, and 3.) nuclear pyknosis.

Immunohistochemistry was used to detect the distribution of amyloid precursor protein 

(APP) in sham and injured piglets 24 h after initiation of injuries and the distribution of APP 

in tissue was quantified in the same manner as previously described (Costine-Bartell et al., 

2019a). APP was present either within axons or in neuron cell bodies. The area of antibody 

expression per hemisphere was determined by calculating the area of antibody positivity as a 

percentage of the entire hemisphere.

2.4. Exclusions

Six of the 31 piglets were excluded. Exclusion criteria included early death, breached dura 

such that placing a SDH was not possible, and intraparenchymal hemorrhage, which 

occurred exclusively in piglets in which kainic acid was injected into the cortex (Table 2). 

Intraparenchymal hemorrhage is not a feature in unilateral HH nor AHT. Because of the 

incidence of intraparenchymal hemorrhage in pigs in which kainic acid was injected in the 

cortex especially in “infants”, kainic acid was administered by mixing with the blood that 

was injected under the dura. Additionally, an “infant” sham piglet failed to emerge from 

anesthesia and was euthanized early. As a result, the dose of seizure permissive anesthetics 

was reduced in subsequent “infant” piglets to allow for quicker recovery from anesthesia.

2.5. Statistics

Data are presented as means ± SEM and P values <0.05 were considered significant. All 

data were analyzed using GraphPad Prism® 8 (GraphPad Software, San Diego, CA). The 

proportion of focal or generalized seizures, unilateral vs bilateral SDH, unilateral vs. 

bilateral HH, and extubated vs. intubated overnight among “infants” vs. “toddlers” was 

tested with a Fisher’s Exact Tests. The effect of hemisphere on EEG amplitude within each 

hemisphere pre-seizure, seizure, and post-seizure was tested via a one-way ANOVA repeated 

measures followed by Tukey’s post-hoc tests. The difference in seizure length via EEG and 

via heart rate (“total estimated seizure”) was tested in infants vs. toddlers with a t-test. The 

main effects of age and time on glucose, lactate, pH, base excess of the extracellular fluid, 

and neurological scores were tested with a repeated measures two-way ANOVA followed by 

Tukey’s and Sidak post-hoc tests. Within treatments, the effect of age and hemisphere on % 

of the hemisphere damaged or positive APP was tested via two-way ANOVA followed by 
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Tukey’s post hoc tests. The effect of SDH on damage per brain region was tested with a two-

way ANOVA followed by Tukey’s post hoc tests. There was no effect of age or hemisphere, 

therefore ages and hemispheres were combined. The difference in hemisphere weight 

ipsilateral vs. contralateral was determined with a paired t-test in “infants” and “toddlers” 

within each treatment. The correlation between the percent of hemispheric damage or 

hippocampal damage and seizure length, subdural hematoma area, and subarachnoid 

hemorrhage area were tested using Pearson Correlations.

3. Results

We used our unilateral HH model developed in “toddler” piglets and determined the damage 

distribution “infant” vs. “toddler” piglets at 24 h after initiation of injuries to investigate the 

age-dependent pathophysiology of this severe injury. The injuries included focal injuries on 

the right hemisphere: cortical impact, mass effect, a placed SDH, seizure induced by kainic 

acid, 1 min of apnea, and 10 min of hypoventilation. Focal injuries were scaled to piglet 

brain size (Table 1).

3.1. Seizures

Kainic acid-induced seizures with the seizure-permissive anesthesia protocol lasted an 

average of 3.0 ± 0.7 h among piglets and was not age-dependent. Most piglets had multiple 

seizures that were focal (40%) or started focally and then generalized (40%); a small 

proportion had exclusively generalized seizures (20%; ages combined; no effect of age; Fig. 

1A). There was no effect of age on focal vs. generalized seizures. EEG amplitude was 

greater in the ipsilateral vs. contralateral hemisphere (ages combined; Fig. 1B).

3.2. Clinical characteristics

Injuries and insults caused metabolic acidosis (Fig. 1 D–F) and depressed neurologic scores 

(Fig. 2) in both ages but “infants” were worse. A subset of subjects displayed acute 

hypotension and cardiac dysfunction with both ages requiring epinephrine for hypotension 

and chest compressions for resuscitation (Table 3). Early in the series, an “infant” piglet had 

prolonged status epilepticus with hypotension and died before the end of the experiment. 

