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Tissue-resident memory T cell signatures
from single-cell analysis associated
with better melanoma prognosis

Chongming Jiang,1,2,3,4,* Cheng-Chi Chao,5 Jianrong Li,2,3,4 Xin Ge,1 Aidan Shen,1 Vadim Jucaud,1

Chao Cheng,2,3,4,* and Xiling Shen1,6,7,*
SUMMARY

Tissue-resident memory T cells (TRM) are a specialized T cell population residing in peripheral tissues. The
presence and potential impact of TRM in the tumor immune microenvironment (TIME) remain to be eluci-
dated. Here, we systematically investigated the relationship between TRM and melanoma TIME based on
multiple clinical single-cell RNA-seq datasets and developed signatures indicative of TRM infiltration. TRM
infiltration is associated with longer overall survival and abundance of T cells, NK cells, M1 macrophages,
and memory B cells in the TIME. A 22-gene TRM–derived risk score was further developed to effectively
classify patients into low- and high-risk categories, distinguishing overall survival and immune activation,
particularly in T cell-mediated responses. Altogether, our analysis suggests that TRM abundance is associ-
ated with melanoma TIME activation and patient survival, and the TRM-based machine learning model can
potentially predict prognosis in melanoma patients.

INTRODUCTION

Tissue-resident memory T cells (TRM) are a specialized population of T cells that reside in peripheral tissues, such as the skin, gut, and

lungs.1,2 TRM are present in many cancer types,3–10 including melanoma, the most malignant skin cancer that develops from the

pigment-producing cells known as melanocytes.11 TRM possess unique characteristics that set them apart from circulating T cells, including

the ability to persist long-term in tissues without recirculating.12 Recent studies suggest that TRM contribute to cancer immunosurveil-

lance13–22 and may play a role in immune response in melanoma.22–25 TRM cells are strategically positioned at the interface between

the tumor and its surrounding tissue, enabling interaction with both tumor cells and other immune cells within the tumor immune micro-

environment (TIME).12,26,27 The presence and functional properties of TRM cells within the tumor microenvironment have sparked significant

interest in harnessing their potential for cancer immunotherapy.20 Evaluating the TRM cell abundance and understanding the role of TRM
that regulate the development and maintenance of the immune cells within the TME is also crucial for developing effective immunother-

apeutic interventions. The gene signature derived from single-cell RNA sequencing (scRNA-seq) captures a more comprehensive range of

genetic information, providing a more nuanced understanding of TRM cell characteristics and behavior. This holistic view allows for a more

accurate evaluation of TRM cell abundance and a more robust prognostic assessment for melanoma patients, compared to the limited

insight provided by the expression of just one or two TRM marker genes.9,28 However, the presence and potential impact of TRM in the

TIME remain to be elucidated.24,25 Reports were mixed regarding whether the TRM promotes better outcomes in melanoma patients.3,8,11

A systematic study examining all available patient scRNA-seq and bulk RNA-seq data to comprehensively assess the impact of TRM on the

remaining immune cells in the tumor milieu and to extract TRM-related molecular signatures that can provide prognostic value in clinical

settings have been lacking.

In this study, we aimed to bridge this gap and further enhance the impact of TRM by exhaustively analyzing all available single-cell and bulk

RNA-seq datasets to extract a minimal but comprehensive TRM-related TRM signatures representative of TRM impact in tumor milieu and

providing prognostic value of patient risk and survival. We validated the melanoma TRM signatures obtained from scRNA-seq of melanoma

patients, confirming their representation of TRM cell abundance in these patients. We then investigated the relationship between TRM, TIME,

and patients’ prognosis. As the role of TRM cells in cancer immunity is complex and context-dependent, we systematically evaluated TRM and

its TIME in available melanoma single-cell and bulk RNA-seq datasets, discovering that TRM presence and signatures are consistently
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Figure 1. The workflow of the entire study

