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Abstract

With the advent of high-throughput technologies, life sciences are generating a huge

amount of varied biomolecular data. Global gene expression profiles provide a snapshot of

all the genes that are transcribed in a cell or in a tissue under a particular condition. The

high-dimensionality of such gene expression data (i.e., very large number of features/

genes analyzed with relatively much less number of samples) makes it difficult to identify

the key genes (biomarkers) that are truly attributing to a particular phenotype or condition,

(such as cancer), de novo. For identifying the key genes from gene expression data,

among the existing literature, mutual information (MI) is one of the most successful criteria.

However, the correction of MI for finite sample is not taken into account in this regard. It is

also important to incorporate dynamic discretization of genes for more relevant gene selec-

tion, although this is not considered in the available methods. Besides, it is usually sug-

gested in current studies to remove redundant genes which is particularly inappropriate for

biological data, as a group of genes may connect to each other for downstreaming proteins.

Thus, despite being redundant, it is needed to add the genes which provide additional use-

ful information for the disease. Addressing these issues, we proposed Mutual information

based Gene Selection method (MGS) for selecting informative genes. Moreover, to rank

these selected genes, we extended MGS and propose two ranking methods on the

selected genes, such as MGSf—based on frequency and MGSrf—based on Random For-

est. The proposed method not only obtained better classification rates on gene expression

datasets derived from different gene expression studies compared to recently reported

methods but also detected the key genes relevant to pathways with a causal relationship to

the disease, which indicate that it will also able to find the responsible genes for an

unknown disease data.
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Introduction

Genes are the physical and functional units of hereditary genetic information. The activity

and/or expression level of a gene affects the synthesis of downstream protein(s) that dictates

specific functionality in a cell. Therefore, the properties as well as the expression levels of a par-

ticular set of genes are responsible for a particular phenotype such as disease or tissue mor-

phology. Those genes which are able to differentiate between different states (such as normal

vs. diseased, quiescent vs. proliferating, adult vs. stem cells, etc.) of cells are called informative

genes or biomarkers (a measurable indicator of a particular state). Identification of these infor-

mative genes is very important for elucidating developmental and disease mechanisms, disease

diagnosis, drug development, etc. Especially, for the identification of different cancers, these

informative genes may provide invaluable information for the improvement of diagnosis,

prognosis, and treatment. For a set of known diseases, such informative genes are already iden-

tified using wet-lab verification. A computational method that can identify these known infor-

mative genes can be considered as a reliable method. Again, for known diseases, there might

be few more informative genes (due to ethnicity variation) which are responsible for that dis-

ease. More importantly, for a new disease, these informative genes are unknown. Identifying

these genes through wet-lab techniques are costly and time consuming. These time and cost

can be significantly reduced by a reliable computation based method which is the main objec-

tive of this paper.

Usually, studies to generate disease specific gene expression profiles such as cancer com-

prise of a small number of control and patient samples, but tens of thousands of genes (high

dimensional data) in each sample where only a few of the genes are responsible for a disease.

Identification of a small subset of differentially expressed genes among thousands in cancerous

cells compared to the normal ones is a challenging task and considered as NP (non-determin-

istic polynomial time) hard or NP-complete [1]. Therefore, the feature/gene selection methods

can be a convenient and useful way to find a subset of genes relevant to a particular cancer. In

this paper, we use the terms “gene” and “feature” interchangeably.

Till to date, several gene selection methods have been proposed, particularly for cancer data

classification [2–4]. These methods can be categorized into three types, such as “Filter”,

“Wrapper”and “Hybrid” [5]. Among them, filter based methods are more popular as these can

assess the property of features without being dependent on any particular classifier. Filter

based methods select a subset of features based on some criteria such as correlation coefficient

[6], t-statistics [7], distance [8, 9], Mutual Information(MI) [10–13]. Among these, MI based

methods are popular for feature selection due to their ability to capture non-linear dependen-

cies between features. One of the recent works used Minimum Redundancy Maximum Rele-

vance (MRMR) [3] where each gene was selected incrementally to hold the highest

discriminatory power (relevancy) with the target class (control/cancer) and the lowest depen-

dency (redundancy) with other selected genes. However, in this method, bias corrections

(errors occurred due to finite number of samples) are not considered and there are some genes

which add some additional information about the class that are discarded. To solve this issue,

a new information theoretic measure such as complementary (additional) information that a

gene has about the class (which is not found in the already selected subset of genes) has been

proposed in [11, 14]. These methods attempted to estimate the joint mutual information of a

feature subset with the class. Another method, modified Discretization and feature Selection

based on Mutual information (mDSM) [11] includes bias correction and captures comple-

mentary information. Relaxmrmr [14] and DSbM [13] add a higher order term, namely fea-

ture-feature interaction in addition to the complementary information. However, all these

methods discard those genes considering as redundant which may provide complementary
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information about a particular disease (class). The exclusion of a gene considering only a pair-

wise correlation may hamper of finding informative and distinguishable genes because a

group of genes is connected to each other to perform a particular function.

In contrast to filter based methods, wrapper based methods are classifier dependent. Wrap-

per based methods select the most discriminant subset of features by minimizing the predic-

tion error of a particular classifier [15]. Support Vector Machine based on the Recursive

Feature Elimination (SVM-RFE) [2] is considered to be one of the best performing wrapper

methods. It ranks the genes using SVM and selects the important genes using recursive feature

elimination strategy. Different variants of SVM-RFE have also been proposed [16, 17].

Although the wrapper based feature selection methods provide better performances, these

methods become computationally expensive when the feature size grows. Moreover, these

methods may not provide the optimal solution for other classifiers [18].

To combine the advantages of wrapper and filter based methods, a hybrid approach was

introduced which first selected candidate gene subset from the original gene set via computa-

tionally-efficient filter method and then the candidate gene subset was further refined by wrap-

per method. An example of a hybrid method named Information Guided Interactive Search

(IGIS) [19] that selected the best set of genes based joint MI. However, this method selected

more genes than the wrapper or the hybrid algorithms. Addressing the limitations of IGIS,

improved Interaction information-Guided Incremental Selection (IGIS+) [20] was proposed,

where the first gene was selected based on the highest accuracy using KNN and CART classifi-

ers and utilized Cohen’s d test to add a new gene into the selected gene subset. One major limi-

tation of IGIS+ is that it uses several handcrafted thresholds. There are several popular bio-

inspired algorithms to find out the optimal set of features. Almugren et al. in [21] provided an

extensive review of the bio-inspired hybrid methods. Alshamlan et. al. proposed a hybrid artifi-

cial bee colony [22] and a genetic bee colony [23] optimization method that uses MRMR crite-

rion. El Akadi et al. [24] proposed a genetic algorithm based on MRMR criterion. In these

methods, MRMR criterion is used to filter noise and redundant genes in the high-dimensional

microarray data and then the bio-inspired algorithm uses the classifier accuracy as a fitness

function to select the highly discriminating genes. Particle swarm optimization is a kind of

bio-inspired swarm intelligence optimization method which was used to select informative

genes [25]. In this method, informative genes are selected in autism spectrum disorder by uti-

lizing a combination of various statistical filters and a wrapper-based Geometric Binary Parti-

cle Swarm Optimization-Support Vector Machine (GBPSO-SVM) algorithm. Another recent

hybrid method was introduced by Hameed et al. [26] named HDG-select. It provides a graphi-

cal user interface that uses mixed filter-GBPSO-SVM for feature selection, while SVM is used

for disease classification. Most bio-inspired algorithms use local searches with random restart

or population based methods. However, these algorithms still can get stuck at a local optimum.