Thereafter, if persistent hypotension accompanied status epilepticus lasting 6–7 h, then 

seizures were stopped with isoflurane (Table 3). More “toddler” piglets were able to be 

extubated for the duration of the overnight period than “infants” while some “toddlers” had 

emergency re-intubations (Table 3).

Model injuries reduced neurological scores in both ages and to a greater degree in “infant” 

piglets (Fig. 2A). At 20 h post-injury, the main effect of model injuries persisted (P = 0.01) 

but was not different within age-groups (Fig. 2B). Neurological score was inversely 

correlated with the total brain damage in “infants”, but not in “toddlers” (“infants”: − 0.736, 

P = 0.037; “toddlers”: −0.36, P = 0.25), perhaps reflective of the bilateral distribution of 

damage in “infants”. “Toddlers” may be afforded some compensation in neurologic function 

with damage that is largely restricted to one hemisphere.
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3.3. Distribution of damage and hemorrhage

In response to HH model injuries, the amount and pattern of damage were age-specific. 

“Toddlers” typically had unilateral wide-spread hypoxic-ischemic-type damage 

encompassing the majority of the cortex with sparing of deep brain regions, the 

hippocampus, and the contralateral hemisphere while “infant” piglets typically had bilateral 

diffuse, patchy, areas of damage (Fig. 3). “Toddlers” had a greater amount of injury, which 

was restricted to the ipsilateral hemisphere whereas damage was less and equivalent between 

hemispheres in “infants” (Fig. 3G). The proportion of piglets that had unilateral HH was 

greater in “toddlers” vs. “infants” (Fig. 3H).

The placed SDH often resulted in a concomitant, focal subarachnoid hemorrhage (Fig. 4). 

The SDH itself may not contribute to damage directly, but instead, may provide a focal 

SAH. Consistent with this, the SDH was not thick nor space filling, but thin similar to 

children with SDH from AHT (Fig. 4). “Toddlers” had a greater amount of the hemisphere 

covered by subdural blood and a greater SDH on the ipsilateral hemisphere, but for yet 

unknown reasons that may reflect anatomic differences, “infants” had equivalent subdural 

blood ipsilateral vs. contralateral. Subarachnoid hemorrhage covered a greater percentage of 

the hemisphere ipsilateral vs. contralateral (main effect, P = 0.03) and tended to be different 

within “toddlers” (P = 0.08) but was not different ipsilateral vs. contralateral within “infants” 

(P = 0.8, Fig. 5B). The percentage of the cortex covered by SAH but not SDH was positively 

correlated to the percent hemisphere damaged in both ages (Table 4).

3.4. The effect of seizure and hemorrhage on the distribution of damage

Seizure duration affected damage distribution in an age-specific manner. Seizure duration, 

which was not different between “infants” and “toddlers” was positively correlated with the 

percentage of damage in the ipsilateral hemisphere in “toddlers” but not “infants” (Table 4). 

Prolonged seizures may drive damage in “toddlers”, but “infants” may be resistant to 

seizure-induced damage in combination with the other injuries and insults. Seizures at least 

one hour long appear to be required for the hemispheric pattern in toddlers (Fig. 5C).

In rodent models of seizure or seizure with anoxia injury, the hippocampus is often 

selectively damaged with minimal damage to the cortex (Wirrell et al., 2001). In contrast, in 

this multi-insult TBI model with hemorrhage, the cortex was predominately damaged with 

relative sparing of deep brain areas and hippocampus (Fig. 5E). The effect of hemorrhage on 

the location of the seizure-driven damage was explored after it was observed that an “infant” 

piglet without a SDH, with a prolonged seizure, had minimal damage in the cortex, but 

extensive damage in the hippocampus (Fig. 5F) - opposite to the typical pattern. In “infants” 

without a SDH, damage was equivocal among brain regions, but with a SDH, damage was 

greater in the cortex than in the hippocampus and deep gray areas (Fig. 5D). The SDH or 

SAH overlying the cortex may incite damage to the cortex while sparing the hippocampus 

and deep gray areas. In “toddlers” with unilateral HH, 5 of 6 had seizure lasting over 60 min 

and 5 of 6 had a unilateral SDH indicating that status epilepticus and a unilateral SDH are 

the “perfect storm” typically required for unilateral HH to occur.
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The model injuries resulted in slight cerebral swelling and was specific to age as the 

hemisphere ipsilateral to the injuries was heavier than the contralateral hemisphere (23.4 ± 

1.19 vs. 19.5 ± 1.14; P = 0.005) in toddlers, but weight was not different between 

hemispheres in infants (16.5 ± 0.4 vs. 16.0 ± 0.32; P = 0.146). Ipsilateral hemisphere weight 

was positively correlated with seizure duration in “toddlers”(r = 0.91, P = 0.001) but not in 

“infants” (r = 0.58, P = 0.13).