Eleven distinct melanoma TRM signatures reflective of TRM infiltration have been extracted utilizing multiple independent single-cell RNA-seq data from human

melanoma samples. The role of TRM infiltration in the TIME and the prognosis of the melanoma patients were systematically investigated. A LASSO Cox

regression prognostic model for survival was developed and tested against the TCGA dataset and independently validated across multiple melanoma

cohorts. The effects of the TRM infiltration on melanoma patient TIME were also investigated. Figure created with BioRender.com.
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associated with various immune cell populations in TIME and with patient prognosis. Immune-related genes (IRGs) associated with TRM
characterized immune features predictive of overall survival. A 22-gene risk score derived from TRM signatures across independent datasets

stratified low- and high-risk melanoma patients. Furthermore, a 22-gene TRM-derived risk score was developed to effectively classify patients

into low- and high-risk categories, distinguishing overall survival and investigating the potential mechanisms underlying the role of TRM in the

prognosis of melanoma patients. The workflow of the present study is illustrated in Figure 1.

RESULTS

TRM signatures in melanoma

Two independent human melanoma single-cell RNA-seq cohorts29,30 were used to generate TRM gene expression signatures and infer TRM
abundance in melanoma patients. We isolated all the TRM clusters designated by the study authors and derived 11 TRM cluster-specific maker

gene sets, as shown in Table S1. For each TRM cluster, we generated a gene expression signature (see STAR Methods) and compared the

relationship between our TRM signatures and the proportion of TRM in melanoma patients.

The 11 selected TRM signatures are positively correlated with TRM proportion in melanoma, which was demonstrated by building a simu-

lated bulk RNA-seq cohort and calculating the TRM cells’ infiltration using the selected 11 TRM signatures (Figure 2A). The high correlation

between the TRM signatures and the proportion of TRM indicates that these signatures represent TRM abundance inmelanoma, and TRM signa-

ture scores are associated with high TRM abundance in melanoma.

We then clustered TCGA-SKCM patients based on their TRM infiltration profile and observed two groups of patients who had either high

(red) or low (blue) TRM signature scores (Figure 2B). The survival results showed that the high TRM signature group had a better prognosis than

the low TRM signature group (Figure 2C).
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Figure 2. The TRM signatures can represent the abundance of the TRM cells in melanoma

(A) The correlation of the TRM signatures and the proportion of the TRM cells in the single cell RNA-seq cohort.29

(B) The heatmap of the TRM signatures infiltration score in the TCGA-SKCM cohort.

(C) Survival result of the high TRM cells infiltration group and low TRM cells infiltration group. HR = hazard ratio. P = Log rank p value.
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TRM are associated with other immune cells in TIME and patient survival

We next assessed the correlation of the TRM signatures with other immune cells in the TIME. TRM were positively correlated with CD8+ and

CD4 T cells, NK cells (especially the activated NK cells), monocyte-derivedmacrophages, andmemory B cells according tomultiple indepen-

dent methods that evaluate immune cell infiltration in TIME, such as BASE31 and xCell32 (Figures 3A and S1A).

The majority of TRM marker genes, immune checkpoint genes, and immune-related genes are associated with the TRM signatures, sug-

gesting the role of TRM in modulating TIME (Figure S2). The 11 TRM signatures were strongly associated with overall survival in melanoma

patients with hazard ratios less than 1.033 (Figures 3B, 3C, and S1B). TRM marker genes are highly expressed in TRM and were positively

associated with patient survival (Figure S2D). The inferred TRM cell abundance was correlated with TRM marker and immune-related genes

(Figure S2B), including immune checkpoint genes, such as PD1(PDCD1), PDL1(CD274), CTLA4, LAG3, TIGIT, HAVCR2(TIM3), BTLA, CD40,

TNFRSF4(OX40), TNFRSF18(GITR), and so on (Figure S2C). Hence, higher TRM infiltration inferred from the signatures was associated with

longer overall survival.