In order to solve the optimization problems globally, a parallel search strategy was attempted

in [27]. It incorporated parallel search strategies based on semi-definite programming or qua-

dratic programming that can find the feature subset in polynomial time.

Recently, deep learning based methods show better accuracy in different classification

problems such as image [28, 29], text [30] or audio [31] classification. Deep learning based

methods have also been proposed for gene expression data [4] where the authors developed a

new model namely Forest Deep Neural Network (fDNN) that incorporated deep neural net-

work (DNN) with random forest (RF) to solve the problem of learning from small sample data

having a large number of genes. RF was used to reduce the dimension of these datasets by

detecting the important genes in a supervised manner. This new feature representation was

then fed into DNN to predict the outcomes. However, this method does not make use of the

main advantage of deep learning, which is automatic feature extraction in solving classification
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problems. On the other hand, using a neural network as a black box to extract new features

from gene expression data reduces the interpretability of the classifier, which is important in

studies such as disease (cancer) classification.

We in this paper choose filter based methods for gene selection instead of deep learning or

wrapper/hybrid methods due to the useful properties that filter based methods have, namely

interpretability, classifier independence, and superior performance. Moreover, we adopt filter

based methods that use selection criteria based on MI for reasons mentioned previously. How-

ever, one of the challenges of MI based methods is to reliably estimate the MI when the dataset

is high-dimensional but contains few samples. Gene expression datasets have this characteris-

tic. There has been a lot of effort to better approximate the MI. Among them, one of the recent

works is modified Discretization and Selection of feature based on MI (mDSM) [11], where

the authors showed that during the calculation of MI for finite samples, there exist some errors

(bias) for all the three terms namely relevancy, redundancy and complementary information.

Moreover, for selecting a feature, they proposed to use χ2 statistics by showing that these terms

follow χ2 distribution. Despite having a few good characteristics, MI based methods might dis-

card informative genes by incorporating the term redundancy in gene expression data [20].

Note that, usually most of the existing works improve the classification accuracy whereas it is

also important to identify genes that improve classification accuracy and are relevant to a par-

ticular disease [5].

To solve the aforementioned problems, we propose a new MI based filter method, namely

Mutual information based Gene Selection (MGS) that achieves better classification perfor-

mance as well as captures biological significance with high dimensional data. The main contri-

butions of this study are as follows: first, a gene selection technique is proposed for identifying

the discriminating genes relevant to a particular disease based on their relevancy and comple-

mentary information. Second, a statistical test is used to select genes without a handcrafted

threshold. Third, two ranking techniques are proposed to rank the selected genes and select

top η genes as biomarkers for disease classification. Finally, the selected informative genes are

validated using already wet-lab tested results with a causal relationship to a particular type of

disease (phenotype) with the hope that this method will also work well for unknown disease

data.

Materials and methods

Dataset description

To find the informative genes and to assess the performance of the proposed method com-

pared to the existing ones, we choose datasets that have different characteristics, such as bal-

anced and imbalanced datasets, and small and relatively large samples having different

diseases. We used seven different gene expression datasets such as GDS3341 [32], GDS3610

[33], GDS4824 [34], GSE106291 [35], GDS4431 [36], GDS5306 [37] and GDS6063 [38]

retrieved from the Gene Expression Omnibus (GEO) database [39] at the National Center for

Biotechnology Information (https://www.ncbi.nlm.nih.gov). These datasets are grouped into

two sets based on the distribution of control and disease samples: Balanced datasets

(GDS3341, GDS3610, GDS4824 and GSE106291) and Imbalanced datasets (GDS4431,

GDS5306 and GDS6063) having small and relatively large samples. The description of datasets

is given in Table 1. Expression data of multiple probes for the same gene were merged. At first,

we download these datasets (.soft extension) from the NCBI site, and it is transformed into

CSV format taking samples and features (genes). Here, features are defined by probe id and

gene symbol. There are various cases where probe id is different but same gene symbol name.

In this case, we merge these gene symbols by taking their mean. In addition, the genes which

PLOS ONE Mutual information based gene selection for high-dimensional gene expression data classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0230164 October 6, 2021 4 / 24

https://www.ncbi.nlm.nih.gov
https://doi.org/10.1371/journal.pone.0230164


have no expression values over the samples are discarded. All these datasets contained much

less number of samples compared to the number of genes. These datasets are publicly available

at https://doi.org/10.6084/m9.figshare.16680355.

Gene selection and validation processes

The overall process of the proposed MI based Gene Selection (MGS) is shown in Fig 1. We

first identified the informative genes using MGS and then selected top η genes by ranking

them according to their performance (Fig 1A). Finally, we use these η genes for classification

(Fig 1B) and validating the biological significance. The following subsections describe our

method with further details.

Gene selection

For the identification of a gene subset, we used a filter based gene selection method that

approximated the joint MI with respect to the class variable. In order to identify an informative

gene subset, we first subdivided the given gene expression dataset into K subsets and applied

K-fold cross validation (KFCV). However, when the number of samples (n) is small (n< 100),

Leave One Out Cross Validation (LOOCV) is applied where K = 1. In MGS, we incorporated a

variant of the mDSM [11] by modifying the selection criteria so that it can identify biologically

relevant genes for a disease. The accumulation of all genes identified by MGS from K different

subsets was defined here as selected gene subset (GS). Finally, to rank these selected gene subset

(GS), two ranking criteria namely MGS frequency-based ranking (MGSf) and MGS Random

Forest (RF) based ranking (MGSrf) were proposed to select the top η genes as biomarkers.

• Gene subset (GS) selection: To measure how much information a particular gene expression

dataset provided for the identification of a disease, we calculated MI between the expression

values of a gene gi and the class variable C. This MI represented the relevancy of a gene that

revealed the degree of importance of that gene in disease data classification. Note that, before

calculating the MI, the gene expression data was discretized which was necessary for noise

reduction and data simplification, and thus resulted in maximizing the relevancy of a gene

to the target class C. For calculating the relevance between gi and C, MI was calculated using

Eq 1.

JrelðgiÞ ¼ Iðgdii ;CÞ �
ðI � 1ÞðK � 1Þ

2N ln 2
ð1Þ

Table 1. Summary of the datasets used in this study.