“Toddlers” had a greater propensity for spread of damage that was primarily restricted to the 

ipsilateral hemisphere. Although the SDH was bilateral in “infants”, even when an 

individual “infant” piglet had a unilateral SDH (Fig. 4C), damage was still bilateral (Fig. 

3F). In the few animals where kainic acid was administered intracortically (Table 2), damage 

spread was restricted to the ipsilateral hemisphere in “toddlers” but still spread bilaterally in 

“infants”. This may indicate that there are factors that promote unilateral spread and 

confinement of damage in “toddlers” that are unique from “infants”.

3.5. Distribution of APP

The overall area of APP-positive neurons per hemisphere (Fig. 6D–F) paralleled that of the 

hypoxic-ischemic-type damage via H&E staining (Fig. 3G) with a greater amount of APP-

positive neurons ipsilateral vs. contralateral in “toddlers” but equivalent among hemispheres 

in injured “infant” piglets. In addition, the type of APP staining pattern was noted to 

correspond to previously described patterns of expression in human infants and toddlers: 

“traumatic axonal”, “geographic”, “metabolic”, or “diffuse axonal injury” (Geddes et al., 

2001a) (Fig. 6 A–C). In piglets with the greatest amount of damage via H&E or via 

metabolic APP, APP distribution was wide-spread similar to the “geographic” or global as 

described by Geddes et al. (Geddes et al., 2001a). Diffuse axonal injury was not observed 

and therefore, does not appear to be required for this injury pattern.

4. Discussion

This gyrencephalic, large animal model of severe TBI is multifactorial modeling contusion, 

hemorrhage, mass effect, apnea, hypoventilation, and traumatic seizures and was associated 

with reduced neurologic scores, cardiac dysfunction, and sometimes, death. This line of 

experiments is unique in its requirement to employ a critical care unit to allow prolonged 

survival in a non-accidental pediatric traumatic brain-injury model where subjects had 

depressed neurologic function. Here, we use this model to understand the age differences in 

the pathogenesis and resulting damage patterns in order to unravel the potentially relevant 

pathophysiological cascades. Identifying the drivers of the spreading damage may lead to 

therapeutic targets. Modeling unilateral instead of bilateral HH is a key feature to ensure that 

the unilateral hypoxic-ischemic-type damage observed is not merely due to an anoxic effect. 

Here, we seek to understand the multiple insults, which when sustained alone would not lead 

to destruction of the cortex, and we are testing the hypothesis that various insults work 

synergistically together causing the extensive tissue destruction. Here, we have determined 

that seizure drives the damage and hemorrhage directs the location of the damage.

The damage pattern described here was similar to what has been observed in humans with 

HH and is distinct from other animal models of severe brain injury including neonatal 
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asphyxia and rotational injury. In “toddlers”, the damage extended from the site of the 

cortical impact and spread rostral and caudal along the cortical ribbon in the hemisphere 

ipsilateral to the focal injuries while the deep gray matter, hippocampus, and contralateral 

hemisphere were spared. The unilateral pattern in “toddlers” vs. bilateral pattern in “infants” 

is similar to the observed frequency of patterns in human children.

The “infant” pattern was patchy in both hemispheres and if there was not a significant SDH, 

then the hippocampus was damaged instead of the cortex. The few animal models that 

evaluate multi-factorial injuries and insults result in bilateral, diffuse damage. In large 

animal models of rotational injury, high angular accelerations can cause severely depressed 

neurologic function and apnea, but the resulting hemorrhage is bilateral/diffuse, the damage 

is exclusively diffuse axonal injury, and does not mimic the unilateral pattern of HH 

observed in humans (Gennarelli et al., 1981; Gennarelli et al., 1982). In a piglet model of 

birth asphyxia, where seizures develop spontaneously after hypoxia and ischemia, albumin 

extravasation is global without a distinct pattern of damage (Goasdoue et al., 2019). In a 

model of seizures induced with kainic acid after asphyxia in PND9 rat pups, the damage 

induced occurs in both hemispheres mainly in the hippocampi with minimal damage in the 

cortex (Wirrell et al., 2001). In the present model, hemorrhage on the cortex appears to 

direct the location of the damage to the cortex. Sparing of the contralateral hemisphere 

ensures that it is not purely a hypoxia mechanism of injury. Though the biilateral pattern in 