The TRM signatures from the different datasets and clusters were highly correlated, suggesting high overlap in the signals captured by

these different signatures (Figure 3D), and these results were supported in another independent dataset (GSE65904). These TRM signatures

were highly correlated with each other and positive for patient prognosis. TRM were also positively correlated with CD8+ and CD4 T cells,

NK cells, and memory B cells. These results solidify the reliability and persuasiveness of this study (Figure S3). Then, we utilized dimension-

ality reduction (PCA) to unify these signatures to generate a single signature that represents all TRM signatures. The first principal compo-

nent (PC1) was highly correlated with all TRM signatures and captured 82.86% of the variation among patients; the TCGA-SKCM patients

can be divided into high PC1 (red) and low PC1(blue) groups, by using the median value of PC1 as the cutoff34 (Figure 3E). The PC1 was

highly correlated with the TRM cell abundance in melanoma (Figure 3F). The patients with high PC1 scores archived significantly longer

survival (Figure 3G). Notably, the PC1 score was highly associated with survival when evaluated in a multivariate model with several clinical

variables (Figure 3H).

TRM abundance (PC1) is associated with immune cells, immune checkpoint genes, and immune regulatory pathways

The melanoma TIME is usually infiltrated by different kinds of immune cells.35,36 We investigated the relationship between the TRM cells and

themelanomaTIME. The results suggest that TRM cell abundance inmelanoma is associatedwith the expression of immune checkpoint genes
iScience 27, 109277, March 15, 2024 3



Figure 3. TRM cell abundance is positively associated with melanoma prognosis

The PC1 score can represent the 11 TRM signatures and the TRM cell proportion in melanoma.

(A) The correlation of TRM signatures with immune infiltration in TCGA-SKCM.

(B) Forest plot showing almost all the 11 TRM signatures were significantly associated with good prognosis.

(C) Survival analysis for TRM signatures.

(D) The correlation of the TRM signatures with each other.

(E) Principal Component Analysis (PCA) on the expression of the 11 TRM signatures in TCGA-SKCM patients.

(F) The correlation of PC1 and the TRM cell abundance.

(G) Kaplan-Meier plot showing the association between overall survival and Principal Component 1 (PC1) in TCGA-SKCM.

(H) Forest plot depicting hazard ratios of univariate Cox regression models evaluating the association between overall survival and several clinical

variables.
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(Figure 4A) and TRM main marker genes expression (Figure 4B), such as CD69 and ITGAE (Figure 4C). TRM abundance is also correlated with

immune regulatory pathways and immune response, such as the tumor-infiltrating lymphocytes (TIL), leukocyte, stromal cells, lymphocyte

infiltration, T cell receptor (TCR) richness and Shannon, and IFN-g response (Figures 4D–4F). Moreover, the tumors with high TRM cell
4 iScience 27, 109277, March 15, 2024



Figure 4. TRM cell abundance is associated with the expression of immune checkpoint genes and immune regulatory pathways

(A) The Spearman correlation coefficient (SCC) between PC1 and the expression of several immune checkpoint genes.

(B) SCC between PC1 and marker genes expressed in TRM.

(C) SCC between PC1 and CD69 and ITGAE(CD103).

(D) SCC between PC1 and immune infiltration score.

(E) SCC between PC1 and lymphocyte infiltration.

(F) SCC between PC1 and TCR richness.

(G) SCC between PC1 and mutations.
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abundance may correspond to a high mutation burden and rich neoantigens (Figure 4G), which suggests that these tumors could be more

sensitive to immune checkpoint inhibiter (ICI) therapies.37

TRM are correlated with CD8+ T cells, Th1 cells, and patients survival time, as shown in the Figure S4A. TRM cells were also correlated with

Th1 cells, lymphocytes, M1 macrophages, and activated NK cells (Figure S4B). At the same time, we noticed that TRM were negatively corre-

lated with mast cells, M0 and M2 macrophages (Figure S4C).
iScience 27, 109277, March 15, 2024 5
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A 22-gene risk score for improving prognostic prediction in melanoma