Dataset

type

Sample size Dataset ID Description Total

samples

Control

samples

Disease

samples

Features/

genes

Balanced Small GDS6063 Influenza A infected plasma-cytoid dendritic cells(pDC) 10 5 5 36825

GDS5306 Breast cancer brain metastasis specimens and non-metastatic

primary breast tumors

38 19 19 32389

Relatively

large

GDS4431 Peripheral blood lymphocytes of autistic and non-autistic

child

146 69 77 30803

Imbalanced Small GDS4824 Prostate cancer 21 8 13 30872

GDS3610 Nasopharyngeal carcinoma 28 3 25 14126

GDS3341 Nasopharyngeal carcinoma 41 10 31 30865

Relatively

large

GSE106291 Acute myeloid leukemia 235 71 164 21403

https://doi.org/10.1371/journal.pone.0230164.t001
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where, gdii denotes gene gi with di discretization levels. The second term of the right hand

side of Eq (1) is the bias correction term for calculating the relevancy where I , K and N rep-

resent the discretization levels of gene gi, the total number of classes in C and the total num-

ber of samples respectively. For each gene gi, the minimum discretization levels di was

chosen for which Jrel(gi) was greater than its χ2 critical value (x2
CðrelÞ) and thus helped to

determine whether the gene was significantly relevant or not. This test could be done as it

could be shown that the relevancy followed χ2 distribution with ðI � 1ÞðK � 1Þ degrees of

freedom. The genes which satisfied the χ2 critical value were included in the candidate gene

subset, Gc. Then, these candidate genes, Gc were ranked in descending order based on the

relevancy. As the top ranked gene was considered to be the most important, we included it

to the selected gene subset GS at first. Now, the second ranked one was evaluated for

Fig 1. Overall process of the proposed method. (A) Gene selection. (B) Classification.

https://doi.org/10.1371/journal.pone.0230164.g001
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selection based on its score calculated using Eq 2.

JMGSðgiÞ ¼ Iðgdji ;CÞ �
ðI � 1ÞðK � 1Þ

2N ln 2

þ
1

j GS j

X

gs2GS

Iðgdji ; gs j CÞ �
ðI � 1ÞðJ � 1ÞK

2N ln 2

� � ð2Þ

Here, along with relevancy, the complementary information (Iðgdji ; gs j CÞ) of a new gene

was also calculated. The complementary information Iðgdji ; gs j CÞ due to gi for the already

selected gene in gs revealed the dependency among those genes while identifying the class

variable C. Here, J represents the discretization levels of a gene in GS. The last term in Eq 2

is the bias correction for complementary information. While calculating the value of JMGS,

the discretization level (di) of the gi which was fixed using Eq (1) was also shifted by a small

amount (±δ) to check whether the value of JMGS is increasing because a small shifting of dis-

cretization might increase the value of JMGS and this new discretization value was chosen

dynamically considering the dependency among the genes. Now, for a particular gene (gi), if

the value of JMGS was larger than the χ2 critical value (w2
CðMGSÞ), then it was placed into the

selected gene subset. When the relevancy and complementary information of a gi was signifi-

cant, it was selected, otherwise discarded. So, identification of genes that maximize JMGS

indicated the genes which were strongly relevant with the class C with greater additional

information would be adopted to the selected subset throughout this process.

It is noteworthy to mention that a group of genes with similar expression values may exist

which will be identified as redundant. However, if these have complementary (additional)

information about the class, it is necessary to incorporate that gene into the selected subset

even though these are redundant. Inclusion of the redundant genes is sensible because; usu-

ally a set of genes contributes mutually for a particular task in our body and these genes may

share a similar or correlated expression profile. The biological importance of such inclusions

is presented in the Results and discussion section. The whole procedure of selecting gene

subset are illustrated in Algorithm 1.

• Rank the selected gene subset: The same subset of genes was not always selected during the

selection of genes by MGS at each iteration of LOOCV. For example, in a dataset having n
number of samples, we used (n − 1) samples for training and the nth sample for testing. After

passing the training data to MGS, we got an informative selected gene subset. This was

repeated n times and aggregated all the selected gene subsets (GS) and considered the union

of these subsets to get GSU. Afterward, these genes in GSU were ranked using one of the fol-

lowing two ranking criteria.

• MGSf: This ranking was performed based on the following assumption. Assumption: The

genes which are selected in every iterations are likely to have more discriminating power

and biological significance.

To quantify the Assumption, we computed the relative frequency of every selected gene, Si
in GSU using Eq 3.

PðSiÞ ¼
FSi
NGSU

ð3Þ

Here, NGSU
, FSi and P(Si) are the total number of genes in GSU, frequency of the selected

gene Si and the relative frequency of gene Si respectively. For example, we had two selected

gene subsets, L1 = {g1, g3, g4, g5, g6} and L2 = {g1, g2, g4, g6}. Here, the unique genes were GSU
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= {g1, g2, g3, g4, g5, g6} and the frequencies of these unique genes were F = 2, 1, 1, 2, 1, 2

respectively. So, the relative frequencies were P(Si) = 2/6, 1/6, 1/6, 2/6, 1/6, 2/6. Thus,

based on the P(Si), ranked genes were GSR = g1, g4, g6, g2, g3, g5.

• MGSrf: Informative genes have the ability to split the control and disease samples into two

groups. To find the more informative genes, it is needed to rank the selected gene subset.

In order to rank the genes GSU, it is necessary to measure how much information a gene

contains. To measure the information content of a gene, we can use Information Gain

(IG) criterion. IG is used in decision trees [40] to select features that reduces the entropy of

the data most by splitting data into two groups (called the the left and right child in a deci-

sion tree). We used weighted IG given in Eq 4.

IG ¼
Nt

N
HðnodeParentÞ �

NL

Nt
�HðnodeLeftchildÞ �

NR

Nt
�HðnodeRightchildÞ

� �

ð4Þ

Where, Nt is the number of samples at the current (parent) node, N is the total number of

samples, NL is the number of samples in the left child, and NR is the number of samples in

the right child. H(node) is the entropy at the node. The entropy was calculated using Eq 5.

HðnodeÞ ¼ �
XC

i¼1

PilogPi ð5Þ

Here, Pi is the probability of the outcome/class, i. Each node in a DT contains a gene with

its corresponding weighted IG. Besides, to make the weighted IG more robust, we used M
number of DTs to construct a Random Forest and took the average of IGs for each gene gj
2 GSU using Eq 6.

IGgj
¼

1
PV

i¼1
dðvi:g; gjÞ

XV

i¼1

dðvi:g; gjÞ � vi:IG

" #

ð6Þ

Here, V = {vi, vi+1,‥,vk} = {(gi, IGi), (gi+1, IGi+1),‥,(gk, IGk)} and k is the total number of

nodes in the random forest. That is, for each node of the random forest, we stored the cor-

responding gene and its weighted IG in V. δ(vi.g, gj) = 1 if vi.g = gj, and 0, otherwise.

This average score can be used as the importance score of each gene. In our case, this

importance score represented how important a particular gene was to explain the target

class. Then, based on the importance score, the genes from GSU were ranked in descending

order. And finally, from the ranked genes, top η genes were taken as biomarkers and the

performance metrics were calculated.