“infants” could be confounded by a lack of unilateral SDH pattern, even in “infants” with a 

unilateral SDH or “infants” where kainic acid was administered directly into the cortex, 

damage still spread to both hemispheres. The pattern of SDH distribution was similar in our 

study to human infants and toddlers where infants often have bilateral SDH and HH and 

toddlers more often have unilateral SDH and HH. Maturational differences of the dura and 

subarachnoid space may enable travel of blood across hemispheres in both humans and 

swine. Similar to autopsy description of infants with abusive head trauma (Geddes et al., 

2001b), we observed a lack of diffuse axonal injury but instead observe a wide-spread 

metabolic pattern of APP along with hypoxic-ischemic type of damage.

“Infants” were clinically worse than “toddlers”. Both ages required overnight critical care, 

treatment for hypotension, and chest compressions. Resuscitation failed in one “infant”. 

While lactate increased and pH fell similarly in “infants” and “toddlers”, “infants” continued 

to display metabolic acidosis at 24 h. While mean arterial pressure in this model (Costine-

Bartell et al., 2019b) is similar to models of neonatal asphyxiation (Bjorkman et al., 2010) 

with a low around 20 mmHg after the end of the insults, pH was lower in the neonatal 

asphyxiation model vs. our model (7.0 vs. 7.3) highlighting the difference in the length and 

severity of the insults with our model relying on multi-factorial insults to cause the brain 

damage vs. pure anoxia. Though metabolic status and seizure duration was similar in 

“infants” and “toddlers”, “infants” were clinically worse with lower neurologic scores 8 h 

after injury and were unable to be extubated but reliant on the ventilator. In contrast, some 

“toddlers” were able to be extubated overnight. Though “toddlers” had more extensive 

damage, the damage was unilateral in “toddlers” but “patchy” and bilateral damage in 

“infants”, which may be more debilitating. Both stages of development made improvement 

at 24 h post-injury though the main effect of injury was still significant.
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Though “infants” were clinically worse than “toddlers”, they had less damage than 

“toddlers”. Seizure duration was not different among developmental stages indicating that it 

is how the brain responds to seizures that may the key difference among developmental ages. 

Certainly, early in postnatal life, high intracellular [Cl−] results in GABA that is depolarizing 

and a decreased threshold for seizures (Glykys et al., 2017). High intracellular [Cl−] is due 

in part to an abundance of Na+K+Cl−co-transporter 1 and low K+Cl−transporter 2 as well as 

Gibbs-Donnan effects with a lower amount of impermeant anions in the extracellular matrix 

early in development affecting the direction of chloride current as well as cell swelling 

(Glykys et al., 2017; Kahle et al., 2008). We do not know when the GABA switch happens 

during development in swine. “Infants” may be resistant to scaled injuries and resistant to 

the effects of seizures. Our previous work demonstrates that the areas of hypoxic-ischemic 

injury displays vasogenic edema via extravasation of albumin (Costine-Bartell et al., 2019b). 

Here, the hemisphere ipsilateral to injuries was heavier than the contralateral hemisphere 

and positively correlated with seizure duration while hemisphere weight was not different 

between hemispheres in infants. Prolonged seizures cause opening of the blood brain barrier 

via matrix metalloproteinases (Goasdoue et al., 2019; Dubey et al., 2017; Cudna et al., 

2017). Future studies will aim to determine if development affects the baseline or increase in 

mediators of blood brain barrier opening. Matrix metalloproteiniase-9 is a biomarker for 

intracranial hemorrhage, which is common in abusive head trauma (Berger et al., 2017). 

Inherent age-dependent differences in the composition of the extracellular matrix, baseline 

abundance of enzymes that degrade it, or age-dependent upregulation of extracellular matrix 

enzymes after hemorrhage and seizure may be key to the extensive spreading of damage in 

“toddlers” but not in “infants”.