As shown previously, TRM cell infiltration is associated with survival independently of clinical variables (Figure 3H). However, the inference of

TRM abundance throughout our studies has been based on many genes contributing to the final infiltration score. Aiming to reduce the num-

ber of genes into a simpler signature that can potentially be used to risk-stratify melanoma patients in the clinic, we used the Least Absolute

Shrinkage and Selection Operator (LASSO) Cox regression for feature (gene) selection and ended up with a 22-gene risk score (STAR

Methods, Figure 5A). All of the genes were significantly correlated with patient survival (Figure 5B). Many of these TRM signature genes

are related to tumor progression or immune pathways, such as the BCAS4,38 CAMK4,39 GIMAP2,40,41 IFITM,42 KPNA2,43 MKI67,44

NCCRP1,45 NCL,46 PRKAR2B,47 TTC39C.48

Theexpressionof thesegeneswasweightedand summed togenerate a final risk score, riskscore =
Pn

i = 0bixi. The bi refers to theweight of

each gene in themodel. A higher value of bi means that this gene is more important to the patients’ prognosis, and the weight is higher in this

model. xi represents the expression value of the gene in a patient.34,49–52 This signature was significantly associated with melanoma survival in

the TCGA training dataset, and in the independent datasets, such as the GSE65904 and GSE8401, higher risk scores were associated with

shorter overall survival (Figures 5C and S5). Notably, the risk score was highly associated with survival when evaluated in a multivariate model

with several clinical variables. This TRM-derived risk score seemed to perform better than other main clinical features, such as age, gender, tu-

mor stages, and TNM cancer staging (T, N, andM, respectively), in melanoma patients (Figure 5D). For the TNM cancer staging system, TNM

stands for Tumor, Nodes, and Metastasis. T is assigned based on the extent of involvement at the primary tumor site, N reflects the extent of

involvement in regional lymph nodes, andM indicates distant spread. These results suggest that the LASSOCox regressionmodel is effective

for the prognostic prediction of melanoma patients, with the risk model outperforming other clinical variables. The study aimed to generate a

clinically useful tool by significantly reducing the number of genes in a signature that can be used to risk-stratify melanoma patients.
Prognostic significance of risk model in melanoma patients based on clinicopathological characteristics

We compared the survival differences between the high- and low-risk patients in main clinical features, such as gender, age, and stages,

respectively. The stratification analysis demonstrated again that a patient with a high-risk score has a significantly poor prognosis, as shown

in Figure 6. The results showed that low-risk patients consistently achieved better prognoses in male and female (Figures 6A and 6B), young

and old populations (Figures 6C and 6D), tumor stages (Figures 6E and 6F), and TNM cancer staging (T, N, and M, Figures 6G‒6L, respec-
tively). Taken together, the 22-gene risk score demonstrated a significant independent prognostic risk factor for patients with melanoma.
Low-risk patients with significantly up-regulated memory T cell and immune-related pathways in melanoma

GSEA analysis revealed that many T cells and immune response-related pathways are significantly up-regulated in low-risk patients (Figure 7).

For example, T cell differentiation, co-stimulation, proliferation, and activation-related pathways were significantly up-regulated in low-risk

patients. Especially Th1, Th2, Th17, antigen, T cell receptor signaling, and immune-check point (PD1/PD-L1) related pathways are also acti-

vated in the low-risk patients (Figure 7A). Memory T cell differentiation, T cell selection, T cell co-stimulation, T cell migration, T cell regulation,

T cell activation, andmemory T cell-related immune response pathways were also significantly changed inmelanomapatients (Figure 7). Low-

risk patients had high TRM cell infiltration (Figure 7B). These pathways related tomemory T cells and immune response were also upregulated

in patients with high TRM cell abundance compared to those with low TRM cell abundance (Figure S6). T cells mediated immune response,

especially TRM-related pathways, were up-regulated in the low-risk patients. Malignant skin cells, especially melanocyte differentiation,

proliferation, and migration, were also downregulated with increasing TRM abundance (Figure 7C). These findings suggested that melanoma

patients with low-risk scores (higher TRM infiltration) had more immune activation, especially in the T cell-mediated response.
DISCUSSION

