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Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual

function and adaptive behavior. The role of potassium channelopathies in ID is

poorly understood. Therefore, we aimed to evaluate the relationship between ID and

potassium channelopathies. We hypothesized that potassium channelopathies are

strongly associated with ID initiation, and that both gain- and loss-of-function mutations

lead to ID. This systematic review explores the burden of potassium channelopathies,

possible mechanisms, advancements using animal models, therapies, and existing gaps.

The literature search encompassed both PubMed and Embase up to October 2019.

A total of 75 articles describing 338 cases were included in this review. Nineteen

channelopathies were identified, affecting the following genes: KCNMA1, KCNN3,

KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1,

KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve

of these genes presented both gain- and loss-of-function properties, three displayed

gain-of-function only, three exhibited loss-of-function only, and one had unknown

function. How gain- and loss-of-function mutations can both lead to ID remains largely

unknown.We identified only a few animal studies that focused on themechanisms of ID in

relation to potassium channelopathies and some of the few available therapeutic options

(channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium

channelopathies contribute to the initiation of ID in several instances and this review

provides a comprehensive overview of which molecular players are involved in some of

the most prominent disease phenotypes.
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INTRODUCTION

Once termed mental retardation, intellectual disability (ID) manifests prior to adulthood
in the form of severe limitations to intellectual function and adaptive behavior (van
Bokhoven, 2011). Potassium channels have diverse gating properties and wide-ranging
expression profiles, which allows them to regulate cellular excitability during growth in
numerous ways (Niday and Tzingounis, 2018) and moderate the repolarization rate of
action potentials and membrane resistance, resting membrane potential, and spike frequency

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00614
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00614&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yf2323@hotmail.com
https://doi.org/10.3389/fgene.2020.00614
https://www.frontiersin.org/articles/10.3389/fgene.2020.00614/full
http://loop.frontiersin.org/people/603486/overview
http://loop.frontiersin.org/people/974631/overview
http://loop.frontiersin.org/people/553854/overview
http://loop.frontiersin.org/people/553855/overview


Kessi et al. Intellectual Disability and Potassium Channelopathies

(Storm, 1990; Jan and Jan, 2012; Kole and Stuart, 2012; Niday
and Tzingounis, 2018). Some are expressed in oligodendrocyte
progenitors (Schmidt et al., 1999) and dendrites, where they have
significant influence on learning and memory (Vacher et al.,
2008). Potassium channelopathies are associated with multiple
neurological disorders related to ID and epilepsy. The burden of
potassium channelopathies in ID is unknown. Gain-of-function
mutations may lead to ID, whereas loss-of-function mutations
leans toward epilepsy onset. However, this is not necessarily
the case as gain-of-function mutations can also result in severe
epilepsy (Niday and Tzingounis, 2018).

We hypothesized that potassium channelopathies played an
important role in ID occurrence, with both gain- and loss-of-
function mutations leading to ID. To this end, we have compiled
a list of all potassium channel gene mutations previously
reported to associate with ID. The list is complemented by
current knowledge regarding possible mechanisms (gain- or loss-
of-function), advancements in animal models, therapies, and
existing gaps. This review aims to facilitate future studies on the
mechanisms of ID and the identification of possible treatments.
Unlike previous publications, it is also the first such study
to systematically explore the relationship between potassium
channelopathies and ID rather than epilepsy.

METHODS

Literature Search and Selection
The review was conducted according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses statement.
PubMed and Embase were thoroughly searched up to October
2019 (Moher et al., 2015). The following search strategies were
utilized: ID and potassium channel, mental retardation and
potassium channel, global developmental delay (GDD) and
potassium channel (Supplementary Datasheet 1). The search
strategies were devised in consultation with a librarian and were
applied by two independent reviewers to select papers that met
our review objectives.

The following types of studies were included: cohorts,
case-controls, cross-sectionals, case series, and case reports.
We selected papers that included patients with ID/GDD and
potassium channel gene mutations. We excluded papers on
patients with ID/GDD but who presented other types of
channelopathies (sodium, calcium, and chloride) or other
gene mutations. We further excluded studies that reported
patients with potassium channelopathies without information
related to the degree of ID/GDD or comment whether the
patient had GDD. Finally, we excluded non-English papers,
abstracts, reviews, patents, book chapters, and conference papers.
Reference lists of published articles were hand-searched for
secondary sources.

Data Extraction
Two independent reviewers screened the titles and abstracts,
and thereafter read the full texts of those that appeared to
meet inclusion criteria. Accuracy of the extracted information
was ensured through discussion and consensus. For articles
that met inclusion criteria, we collected information related to

potassium channel gene mutations, the associated phenotype on
top of ID/GDD, severity of ID (mild, moderate, and severe),
electrophysiological studies results (gain-of-function or loss-
of-function), and the corresponding references. All identified
pathology-associated genes were subjected to further analysis
in OMIM and PubMed, ClinVar, and www.rikee.org (KCNQ2
and KCNQ3 mutations) databases to identify their function,
expression, studies in animal models, available treatments, and
possible mechanisms underlying ID/GDD.

RESULTS

The initial search yielded 458 articles. Following the elimination
of duplicates and articles that lacked full texts and/or were non-
English, 126 remained. All full texts were read and screened
for eligibility; 52 did not meet inclusion criteria, whereas 74
did. Among the latter, however, we did not include an article
by Burgess et al. (2019) since it lacked detailed information
and it included previously reported cases. In addition, two
articles regarding KCNT1 and KCNT2 published in 2020 were
also included (Borlot et al., 2020; Mao et al., 2020) making a
total number articles meeting the inclusive criteria to be 75
(Supplementary Flow Chart 1).