Algorithm 1: MGS
Input: Set of genes G, maximum discretization level maxd
Output: Selected subset of genes, GS
1: Initialize candidate gene subset (Gc), its discretization level
(Dc) and relevance (Jc) with ;.
2: for each gi 2 G do
3: for all j = 2 to maxd do
4: Discretize gi with j intervals
5: Calculate Jrel(gi) using Eq (1)
6: if JrelðgiÞ > w2

CðrelÞ then
7: Dc ( Dc [ j;
8: Jc ( Jc [ Jrel(gi)
9: Gc ( Gc [ gi
10: break
11: end if
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12: end for
13: end for
14: Sort Gc in decreasing order based on their corresponding Jc values
15: Select g1 and the corresponding d1 from Gc with max Jc
16: GS ( {g1}
17: DS ( d1
18: Gc ( Gc \ g1
19: for each gi 2 Gc, di 2 Dc, ji 2 Jc do
20: Initialize threshold, T ( 0
21: for all j = di − δ to di + δ do
22: Discretize gi with j intervals
23: Calculate JMGS(gi) using Eq (2)
24: if JMGSðgiÞ > w2

CðMGSÞ then
25: di ( j;
26: T ( w2

CðMGSÞ
27: ji ( JMGS(gi)
28: end if
29: end for
30: if ji > T then
31: GS ( GS [ gi
32: DS ( DS [ di
33: end if
34: Gc ( Gc \ gi
35: end for
36: Return GS

Classification

For classification, as shown in Fig 1B, only the selected top η genes from the previous step

were used in the train and test data to predict the outcome. To assess the performance of a

gene selection method, we considered two performance metrics, accuracy and Area Under the

Receiver Operating Characteristic Curve (AUROC). Accuracy is the percentage of samples that

are predicted as the true class. AUROC represents degree or measure of separability between

classes, and it can be used both balanced and imbalanced datasets, specially imbalanced data-

set. ROC is a probability curve of a classifier at various thresholds. It plots a curve based on the

true positive rate (TPR) and false positive rate (FPR) represented in Eqs 7 and 8.

TPR ¼
TP

TP þ FN
ð7Þ

FPR ¼
FP

FPþ TN
ð8Þ

here, “TP” and “TN” are the numbers of positive and negative samples that are correctly classi-

fied. “FP” is the number of negative-class samples misclassified as the positive class, and “FN”

is the number of positive-class samples misclassified as the negative class. To compute the

points in a ROC curve, AUROC computes an aggregate measure of various thresholds. For our

experiments, the reported results were calculated by taking the average over the KFCV/

LOOCV process for these two metrics. Selection of the informative features in the MGS step

was implemented using MATLAB and ranking these informative features in MGSf and MGSrf
step was implemented using Python with the package scikit-learn [41]. To evaluate the perfor-

mance of the proposed and existing methods, different classifiers such as SVM, RF classifiers,

XGboost [42], PEkNN [43] can be used. In this paper, we only use two simple classifiers

namely SVM (linear kernel) and Random Forest to compare different methods. These
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classifiers were implemented using Python with Scikit-learn packages. The source code is

available, which can be downloaded from GitHub (https://github.com/Shisir/MGS). All exper-

iments are conducted using a PC with Core-i7, CPU (3.60GHz x 8), and 16GB of RAM.

Biological interpretation of the selected genes

We used NetworkAnalyst [44] to interpret the biological significance of the selected genes.

NetworkAnalyst is a bioinformatics platform to interpret gene expression data within the con-

text of protein-protein interaction (PPI) networks which is widely used in many renowned

researches such as [45–47]. It uses well-established walktrap algorithm [48]. The general idea

of walktrap algorithm is that if we perform random walks on the PPI network, the walks are

more likely to stay within the same module (nodes those are closely connected to each other)

because there are only a few edges that lead outside a given module. Then, to assess the good-

ness of these modules, modularity [49] is used. The modularity quality function is based on the

comparison with a random graph that is not expected to have a cluster structure. As the input

of NetworkAnalyst, we used top η selected genes for each dataset determined by our proposed

and the previously described methods [4, 11, 20, 40]. Only the PPI networks that accommo-

date these genes with False Discovery Rate (FDR) < 0.05 were considered. FDR is more strin-

gent than the p-value and has become invaluable in transcriptional profiling, and large-scale

bioinformatics analysis in general. Since the nature of the biological samples in the datasets

was known, we assessed the performance of the compared methods based on their abilities to

identify the key pathways affected in the corresponding sample types.

An illustrative example

Here, we present a toy example in order to demonstrate the overall mechanism of the pro-

posed method. Let us assume a dataset having 20 genes (g1, g2, ‥, g20) with 10 samples where

the distribution of control and disease samples are seven and three, respectively. First, in MGS,

we calculate the relevance for the expression values of each gene with the minimum discretiza-

tion level using Eq 1 and the first gene is selected which has the highest relevance. Then, the

next gene subset is selected by a small change (±δ) of the initial discretization level of each

gene to maximize the JMGS criterion mentioned in Eq 2. In this way, the genes are assessed con-

sidering its interaction with other genes. In this example, 10 out of 20 genes are selected as a

selected gene subset (GS). After that, to rank the selected gene subset, in MGSf, the relative fre-

quencies of the selected genes are recorded using Eq 3 over the LOOCV. On the other hand, in

MGSrf, an importance score is given to every candidate gene using Eqs 4–6 over the LOOCV.

Table 2 represents the relative frequency distribution and importance score of the selected

genes after applying MGSf and MGSrf, respectively. From these ranking, top η(= 5) genes are

considered as biomarkers. So, the top 5 ranked gene subset of MGSf and MGSrf are g2, g3, g5, g9,

g12 and g3, g2, g13, g9, g5, respectively. Finally, using these biomarkers, two classifiers (SVM and

RF) are applied to compute accuracy and AUROC. Besides, these biomarkers are also assessed

for biological interpretation.

Table 2. Relative frequency distribution (MGSf) and importance score (MGSrf) of the selected gene subset.

Gene g2 g3 g5 g9 g12 g13 g15 g17 g19 g20

MGSf score 0.8 0.8 0.7 0.6 0.6 0.5 0.4 0.4 0.2 0.2

MGSrf score 0.92 0.97 0.73 0.76 0.69 0.89 0.44 0.57 0.39 0.21

https://doi.org/10.1371/journal.pone.0230164.t002
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Results and discussion

We compared the performances of our proposed filter based methods (MGSf and MGSrf) to

other already renowned methods such as RF (filter) [40], fDNN (embedded) [4], IGIS+

(hybrid) [20], HDG (hybrid) [26] and mDSM (filter) [11].

In this study, we applied the aforementioned methods on seven gene expression datasets.

Here, we first discussed the classification performance of all methods using the top η genes

and then compared the performance of all methods for different numbers of top η genes to

assess the robustness of our method. In situations where the gene selection methods selected

less than 10 genes, we used all the selected ones in further analysis. Finally, we provided a bio-

logical interpretation of the top ten (η) selected genes. For a fair comparison, we followed the

same training and testing protocol for all the methods. With RF, fDNN and MGSrf (where ran-

dom forest was used), we applied 300 decision trees.

Classification performance

Tables 3 and 4 summarized the comparative results of the proposed methods along with the

existing methods on balanced and imbalanced datasets respectively and the values in boldface

represent the classification performance of the best performing method for a particular classi-

fier. For balanced datasets, the average accuracy and AUROC indicated the superiority of MGSf
and MGSrf against other five gene selection methods on two different classifiers (Table 3).

With GDS6063 and GDS5306 datasets, MGSf and MGSrf performed better than the other

reported methods. Although fDNN performed slightly better than MGSf and MGSrf with

GDS5306 dataset, the biological significance of the selected genes was not as satisfactory as our

methods (discussed later).

For imbalanced datasets, the similar superiority of the MGSf and MGSrf could be observed

in most of the cases compared to the existing methods (Table 4), which indicated that the pro-

posed methods selected more informative genes. With GDS3341 and GDS4824 datasets, all

methods except RF were able to perfectly differentiate the control and disease samples for both

SVM and RF classifiers. The small number of samples compared to a large number of genes

might be the reason behind the relatively poor performance of RF. Even though the other

methods performed well for selecting the distinguishable genes between the control and dis-

ease samples, all these genes were not biologically informative (discussed later). With the

GDS3610 and GSE106291 datasets, MGSf and MGSrf methods achieved better performances

compared to the other methods except one (fDNN using RF classier with GSE106291 dataset).