The melanoma TIME is infiltrated by various immune cells.35,36 TRM are a specialized population of T cells that reside in peripheral tissues,

especially, the skin.1,2 From scRNA-seq datasets of human melanoma, we constructed TRM signatures accurately representing TRM cell abun-

dance in melanoma patients. A high TRM signature score was found to be associated with a better prognosis (Figure 2). TRM signatures were

correlated with CD8+ and CD4+ T cells, NK cells, monocytes, memory B cells, immune checkpoint genes, and immune-related genes. These

analyses suggest that the presence of TRM may indicate a more active melanoma TIME, which leads to better patient outcomes.

TRM signatures derived fromdifferent datasets were highly correlatedwith one another, suggesting high overlap in the signals captured by

these different signatures. PC1 generated by the PCA analyses captures overall TRM infiltration. The PC1 score was highly associated with

patients’ survival and better than other clinical variables, when being evaluated in a multivariate model (Figure 3), indicating its potential as

a prognosticmarker for melanoma patients. The findings significantly highlight the role of TRM cells in melanoma prognosis, and the potential

of TRM signatures as prognostic markers. TRM signatures can potentially indicate which patients may benefit more from immunotherapies.

A higher TRM abundance seems to indicate a more active TIME suggested by the correlation of PC1 across different signatures with T cell

activation, TIL regulation, leukocyte, stromal cells, lymphocyte infiltration, and immune response-related pathways. Based on the PC1 signa-

ture, we developed a high-precision 22-gene risk score that can stratify high and low-risk patients irrespective of the predictive ability of clin-

ical variables. This risk score was validated in independent datasets and was negatively associated with prognosis. Many of these TRM signa-

ture genes play important roles in the T cell activating, antigen-presenting, tumor progression, and immune response, such as the BCAS4,

CAMK4, GIMAP2, IFITM1, KPNA2, MKI67, NCCRP1, NCL, PRKAR2B, and TTC39C.38–48 Low-risk patients could with high TRM cell infiltration,
6 iScience 27, 109277, March 15, 2024



Figure 5. Stratified survival analysis of the 22-gene risk score model

Kaplan-Meier survival analysis for the patients in independent datasets by the 22-gene risk score model.

(A) Development of a TRM risk score for GLIOMA by LASSO Cox regression analysis.

(B) Hazard ratios of univariate Cox regression models evaluating the association between overall survival and the 22 genes.

(C) Patients in the TCGA-SKCM, GSE65904, and GSE8401 cohorts.

(D) Forest plot of hazard ratios derived frommultivariable Cox regression analysis including the listed variables. The y axis is the risk group (High vs. Low risk), age

(>50 vs. % 50), gender (Male vs. Female), tumor stages (High vs. Low stage), and TNM cancer staging (High vs. Low stages of T, N, and M, respectively) of

melanoma patients. For the TNM cancer staging system, TNM stands for Tumor, Nodes, and Metastasis. T is assigned based on the extent of involvement at

the primary tumor site, N reflects the extent of involvement in regional lymph nodes, and M indicates for distant spread.

(E) Time-dependent of the TCGA-SKCM.
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Figure 6. Stratified survival analysis of the 22-gene risk score model in clinicopathological factors

(A) The risk model in male.

(B) The risk model in female.

(C) The risk model in old (age >50).

(D) The risk model in young (age %50).

(E) The risk model in low tumor stage patients.

(F) The risk model in high tumor stage patients. For the TNM cancer staging system, TNM stands for Tumor, Nodes, and Metastasis. T is assigned based on the

extent of involvement at the primary tumor site, N reflects the extent of involvement in regional lymph nodes, and M indicates for distant spread.