In patients with severe brain injury, including children with abusive head trauma, severely 

affected patients have more seizures, but it is not known if seizures are an effect of severe 

injury or if seizures directly contribute to damage. Though induced seizures do not cause 

damage in immature rodents (prior to PND18) (Nitecka et al., 1984), seizures have been 

shown to cause damage when the brain is already compromised (Wirrell et al., 2001). Kainic 

acid after a mild arterial occlusion creating ischemia exacerbated damage in a rodent pup 

model (PND9) (Wirrell et al., 2001). In a piglet model of birth asphyxiation, piglets with 

spontaneous seizures induced by hypoxia and ischemia had greater damage, which was 

greatest in the cortex, compared to piglets without spontaneous seizures (Bjorkman et al., 

2010). In our model, seizures are induced and the generation of seizures is not dependent 

upon the severity of the other injuries allowing us to directly measure the effect of seizure. 

“Infants” and “toddlers” had the same duration of seizures, but to different effect. “Infants” 

had less damage that was not correlated to seizures while “toddlers” had extensive damage 

positively correlated to seizure duration. In “toddlers” the unilateral pattern was only 

observed in those with seizures lasting over one hour. Prolonged seizures appear to drive the 

damage in the tissue that already compromised with hemorrhage, focal trauma, and mass 

effect. A limitation of the present study is the variation in EEG acquisition among 

subjections. Early in the study, only scalp EEG was available and was recorded for a short 

duration of time, and therefore, heart rate above baseline was used as a proxy for seizure 

duration and was validated in subjects with epidural EEG. Future work will characterize 

ictal and interictal EEG signatures to determine if interictal electrographic activity drives 
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damage as ictal events are observed to do. Future studies can aim to determine if seizures are 

preferentially focal in “toddlers” vs. “infants”. Additionally, investigation of whether 

mediators of seizure-induced blood brain barrier opening are age-dependent is ongoing.

As detected via amyloid precursor protein (APP), children that died from AHT displayed 

traumatic axonal injury as well as a geographic pattern that is hypothesized to indicate 

metabolic stress/hypoxic ischemia but did not have diffuse axonal injury (Geddes et al., 

2001a; Shannon et al., 1998; Hefter and Draguhn, 2017). Here, we demonstrate a similar 

pattern of overlap with hypoxic-ischemic injury. Diffuse axonal injury, which is created by 

large angular acceleration forces, is not required for extensive hypoxic-ischemic type 

damage. APP may serve as a proxy for hypoxic-ischemic type damage as the percentage of 

the hemisphere damaged (via visualization of H&E staining), though in some subjects, APP 

was more prominent in the white matter and did not overlap with damaged gray matter.

Work is currently underway to identify clinically relevant biomarkers that may serve as 

correlates to damage and indicate therapeutic efficacy both in this model and in human 

patients. Studies of permeability, perfusion and diffusion changes using MRI may identify 

early indicators of evolving tissue damage. Quantification of electrographic seizures, 

interictal spikes, periodic lateralized epileptiform discharges, and delta waves and their 

potential correlation to cortical tissue damage is underway. A substantial advantage of this 

severe TBI model is the ability to directly test if induced electrographic seizures drive tissue 

damage. Patients with severe TBI often have seizures, but if it not known if seizures drive 

the tissue damage or if they are a symptom of the tissue damage. The efficacy of peripheral 

serum biomarkers of neuronal damage (neuron specific enolase) and hemorrhage (matrix 

metalloproteinases) to indicate hemispheric damage at 24 h post-injury is also being tested 

(Berger et al., 2017; Costine et al., 2012; Price et al., 2018; Price et al., 2019).

5. Conclusion

In this model of severe TBI scaled to brain size, the clinical status and pattern of damage 

was age-dependent. “Infants” were clinically more severely impaired than “toddlers”. While 

both ages had equivalent durations of induced seizure, “infants” had less damage than 

“toddlers”. In this multi-factorial, severe injury model of severe brain injury the extensive 

damage required the “perfect storm” of hemorrhage pattern and prolonged seizures. 

“Infants” appear to have endogenous mechanisms that calm the storm, reducing damage. 

“Toddlers”, however, have pathophysiologic mechanisms that tend to limit the damage, 

though profound, to one hemisphere. Future work will evaluate age-dependent differences in 

the mediators of seizure and hemorrhage-induced opening of the blood brain barrier and 

determine if interictal electrographic signatures are correlated with tissue damage. 