Table 3. Classification accuracy and AUROC of different methods for balanced datasets.

Methods Dataset: GDS6063 Dataset: GDS5306 Dataset: GDS4431

Accuracy AUROC Accuracy AUROC Accuracy AUROC
SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

RF 0.700 0.700 0.898 0.766 0.447 0.500 0.583 0.710 0.561 0.625 0.632 0.719

fDNN 0.900 0.800 0.900 0.932 0.690 0.888 0.814 0.926 0.697 0.742 0.750 0.824

IGIS+ 0.600 0.400 0.460 0.480 0.605 0.868 0.610 0.890 0.616 0.705 0.560 0.780

HDG 0.900 0.891 0.953 0.972 0.685 0.763 0.798 0.916 0.725 0.740 0.787 0.788

mDSMf 0.900 0.900 0.920 0.940 0.650 0.775 0.758 0.866 0.705 0.767 0.830 0.839

mDSMrf 0.900 0.900 0.920 0.940 0.650 0.775 0.758 0.866 0.705 0.767 0.830 0.839

MGSf 0.900 0.900 0.960 0.990 0.658 0.868 0.820 0.940 0.733 0.753 0.820 0.850

MGSrf 0.900 0.900 0.960 0.990 0.658 0.868 0.812 0.940 0.733 0.753 0.820 0.850

https://doi.org/10.1371/journal.pone.0230164.t003
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Besides the superiority of MGS in terms of accuracy, it also performed significantly better in

many cases in comparison to most of the methods.

It is observed from the Tables 3 and 4 that mDSM, fDNN and HDG performed reasonably

and MGS outperformed most of its competitive methods. Even though MGSf performed better

in most of the cases compared to the existing methods, MGSrf performs slightly better than

MGSf. It is because of the selection of informative genes based on the RF classifier. As the num-

ber of samples is relatively small with respect to the number of genes, MGSf could easily overfit

training samples and thus performed poorly for unseen data. MGSrf solved the overfitting

problem by using RF classifier [40].

Comparison of performances for different number of genes

We also investigated the performances of the aforementioned methods for a different number

of selected genes (η) using two metrics accuracy and AUROC as shown in Figs 2–7. Except RF,

all the methods performed well (Figs 2–7).

In the case of balanced dataset (Figs 2 and 3), with GDS5306 and GDS4431 dataset, MGSf
and MGSrf outperformed other methods which indicate that the proposed gene selection

methods were able to select those genes which give additional information about the disease.

For the small and highly imbalanced dataset GDS3610, our methods showed superior perfor-

mances with different number of genes (Fig 5). With GDS3341 and GDS4824 datasets, all the

gene selection methods classified the samples for different number of genes almost perfectly as

shown in Figs 4 and 6. For these two datasets, the expression values of genes are more distin-

guishable between classes which would be the reason for the almost equal performance of

every method. This might be the reason why the performance did not vary with an increase in

the number of selected genes. We have also shown the strength of our methods with the

GSE106291 dataset, which has a comparatively large number of samples (Fig 7).

Based on the results presented in Figs 2–7 and Tables 3 and 4, it is evident that the perfor-

mances of MGSf and MGSrf are clearly better than the existing methods for balanced and

imbalanced datasets. MGS performed well for all classifiers and thus, it is classifier indepen-

dent. The datasets used for experimentation had a highly imbalanced distribution of the clas-

ses. This indicates that MGS is tolerant to imbalanced datasets. However, MGSrf achieved

slightly better performance for every value of η, indicating MGSrf could classify more samples

accurately than MGSf.

Table 4. Classification accuracy and AUROC of different methods for imbalanced datasets.

Methods Dataset: GDS3341 Dataset: GDS4824 Dataset: GDS3610 Dataset: GSE106291

Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC
SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

RF 0.878 0.878 0.955 0.940 0.476 0.476 0.289 0.389 0.679 0.893 0.253 0.507 0.698 0.702 0.277 0.622

fDNN 1.00 1.00 1.00 1.00 0.952 1.00 1.00 1.00 0.750 0.893 0.560 0.827 0.766 0.779 0.778 0.783

IGIS+ 0.976 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.893 0.893 0.853 0.940 0.732 0.762 0.695 0.765

HDG 1.00 1.00 1.00 1.00 0.952 1.00 0.960 1.00 0.964 0.964 1.00 0.980 0.698 0.690 0.600 0.567

mDSMf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.964 0.929 1.00 0.980 0.728 0.694 0.638 0.629

mDSMrf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.964 0.929 1.00 0.980 0.698 0.689 0.400 0.5419

MGSf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.964 0.929 0.960 0.973 0.757 0.762 0.764 0.793

MGSrf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.964 1.00 0.987 0.770 0.757 0.787 0.796

https://doi.org/10.1371/journal.pone.0230164.t004
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Biological interpretation

It is not always a requisite that the selected genes with better classification ability are also rele-

vant to a particular biological process. Therefore, to assess the performances of MGSf and

MGSrf, we investigated the ability of the top (� 10) selected genes to identify the most relevant

Fig 2. Performance comparison using different number of selected genes for the GDS5306 dataset. (A) Accuracy.

(B) AUROC.

https://doi.org/10.1371/journal.pone.0230164.g002

Fig 3. Performance comparison using different number of selected genes for the GDS4431 dataset. (A) Accuracy.

(B) AUROC.

https://doi.org/10.1371/journal.pone.0230164.g003

Fig 4. Performance comparison using different number of selected genes for the GDS3341 dataset. (A) Accuracy.

(B) AUROC.

https://doi.org/10.1371/journal.pone.0230164.g004
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pathways in the cancer types used in different balanced and imbalanced datasets (Tables 5 and

6).

For balanced dataset, as this study primarily focused on disease data classification and the

identification of relevant genes, we investigated the performances of all methods for capturing

biological significance on various disease datasets derived from varied biological sources, such

as cancer metastasis (GDS5306), autism (GDS4431) and viral infection (GDS6063). The results

Fig 5. Performance comparison using different number of selected genes for the GDS3610 dataset. (A) Accuracy.

(B) AUROC.

https://doi.org/10.1371/journal.pone.0230164.g005

Fig 6. Performance comparison using different number of selected genes for the GDS4824 dataset. (A) Accuracy.