(G) The risk model in low T stage patients.

(H) The risk model in high T stage patients.

(I) The risk model in low N stage patients.

(J) The risk model in high N stage patients.

(K) The risk model in low M stage patients.

(L) The risk model in high M stage patients.
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and our results also showed that the T cell (such as the memory T cells, Th1 cells, Th2 cells, and Th17 cells), immune checkpoint, and other

immune regulation-related pathways were significantly up-regulated in the low-risk or high TRM infiltration patients, which could be further

investigated to understand the interplay between TRM and the TIME.
Limitations of the study

Although our study confirmed an association between TRM cell infiltration andmelanoma prognosis, the immune inferencemethods we used

cannot distinguish causalmechanisms behind this association. Since the abundance of TRM cells are also associatedwith the presence of other

immune cell types such as T cells and macrophages, the observed association may result from collective effects in the TIME.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE
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Figure 7. The Gene Set Enrichment Analysis (GSEA) analysis

(A) Low-risk patients with significant up-regulated memory T cell and immune-related pathways in the melanoma.

(B) The relationship between the PC1 and risk score.

(C‒F) GSEA indicated the tendency of individual pathways to be up- or down-regulated in response to high PC1 compared to low PC1 patients or low risk

compared to high-risk patients. T cell-mediated immunity pathway is up-regulated (C), memory T cell differentiation pathway is up-regulated (D), and skin

epidermis development and melanocyte differentiation-related pathways are down-regulated (E and F, respectively).
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B Data and code availability

d METHOD DETAILS

B Data utilization

B Curation of immune-related genes (IRGs)

B Immune cell inference

B Generation of TRM signatures

B Lasso Cox-regression

B Survival analysis

B Enrichment pathway analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS
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Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.109277.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq data and clinical information for TCGA-SKCM Broad Institute TCGA (https://gdac.broadinstitute.org/)

TCGA mutation annotation format (MAF) files Genomic Data Commons https://gdc.cancer.gov/about-data/

publications/pancanatlas

Bulk RNA-seq and related clinical information of

215 melanoma patients validation data

Cabrita et al.53 GEO: GSE65904

Bulk RNA-seq and related clinical information of

50 melanoma patients validation data

Xu et al.54 GEO: GSE8401

Immune-related genes (IRGs) Charoentong et al.55

Bindea et al.56

Xu et al.57

Table S6 of Charoentong et al.55

Table S2 of Bindea et al.56

Table S1A of Xu et al.57

Software and algorithms

BASE Chen et al.31

R (v4.2.0) R CRAN https://cran.r-project.org/

glmnet R package (v4.1-2) Friedman et al.58 https://cran.r-project.org/web/packages/

glmnet/index.html

tidyr R package (v1.1.3) Wickham59 https://cran.r-project.org/web/packages/

tidyr/index.html

dplyr R package (v1.0.7) Wickham et al.60 https://cran.r-project.org/web/packages/

dplyr/index.html

data.table R package (v1.14.0) Dowle et al.61 https://cran.r-project.org/web/packages/

data.table/index.html

survival R package (v3.2-11) Therneau et al.62 https://cran.r-project.org/web/packages/

survival/index.html

survivalROC R package (v1.0.3) Heagerty et al.63 https://cran.r-project.org/web/packages/

survivalROC/index.html

xCELL Aran et al.32 https://github.com/dviraran/xCell

fgsea R package (v1.26.0) Korotkevich et al.64 https://cran.r-project.org/web/packages/

fgsea/index.html

prcomp R package (v3.6.2) Venables et al.65 https://cran.r-project.org/web/packages/

prcomp/index.html

factoextra R package (v1.0.7) Kassambara et al.66 https://github.com/kassambara/factoextra
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Xiling Shen (xiling.shen@

terasaki.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data available in this study is publicly available. The RNA-seq data and clinical information for TCGA-SKCM were obtained from

TCGA on FireBrowse (gdac.broadinstitute.org/). TCGA mutation annotation format (MAF) files for gene mutation analyses were
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obtained from https://gdc.cancer.gov/about-data/publications/pancanatlas. Accession numbers for these datasets are listed in the key

resources table. All codes in this study and any additional information required in this paper is available from the lead contact upon

request.