Understanding the downstream mediators of blood brain barrier opening may serve as 

therapeutic target in subjects at a stage of development when status epilepticus is difficult to 

treat. Current anti-epileptic drug guidelines are not specific to TBI but are applied to status 

epilepticus induced by any cause for children of any age (Sauro et al., 2016). Future research 

may inform broader critical care management guidelines. This model can be used as a 

platform for testing of both therapeutics and clinical management of severe TBI in the 

pediatric intensive care unit.
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Fig. 1. 
The model injuries caused focal seizures and metabolic acidosis. A. A kainic acid-induced 

seizure that was focal to the ipsilateral hemisphere (blue; contralateral hemisphere: black). 

B. EEG amplitude was greater in the ipsilateral vs. contralateral hemisphere (ages 

combined) during seizures. Model injuries increased peripheral blood glucose 

concentrations (C) and caused metabolic acidosis (D–F) in both ages. By 24 h post-injury, 

metabolic acidosis resolved in “toddlers” but not “infants” (F). a,b,cMeans ± SEM with 

different letters differed, P < 0.05.
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Fig. 2. 
Model injuries reduced neurologic scores that were worse in “infants” than “toddlers”. A. At 

8 h post-injury, piglets with model injuries had lower neurological scores than their sham 

counterparts (subjected to anesthetics, burr hole, and femoral artery line) in both ages and 

was lower in “infants” vs. “toddlers”. B. At 20 h post-injury, there was still a main effect of 

injury (P = 0.01) on neurological score, but neurological score was no longer different 

within ages, model injuries vs. sham. a,b,cMeans ± SEM with different letters differed, P < 
0.05.
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Fig. 3. 
Hempsheric hypodensity model injuries cause wide-spread bilateral damage in “infants” and 

unilateral hemispheric damage in “toddlers”. A. Healthy cortex. B. Hypoxic-ischemic-type 

damage with “red neurons”. C. Severehypoxic-ischemic-type damage displaying 

vacuolization of the neuropil and blood vessels D. Healthy white matter. E. Damaged white 

matter demonstrating pallor and rarefaction. F. Schematics of each section rostral to caudal 

in an “infant” and “toddler”. Damaged tissue is highlighted in yellow. Both piglets had 

unilateral SDH on the ipsilateral hemisphere (arrow). Damage expanded beyond the cortical 

impact site (arrows indicate the section where the rostral gyrus was impacted) and was 

diffuse in the “infant” while mainly restricted the ipsilateral hemisphere with spreading in 

the cortex rostral to caudal in the “toddler”. G. There was a main effect of hemisphere (P = 

0.005) with “toddlers” having greater amount of damage ipsilateral to the injuries vs. 

contralateral (P = 0.02); in contrast, the percent of the hemisphere damaged was not different 

ipsilateral vs. contralateral in “infant” piglets (P = 0.67) F. “Toddlers” had a greater 

proportion of piglets displaying unilateral hemispheric hypodensity-type injury (HH) than 

“infants”. *Proportion is different, P = 0.049. abMeans ± SEM with different letters differ, P 
< 0.05.
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Fig. 4. 
Distribution of SDH and SAH in “toddlers” and “infants”. “Infant brain”: A. Brain with 

dura. B. Ventral view of brain. C. Thick SDH on the brain. D. Ventra Ventral view of dura 

with subdural blood. E. Coronal sections demonstrate SDH with minimal SAH. “Toddler 
brain”: F. Brain with dura. G. Ventral view of brain. H. Brain with dura and SDH removed 

demonstrating diffuse SAH on the right hemisphere. I. dura Ventral view of dura with the 

SDH. J. Coronal sections demonstrate SDH with extensive SAH and “dusky” cortex.
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Fig. 5. 
Hemorrhage distribution and seizure duration effects damage distribution. A. The placed 

SDH covered a larger proportion of the brain in “toddlers” (main effect of age, P = 0.02) and 

was greater ipsilateral vs. contralateral hemisphere (P = 0.004) in “toddlers” but was 

equivocal among hemispheres in “infant” piglets (P = 0.47). B. SAH was greater in the 

ipsilateral vs. contralateral hemisphere (main effect, P = 0.03) and tended to be greater 

ipsilateral vs. contralateral within “toddlers” (P = 0.08) but not in “infants” (P = 0.8). C. 