(B) AUROC.

https://doi.org/10.1371/journal.pone.0230164.g006

Fig 7. Performance comparison using different number of selected genes for the GSE106291 dataset. (A)

Accuracy. (B) AUROC.

https://doi.org/10.1371/journal.pone.0230164.g007
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are shown in Table 5. GDS6063 dataset incorporates gene expression profiles of primary plas-

macytoid dendritic cells following exposure to influenza A for 8 hours [50]. Human dendritic

cells (DCs) are susceptible to infection with various viruses, including human T-lymphotropic

virus Type 1 (HTLV-1), human immunodeficiency virus type 1 (HIV-1), measles virus and

influenza virus [51]. In fact, the HTLV-1 acts more like the influenza virus in terms of infection

to the DC cells and differs significantly with measles virus or HIV-1 [51]. The influenza virus-

infected DCs induce a considerably higher proliferative response [51]. Transforming growth

factor-beta (TGF-β) is a multifunctional cytokine and its activity increases during influenza

virus [52, 53]. Along with MGS, mDSMf and mDSMrf could identify these as the top pathways

(Table 5). Besides, HDG identified two pathways but other three methods could not identify

any of the pathways. TGF-β signaling also plays an important role by stimulating cell invasion

during metastasis of breast cancer [54, 55]. GDS5306 dataset contains gene expression data of

HER2+ breast cancer brain metastasis specimens and HER2+ nonmetastatic primary breast

tumors [50]. As shown in Table 5, MGSf and MGSrf identified pathways relevant to cancer and

metastasis. Compared to MGS, mDSM and HDG performed reasonably well. GDS4431 dataset

includes gene expression data of peripheral blood lymphocytes from autistic and non-autistic

children [50]. Interestingly, the pathways indentified by majority of the methods overrepre-

sented the pathways associated with cancer. It was recently reported that autism and cancer

share risk genes [56]. Mutations in genes encoding the ubiquitin proteasome system (UPS) are

associated with an increased risk for the development of autism spectrum disorders [57–59].

Viral carcinogenesis and ubiquitin mediated proteolysis were identified as the top pathways

affected in autistic children. Connection between autism and Hepatitis B infection (one of the

other top-ranked pathways) is not obvious based on the available information and may be

explored in further studies.

For imbalanced datasets, it is evident that MGSf and MGSrf performed better in capturing

the genes more relevant to the cancer type (Table 6). For example, Epstein-Barr virus (EBV) is

well known to cause nasopharyngeal carcinoma (NPC), which is a type of epithelial cancer

prevalent in Southeast Asia [60–62]. GDS3341 and GDS3610 datasets contain NPC samples

[32, 33]. Although GDS3341 and GDS3610 are independent datasets, both MGSrf and MGSf
could detect the genes involved in viral carcinogenesis and Epstein-Barr virus infection

(Table 6). We used two different datasets (GDS3341 and GDS3610) on the same cancer type as

built-in controls in the study to increase confidence with the experimental results. With both

the datasets, MGSrf and MGSf performed almost equally well, although the genes selected by

MGSrf performed somewhat better. The other methods (RF, fDNN, IGIS+, mDSMf and

mDSMrf) could detect these pathways only for the GDS3610 dataset whereas HDG could detect

pathways for both GDS3341 and GDS3610 datasets. In fact, RF and IGIS+ could detect one of

these pathways. The GDS4824 dataset contains gene expression data from prostate cancer

samples. Both the MGSrf and MGSf detected genes that are involved in prostate cancer.

Although the prostate cancer pathway was ranked 6th in the detected pathways (based on the

FDR values) with the genes selected by the MGSrf and MGSf, the top ranked pathways (FoxO

signaling pathway, colorectal cancer, pancreatic cancer and endometrial cancer) are relevant

to cancer as well [63–66]. In fact, unlike nasopharyngeal carcinoma, prostate cancer develop-

ment involves different pathways. Fork head box O transcription factors (FoxO) regulates

multiple cellular processes, including cell cycle arrest, cell death, DNA damage repair, stress

resistance, and metabolism [67]. Inactivation of FoxO protein is linked to multiple tumorigen-

esis including prostate cancer [67–69]. Among the other methods, fDNN, HDG and mDSM
could detect the genes associated with prostate cancer, although the rank of the pathway and

associated FDR values were less significant.
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Table 5. Comparative performance of different methods in identification of relevant biological pathways for balanced datasets.

Dataset

ID

Cancer type Method No. of

genes

Pathway Output

rank

FDR

GDS6063 Influenza A infected plasmacytoid dendritic cells(pDC) RF 10 Cell cycle/HTLV-I infec./TGF-beta

sig. path.

ND -

fDNN
IGIS+ 1

HDG 8 Cell cycle 23 6.00E-01

HTLV-I infection 16 2.39E-01

mDSMf 2 Cell cycle 1 1.41E-06

HTLV-I infection 2 7.63E-06

TGF-beta signaling pathway 3 2.18E-05

mDSMrf 2 Cell cycle 1 1.41E-06

HTLV-I infection 2 7.63E-06

TGF-beta signaling pathway 3 2.18E-05

MGSf 2 Cell cycle 1 1.41E-06

HTLV-I infection 2 7.63E-06

TGF-beta signaling pathway 3 2.18E-05

MGSrf 2 Cell cycle 1 1.41E-06

HTLV-I infection 2 7.63E-06

TGF-beta signaling pathway 3 2.18E-05

GDS5306 Breast cancer brain metastasis specimens and nonmetastatic

primary breast tumors

RF 10 Cell cycle/Path. in cancer/TGF-beta

sig. path

ND -

fDNN 10 Cell cycle ND -

Pathways in cancer 6 1.96E-08

TGF-beta signaling pathway ND -

IGIS+ 10 Cell cycle ND -

Pathways in cancer 1 9.97E-08

TGF-beta signaling pathway ND -

HDG 4 Cell cycle 10 0.533

Pathways in cancer 9 0.526

TGF-beta signaling pathway 4 0.0525

mDSMf 2 Cell cycle 2 3.64E-10

Pathways in cancer 1 3.64E-10

TGF-beta signaling pathway 3 1.71E-07

mDSMrf 2 Cell cycle 2 3.64E-10

Pathways in cancer 1 3.64E-10

TGF-beta signaling pathway 3 1.71E-07

MGSf 2 Cell cycle 1 1.10E-12

Pathways in cancer 2 3.92E-11

TGF-beta signaling pathway 4 5.15E-08

MGSrf 2 Cell cycle 1 1.10E-12

Pathways in cancer 2 3.92E-11

TGF-beta signaling pathway 4 5.15E-08

(Continued)
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Although multiple proteins interact in a network inside a cell to attain a particular function,

each of these does not play equally important role. Some proteins in a network are more con-

nected and play a pivotal role in the overall biological process. MGSrf and MGSf selected top

genes play important roles in pathways relevant to cancer (Fig 8).

It is noteworthy to mention that the proposed methods (MGSf and MGSrf) performed better

compared to the mDSM (mDSMf and mDSMrf) despite sharing a closely similar methodology.

These methods differed in the exclusion of redundancy term. mDSM discards a gene if it finds

another gene with similar expression level. But as mentioned earlier, both genes may be infor-

mative despite redundancy and may provide useful information. Avoidance of the redundant

genes may not be appropriate as genes working together in a pathway may be regulated in a

more coordinated fashion than a random set of genes, and thus share a more coherent expres-

sion profile [70]. To understand this issue, let us consider an example of two genes named

MAN1C1 and ARCN1 in dataset GDS3610. mDSM discarded ARCN1 gene since the redun-

dancy value (0.685461) with MAN1C1 is greater than χ2 critical value (0.558168). Both of these

genes work in pathways that inhibit cancer cell proliferation [71, 72]. Therefore, we did not

consider redundancy in Eq 2 to select genes with MGSf and MGSrf. Our proposed methods

selected both MAN1C1 and ARCN1 as these provide additional information (0.598510).