METHOD DETAILS

Data utilization

Level 3 TCGA RNA-seq data and clinical information for skin cutaneous melanoma (SKCM) were obtained from TCGA on FireBrowse

(gdac.broadinstitute.org/). TCGA MAF files for gene mutation analyses were obtained from https://gdc.cancer.gov/about-data/

publications/pancanatlas. All genes in which non-silent mutations occurred were considered to be mutated. Total mutation burden

(TMB) was represented as the sum of all non-silent mutations in a given TCGA sample. The copy number variation (CNV) data were

also downloaded from Firehose, which provided DNA segments that deviated from normal copy numbers (copy number = 2) in each tu-

mor sample. The CNV burden of a sample was calculated as the total size (in bp) of genomic regions covered by those segments. Macro-

phage regulation scores, leukocyte and lymphocyte infiltration scores, and IFNg response and TGFb response scores for TCGA-SKCM

samples were downloaded as a supplementary file (Table S2) from prior work.67 The gene expression of 215 melanoma patients and

related clinical information data were collected from the GSE65904 of the open Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904). The gene expression of 50 melanoma patients and related clinical information

data were collected from the GSE8401 of the open Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE8401).

Curation of immune-related genes (IRGs)

Immune-related genes (IRGs) were obtained from the Supplementary Table 6 of Charoentong et al.,55 Table S2 of Bindea et al.,56 and

Table S1A of Xu et al.57 All genes from immune cells were collected (marker genes attributed to cancer cells were excluded) and combined

into a single list of 831 IRGs genes.

Immune cell inference

Immune infiltration scores of six immune cells were calculated using Binding Association with Sorted Expression (BASE),31 a rank-based

gene set enrichment method. Previous publications have detailed and validated immune cell infiltration using this method.31,34,68–71

BASE uses immune cell-specific weight profiles and patient gene expression data to infer immune cell infiltration for each patient

and immune cell type. Briefly, BASE orders genes for a patient’s gene expression profile from high to low expression and then uses

weights from each immune cell weight profile to weigh the patient’s gene expression values. BASE calculates two running sums,

one representing the cumulative distribution of the patient’s weighted gene expression values (foreground function) and another rep-

resenting the cumulative distribution of the patient’s complementary weighted (1-weight) gene expression values (background func-

tion). In the presence of a high amount of infiltrate from a specific immune cell type, the foreground function increases quickly, as

the highly expressed genes in a patient’s profile tend to be the ones with high immune cell weights, while the background function

increases slowly. The maximal absolute difference between the foreground and background functions represents the immune infiltra-

tion level and, after a normalization procedure, results in the final immune infiltration score. Full details on the calculation and validation

of the immune infiltration scores can be found in.68,69 Similarly, BASE was used to calculate single cell-based TRM scores using TRM sig-

natures (see next section).

Generation of TRM signatures

Melanoma single cell RNA-seq datasets from humanmelanomawere obtained fromprevious publications.29,30 Cluster annotations were also

obtained from these publications. For each melanoma cluster, a list of marker genes was provided by identifying genes that are over-ex-

pressed in the corresponding cluster than all the other clusters. These cluster-specific marker gene sets were used as TRM signatures. In total,

11 human TRM signatures were defined, including 8 CD8+ sources, 1 CD4+ source, 1 lamina propria (LP) source, and 1 generalized TRM signa-

ture. Given a melanoma gene expression dataset, the BASE algorithm was used to calculate sample-specific TRM scores for each signature.