Subjects were binned according to seizure duration. The percent of the hemisphere damaged 

was greater in the ipsilateral vs. contralateral hemisphere only in those with seizures longer 

than 1 h. D. Within “infants”, SDH may direct damage to the cortex as damage was 

equivocal among brain regions in those without a SDH, but greater in the cortex vs. deep 

gray matter and hippocampus in those with a SDH. In piglets with a SDH, the hippocampus 

was not damaged (E), but was extensively damaged in those without a SDH (F). abMeans ± 

SEM with different letters differ, P < 0.05. *Tended to be different from contralateral 

hemisphere in “toddlers”, P = 0.08.
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Fig. 6. 
Distribution of amyloid precursor protein (APP) compared to damage. APP revealed axonal 

bulbs from traumatic injury (blue, A), overlapped with damage in a metabolic pattern (B), 

and in the severe cases, was geographic/vascular spanning large regions in deep gray matter 

(C, C inset; 359 ipsilateral). “Infants” (D) or “toddlers” (E) demonstrate different total APP 

pattern (blue) vs. damage patterns (yellow) in individual subjects. Table displays APP and 

damage via H&E in individual subjects contralateral or ipsilateral to the focal injuries. Some 

APP overlapped with damage patterns and some APP extended in white matter tracts beyond 

the area of damage visible with H&E. F. The percentage of the hemisphere positive for APP 

was a similar pattern as the damage pattern with ipsilateral APP being greater than 

contralateral in “toddlers” but not “infants”. abMeans ± SEM with different letters differ, P < 
0.05.
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Table 1

Details of anesthetic doses and experimental injuries and insults with age-specific difference in dose or 

scaling.

Parameter “Infants” (1-week old) ‘Toddlers” (1-month old)

Analgesic dose 5 μg/kg bolus buprenorphine 10 μg/kg bolus buprenorphine

Seizure permissive 
anesthesia

Dexmedetomidine (5–20 μg/kg/h), Morphine (1.75 
mg/kg/h), Chlorpromazine (0.5–1 mg/kg bolus, to 
effect)

Dexmedetomidine (10–30 μg/kg/h), Morphine (3.5 
mg/kg/h), Chlorpromazine (1–2 mg/kg bolus, to 
effect)

Mass effect: 5% of brain 
volume

2.25 mL balloon 2.7 mL balloon

Subdural Hematoma: 10% of 
brain volume

4.5 mL blood (Durham and Duhaime, 2007) 5.4 mL blood (Durham and Duhaime, 2007)

Cortical impact: displace 1% 
of brain volume

The indentor was 1.04 cm in diameter and indented to a 
depth of 4.8 mm (Durham et al., 2000).

The indentor was 1.07 cm in diameter and indented 
to a depth of 5.9 mm (Duhaime et al., 2000).

Epileptic agent Kainic acid (42–84 μg/kg) injected into the cortex or mixed with subdural blood.

Apnea 1 round for 1 min

Hypoventilation 1 round for 10 min
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Table 3

Clinical characteristics of piglets receiving model injuries.

Characteristic Number “Infant” Injured (%) Number “Toddler” Injured (%)

Epinephrine for hypotension 2 (14%) 2 (20%)

Chest compressions for cardiac arrest 1 (7%) 0 (0%)

Seizures stopped due to prolonged hypotension 3 (21%) 2 (20%)

Able to be extubated all night 0 (0%) 7 (70%)*

Early death (excluded from pathology) 1 (7%) 0 (0%)

*
Percentage differs, P = 0.002. Re-intubations were due to spontaneous apnea, labored breathing or failure to remain oxygenated as determined by 

blood gas analysis.
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Table 4

Correlation of subdural hemorrhage, subarachnoid hemorrhage and seizure duration to the percentage of 

damage in the ipsilateral hemisphere in “infants” vs. “toddlers”.

“Infants” “Toddlers”

Area of subdural hemorrhage P = 0.61, r = 0.13 P = 0.19, r = 0.34

Area of subarachnoid hemorrhage P = 0.005, r = 0.63* P < 0.001, r = 0.87*

Seizure duration P = 0.178, r = 0.178 P = 0.012, r = 0.784*

*
Correlation is significant P < 0.05.
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