Conclusion

Here, we present a gene selection method followed by two gene ranking methods for the selec-

tion of informative genes from high dimensional low sample size gene expression data. The

Table 5. (Continued)

Dataset

ID

Cancer type Method No. of

genes

Pathway Output

rank

FDR

GDS4431 Peripheral blood lymphocytes of autistic and non-autistic children RF 10 Viral carcinogenesis ND -

Hepatitis B ND -

Ubiquitin mediated proteolysis 1 1.13E-04

fDNN 10 Viral carcinogenesis 5 4.72E-04

Hepatitis B ND -

Ubiquitin mediated proteolysis ND -

IGIS+ 10 Viral carcinogenesis 2 6.72E-07

Hepatitis B ND -

Ubiquitin mediated proteolysis ND -

HDG 10 Viral carcinogenesis ND -

Hepatitis B ND -

Ubiquitin mediated proteolysis 2 1

mDSMf 10 Viral cycle/Hep. B/Ub. mediat. prote. ND -

mDSMrf

MGSf 4 Viral carcinogenesis 1 4.55E-03

Hepatitis B 2 5.12E-03

Ubiquitin mediated proteolysis 3 1.19E-02

MGSrf 4 Viral carcinogenesis 1 4.55E-03

Hepatitis B 2 5.12E-03

Ubiquitin mediated proteolysis 3 1.19E-02

ND—Not detected

FDR—False discovery rate

https://doi.org/10.1371/journal.pone.0230164.t005
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Table 6. Comparative performance of different methods in identification of relevant biological pathways for imbalanced datasets.

Dataset ID Cancer type Method No. of genes Pathway Output rank FDR

GDS3341 Nasopharyngeal carcinoma RF 10 Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

fDNN 10 Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

IGIS+ 3 Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

HDG 10 Viral carcinogenesis 1 0.000121

Epstein-Barr virus infection ND -

mDSMf 4 Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

mDSMrf 4 Viral carcinogenesis ND -

Epstein-Barr virus infection ND -

MGSf 10 Viral carcinogenesis 4 0.00259

Epstein-Barr virus infection 14 0.166

MGSrf 10 Viral carcinogenesis 1 1.38E-14

Epstein-Barr virus infection 4 2.56E-07

GDS3610 Nasopharyngeal carcinoma RF 10 Viral carcinogenesis ND -

Epstein-Barr virus infection 29 0.53

fDNN 10 Viral carcinogenesis 79 7.97E-08

Epstein-Barr virus infection 113 6.85E-05

IGIS+ 7 Viral carcinogenesis 6 0.338

Epstein-Barr virus infection ND -

HDG 10 Viral carcinogenesis 10 3.82E-08

Epstein-Barr virus infection 12 0.00000155

mDSMf 9 Viral carcinogenesis 1 4.83E-13

Epstein-Barr virus infection 5 0.0165

mDSMrf 9 Viral carcinogenesis 1 4.83E-13

Epstein-Barr virus infection 5 0.0165

MGSf 10 Viral carcinogenesis 1 4.83E-13

Epstein-Barr virus infection 5 0.000259

MGSrf 10 Viral carcinogenesis 1 4.83E-13

Epstein-Barr virus infection 5 0.0165

GDS4824 Prostate cancer RF 10 ND ND -

fDNN 10 Prostate cancer 28 0.435

IGIS+ 10 ND ND -

HDG 8 Prostate cancer 7 0.632

mDSMf 6 Prostate cancer 7 1.25E-16

mDSMrf 6 Prostate cancer 7 1.25E-16

MGSf 10 Prostate cancer 6 1.29E-22

MGSrf 10 Prostate cancer 6 1.29E-22

(Continued)
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proposed gene selection method utilizes the maximum relevance and complementary infor-

mation for selecting informative genes that have biological importance. Experimental results

with known disease datasets illustrate that the proposed methods consistently achieve higher

classification accuracy and select more biologically relevant genes than the previously reported

Table 6. (Continued)

Dataset ID Cancer type Method No. of genes Pathway Output rank FDR

GSE106291 Acute myeloid leukemia RF 10 Chronic myeloid leukemia ND -

Acute myeloid leukemia ND -

fDNN 10 Chronic myeloid leukemia ND -

Acute myeloid leukemia ND -

IGIS+ 10 Chronic myeloid leukemia 22 0.000319

Acute myeloid leukemia ND -

HDG 10 Chronic myeloid leukemia ND -

Acute myeloid leukemia ND -

mDSMf 10 Chronic myeloid leukemia ND -

Acute myeloid leukemia ND -

mDSMrf 10 Chronic myeloid leukemia 26 0.448

Acute myeloid leukemia ND -

MGSf 10 Chronic myeloid leukemia ND -

Acute myeloid leukemia ND -

MGSrf 10 Chronic myeloid leukemia 1 2.78E-12

Acute myeloid leukemia 8 8.74E-08

ND—Not detected

FDR—False discovery rate

https://doi.org/10.1371/journal.pone.0230164.t006

Fig 8. Roles of MGSrf selected top genes in pathways related to cancer. (A) LGALS1 and LAMB1 were selected among the top 10 genes from GDS3341 dataset by the

MGSrf. These (highlighted in red) are part of a sub-network that contains many other proteins (highlighted in green) known to play roles in different cancers [44]. (B)

HCFC1, FOXO1 and IQGAP1 were selected among the top 10 genes from GDS4824 dataset by the MGSrf. These (highlighted in red) are part of a sub-network that

contains many other proteins (highlighted in green) known to play roles in different cancers [44].

https://doi.org/10.1371/journal.pone.0230164.g008
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methods. Moreover, we anticipate that the proposed method will also identify genes responsi-

ble for an unknown disease because it identifies effective and responsible genes for known dis-

eases. However, there are a few challenges that need to be addressed in further studies. First,

we believe that introducing a higher-order gene interaction may help to reduce the number of

selected genes but it may increase the computational complexity. Second, a semi-definite pro-

gramming based search strategy may help to obtain globally optimum gene subsets.

Supporting information

S1 File.

(ZIP)

Author Contributions

Conceptualization: Md Nazmul Haque.

Data curation: Md Nazmul Haque.

Formal analysis: Md Nazmul Haque, Sadia Sharmin, Amin Ahsan Ali, Abu Ashfaqur Sajib,

Mohammad Shoyaib.

Investigation: Md Nazmul Haque, Sadia Sharmin, Amin Ahsan Ali, Abu Ashfaqur Sajib,

Mohammad Shoyaib.

Methodology: Md Nazmul Haque, Sadia Sharmin, Amin Ahsan Ali, Abu Ashfaqur Sajib,

Mohammad Shoyaib.

Software: Md Nazmul Haque, Sadia Sharmin.

Supervision: Amin Ahsan Ali, Abu Ashfaqur Sajib, Mohammad Shoyaib.

Validation: Md Nazmul Haque, Sadia Sharmin, Amin Ahsan Ali, Abu Ashfaqur Sajib,

Mohammad Shoyaib.

Writing – original draft: Md Nazmul Haque, Sadia Sharmin, Amin Ahsan Ali, Mohammad

Shoyaib.

Writing – review & editing: Md Nazmul Haque, Sadia Sharmin, Amin Ahsan Ali, Abu Ashfa-

qur Sajib, Mohammad Shoyaib.