The TRM signatures were represented as gene sets without assigning weights to the member genes. In this case, the BASE algorithm degen-

erated into a method like the single-sample GSEA analysis.72 A high TRM score indicates that the corresponding TRM cells are strongly

infiltrated in the tumor.

Lasso Cox-regression

The TCGA SKCM dataset was randomly divided into a training and testing set with a 1:1 ratio. The training set was analyzed to identify po-

tential prognostic genes, and both the testing set and the entire set were used for validation. First, univariate Cox-proportional hazards

regression analysis was used to evaluate the association between the expression of the 11 TRM signatures genes, TRM marker genes, IRGs

and their according overall survival. Genes with a P value of < 0.05 based on the log-rank test were selected as candidate genes. Second,

Lasso Cox-regression analysis from the glmnet R package (v4.1-2)58 was employed to screen these genesmost associated with overall survival

in a multivariate model, which resulted in 22 genes (BCAS4, CAMK4, CCT6B, CD33, CTBS, GIMAP2, HAPLN3, HCP5, HSPA2, HSPA7, HSPB6,
14 iScience 27, 109277, March 15, 2024

https://gdc.cancer.gov/about-data/publications/pancanatlas
http://gdac.broadinstitute.org/
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8401
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8401


ll
OPEN ACCESS

iScience
Article
IFITM1, KPNA2, MKI67, NCCRP1, NCL, NOTCH3, PRG2, PRKAR2B, SLC25A12, TMBIM6, and TTC39C). These 22 genes composed the final

risk score, which is described as follows:

Riskscore =
Xn

i = 0

bixi

The bi refers is the weight of each gene in the model and xi represents the expression value of the gene in a patient.34,49–52 The expression

of geneswith positive bi valueworsens patient prognosis whereas negative bi values enhances patient prognosis and survival. The bi values for

all 22 genes are shown in the Table S3.
Survival analysis

For univariate andmultivariate survival analyses, Cox proportional hazardsmodels were calculated using the ‘‘coxph’’ function from the R ‘‘sur-

vival’’ package (v3.2-11).62 Survival curves were visualized using Kaplan-Meier curves using the ‘‘survfit’’ function from the R ‘‘survival’’ package.

Median immune cell infiltration scores were used to stratify patients into ‘‘high’’ and ‘‘low’’ groups for univariate analyses. For multivariate

analyses, an infiltration score of 0 was used as a separator to stratify patients into ‘‘high’’ and ‘‘low’’ groups. Differences in survival distributions

in each Kaplan-Meier plot were calculated using a log-rank test using the ‘‘survdiff’’ function from the R ‘‘survival’’ package.
Enrichment pathway analysis

The fgsea R package (v1.26.0),64 was used to perform the gene set enrichment analysis (GSEA) with hallmark pathways from the Molecular

Signatures Database (MSigDB)73 to investigate which hallmark pathways were significantly (adjust P value < 0.05).
QUANTIFICATION AND STATISTICAL ANALYSIS

The major analysis and package development were based on R (v4.2.0)64 and R libraries (tidyr R package (v1.1.3),59 dplyr R package (v1.0.7),60

data.table R package (v1.14.0),61 and so on). The Spearman correlation coefficient (SCC) was reported for all correlation analyses as the as-

sumptions underlying the Pearson correlation (i.e., normal distribution, homoscedasticity, or linearity) were notmet. SCCwas calculated using

the R function cor, and significance was assessed using the cor.test. Principal component analysis (PCA) was performed using the prcomp

R function by the prcomp R package (v3.6.2).65 Principal component coordinates for each sample were extracted using the factoextra R pack-

age (v1.0.7).66 Principal component 1 (PC1) was used to represent TRM infiltration. The sensitivity and specificity of the diagnostic and prog-

nostic prediction models were analyzed by the ROC curve and quantified based on the area under the ROC curve (AUC), which were calcu-

lated by survivalROC R package (v1.0.3).63 All statistical tests were two-sided; P values < 0.05 were considered statistically significant.
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