References
1. Narendra PM, Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Transac-

tions on computers. 1977;(9):917–922. https://doi.org/10.1109/TC.1977.1674939

2. Li Z, Xie W, Liu T. Efficient feature selection and classification for microarray data. PloS one. 2018; 13

(8):e0202167. https://doi.org/10.1371/journal.pone.0202167 PMID: 30125332

3. Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. Journal

of bioinformatics and computational biology. 2005; 3(02):185–205. https://doi.org/10.1142/

S0219720005001004 PMID: 15852500

4. Kong Y, Yu T. A deep neural network model using random forest to extract feature representation for

gene expression data classification. Scientific reports. 2018; 8(1):16477. https://doi.org/10.1038/

s41598-018-34833-6 PMID: 30405137

5. Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray

data. Advances in bioinformatics. 2015; 2015. https://doi.org/10.1155/2015/198363 PMID: 26170834

6. Hall MA. Correlation-based feature selection for machine learning. 1999.

7. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids

of gene expression. Proceedings of the National Academy of Sciences. 2002; 99(10):6567–6572.

https://doi.org/10.1073/pnas.082099299 PMID: 12011421

PLOS ONE Mutual information based gene selection for high-dimensional gene expression data classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0230164 October 6, 2021 20 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230164.s001
https://doi.org/10.1109/TC.1977.1674939
https://doi.org/10.1371/journal.pone.0202167
http://www.ncbi.nlm.nih.gov/pubmed/30125332
https://doi.org/10.1142/S0219720005001004
https://doi.org/10.1142/S0219720005001004
http://www.ncbi.nlm.nih.gov/pubmed/15852500
https://doi.org/10.1038/s41598-018-34833-6
https://doi.org/10.1038/s41598-018-34833-6
http://www.ncbi.nlm.nih.gov/pubmed/30405137
https://doi.org/10.1155/2015/198363
http://www.ncbi.nlm.nih.gov/pubmed/26170834
https://doi.org/10.1073/pnas.082099299
http://www.ncbi.nlm.nih.gov/pubmed/12011421
https://doi.org/10.1371/journal.pone.0230164


8. Akhter, Suravi and Sharmin, Sadia and Ahmed, Sumon and Sajib, Abu Ashfaqur and Shoyaib, Moham-

mad. mRelief: A Reward Penalty Based Feature Subset Selection Considering Data Overlapping Prob-

lem. International Conference on Computational Science. 2021;278–292.

9. Urbanowicz Ryan J and Olson Randal S and Schmitt Peter and Meeker Melissa and Moore Jason H.

Benchmarking relief-based feature selection methods for bioinformatics data mining. Journal of biomed-

ical informatics. 2018; 85:168–188. https://doi.org/10.1016/j.jbi.2018.07.015 PMID: 30030120

10. Sharmin S, Ali AA, Khan MAH, Shoyaib M. Feature selection and discretization based on mutual infor-

mation. In: 2017 IEEE icIVPR. IEEE; 2017. p. 1–6.

11. Sharmin S, Shoyaib M, Ali AA, Khan MAH, Chae O. Simultaneous feature selection and discretization

based on mutual information. Pattern Recognition. 2019; 91:162–174. https://doi.org/10.1016/j.patcog.

2019.02.016

12. Ross BC. Mutual information between discrete and continuous data sets. PloS one. 2014; 9(2). https://

doi.org/10.1371/journal.pone.0087357 PMID: 24586270

13. Roy Puloma and Sharmin Sadia and Ali Amin Ahsan and Shoyaib Mohammad. Discretization and fea-

ture selection based on bias corrected mutual information considering high-order dependencies.

Advances in Knowledge Discovery and Data Mining. 2020; 12084:830. https://doi.org/10.1007/978-3-

030-47426-3_64

14. Vinh NX, Zhou S, Chan J, Bailey J. Can high-order dependencies improve mutual information based

feature selection? Pattern Recognition. 2016; 53:46–58. https://doi.org/10.1016/j.patcog.2015.11.007

15. Lazar C, Taminau J, Meganck S, Steenhoff D, Coletta A, Molter C, et al. A survey on filter techniques

for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics (TCBB). 2012; 9(4):1106–1119. https://doi.org/10.1109/TCBB.2012.

33 PMID: 22350210

16. Mundra PA, Rajapakse JC. SVM-RFE with MRMR filter for gene selection. IEEE transactions on nano-

bioscience. 2009; 9(1):31–37. https://doi.org/10.1109/TNB.2009.2035284 PMID: 19884101

17. Yoon S, Kim S. Mutual information-based SVM-RFE for diagnostic classification of digitized mammograms.

Pattern Recognition Letters. 2009; 30(16):1489–1495. https://doi.org/10.1016/j.patrec.2009.06.012

18. Karegowda AG, Jayaram M, Manjunath A. Feature subset selection problem using wrapper approach

in supervised learning. International journal of Computer applications. 2010; 1(7):13–17. https://doi.org/

10.5120/169-295

19. Nakariyakul S. High-dimensional hybrid feature selection using interaction information-guided search.

Knowledge-Based Systems. 2018; 145:59–66. https://doi.org/10.1016/j.knosys.2018.01.002

20. Nakariyakul S. A hybrid gene selection algorithm based on interaction information for microarray-based

cancer classification. PloS one. 2019; 14(2). https://doi.org/10.1371/journal.pone.0212333 PMID:

30768654

21. Almugren N, Alshamlan H. A survey on hybrid feature selection methods in microarray gene expression

data for cancer classification. IEEE Access. 2019; 7:78533–78548. https://doi.org/10.1109/ACCESS.

2019.2922987

22. Alshamlan H, Badr G, Alohali Y. mRMR-ABC: a hybrid gene selection algorithm for cancer classification

using microarray gene expression profiling. Biomed research international. 2015; 2015. https://doi.org/

10.1155/2015/604910 PMID: 25961028

23. Alshamlan HM, Badr GH, Alohali YA. Genetic Bee Colony (GBC) algorithm: A new gene selection

method for microarray cancer classification. Computational biology and chemistry. 2015; 56:49–60.

https://doi.org/10.1016/j.compbiolchem.2015.03.001 PMID: 25880524

24. El Akadi A, Amine A, El Ouardighi A, Aboutajdine D. A two-stage gene selection scheme utilizing

MRMR filter and GA wrapper. Knowledge and Information Systems. 2011; 26(3):487–500. https://doi.

org/10.1007/s10115-010-0288-x

25. Hameed SS, Hassan R, Muhammad FF. Selection and classification of gene expression in autism dis-

order: Use of a combination of statistical filters and a GBPSO-SVM algorithm. PloS one. 2017; 12(11):

e0187371. https://doi.org/10.1371/journal.pone.0187371 PMID: 29095904

26. Hameed SS, Hassan R, Hassan WH, Muhammadsharif FF, Latiff LA. HDG-select: A novel GUI based

application for gene selection and classification in high dimensional datasets. PloS one. 2021; 16(1):

e0246039. https://doi.org/10.1371/journal.pone.0246039 PMID: 33507983

27. Naghibi T, Hoffmann S, Pfister B. A semidefinite programming based search strategy for feature selec-

tion with mutual information measure. IEEE Trans Pattern Anal Mach Intell. 2014; 37(8):1529–1541.

https://doi.org/10.1109/TPAMI.2014.2372791
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