Potassium Channelopathies Associated
With GDD/ID and Their Functional
Properties
We identified 19 potassium channel gene mutations that were
associated with GDD/ID in 338 cases. These included: KCNMA1,
KCNN3, KCNT1, KCNT2, KCNB1, KCNJ10, KCNJ6, KCNJ11,
KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3,
KCNQ5, KCNC1, KCNC3, and KCTD3. Those with both gain-
and loss-of-function properties included KCNMA1, KCNJ10,
KCNJ6, KCNJ11, KCNT1, KCNT2, KCNA2, KCNA4, KCND3,
KCNQ2, KCNQ3, and KCNQ5; those characterized by only
gain- of-function properties included KCNN3, KCNH1, and
KCNC3; and those presenting only loss-of-function properties
included KCNC1, KCNB1, and KCTD3, as summarized in
Figure 1. The function of KCNAB1 was unknown. These genes
are associated with mild to profound ID/GDD, as detailed in
Supplementary Table 1.

Calcium-Dependent Potassium Channels
Big Potassium Channels
Big potassium (BK) channels are large-conductance Ca2+-
activated and voltage-activated potassium channels present in
various tissues (Contet et al., 2016). They are termed also Maxi-
K, or Slo1. When open, BK channels cause a substantial efflux of
K+ ions, leading to hyperpolarization of the cellular membrane
(Contet et al., 2016). They can detect simultaneously increased
intracellular Ca2+ levels and membrane depolarization (Contet
et al., 2016). This property is useful in excitable cells, as it allows
control of their activity via negative feedback regulation of Ca2+

influx through voltage-activated Ca2+ channels (Contet et al.,
2016). BK channels localize to the plasma membrane of neurons
in the central nervous system (CNS), where they modulate
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FIGURE 1 | A summary of functional properties of the 19 identified potassium

channels gene mutations.

the shape, frequency, and propagation of action potentials,
as well as the release of neurotransmitter from presynaptic
terminals (Contet et al., 2016; Griguoli et al., 2016). BK channels
are also present in the neurons’ nuclear envelope, thereby
controlling gene transcription and neuronal morphology (Li
et al., 2014). Finally, their presence in astrocytes or vascular
smooth muscle cells enables the regulation of blood flow in the
brain, which can influence cerebral activity (Contet et al., 2016).
Mutation of fragile X mental retardation protein (FMRP) is the
leading cause of ID and autism spectrum disorder (Reymundo
et al., 2014). FMRP regulates neurotransmitter release and
the transmission of synaptic information by modulating the
duration of action potentials via BK channels in hippocampal and
cortical pyramidal cells (Deng et al., 2013; Deng and Klyachko,
2016; Ferron, 2016). Enhanced BK channel activity and reduced
presynaptic glutamate release were shown to cause ID in Crbn
knock-out (KO) mice, whereas BK channel blockers restored
normal cognitive behavior (Choi et al., 2018). A BKCa channel
opener molecule rescued hippocampal glutamate homeostasis as
well as and cognitive impairments in Fmr1 KO mice (Hebert
et al., 2014). An increased BK channel activity has been shown
to manifest as an amplified intrinsic excitability in individual
neurons and consequent network synchronization; whereas BK
channel blockers stabilized neuronal excitability in both human
and mouse neurons and improved seizure susceptibility in an
Angelman syndrome mouse model (Sun et al., 2019).

KCNMA1

KCNMA1 (potassium calcium-activated channel subfamily M
alpha 1) encodes the alpha-subunit of the BK channel (Bailey
et al., 2019) and regulates synaptic neuronal excitability (Bailey
et al., 2019). This gene is highly expressed in numerous
parts of the human brain, including the cerebral cortex and
hippocampus (Contet et al., 2016). Besides its role in innate
immunity, the KCNMA1 channel controls neuronal excitability

and neurotransmitter release, repolarization of the membrane,
smooth muscle tone, and tuning of hair cells in the cochlea
(Petersen and Maruyama, 1984; Murrow and Fuchs, 1990;
Brayden and Nelson, 1992; Robitaille and Charlton, 1992; Wu
et al., 1999). Both gain- and loss-of-function mutations of this
gene have been reported to associate with ID/GDD, leading to a
range of mild to severe phenotypes depending on the variant.

Liang et al. (2019) reported eight cases with loss-of-function
mutations G375R, S351Y, N449fs, G356R, and I663V, which
eliminated the BK current; as well as P805L and C413Y, which
caused a reduction in the amplitude of the BK current and
a shift to a positive potential for the activation curves. A
case carrying the G375R variant presented with severe GDD,
dysmorphic features, visceral malformations, bone dysplasia,
and connective tissue abnormalities (Liang et al., 2019). The
other cases presented with mild to severe ID, speech delay,
ataxia, axial hypotonia, and cerebral atrophy (Liang et al., 2019).
Similarly, Laumonnier et al. (2006) reported a patient with
severe ID, epilepsy, and autism spectrum disorder, who carried
the A138V substitution, indicating that the mechanism of this
variant was haploinsufficiency.

Gain-of-function mutations, such as D434G and N995S,
have been reported to associate with generalized epilepsy and
paroxysmal dyskinesia (Du et al., 2005). Two cases that presented
with GDD, epilepsy, severe cerebellar atrophy, and carried
loss-of-function mutation (Y676Lfs∗7) were reported (Tabarki
et al., 2016). Two Chinese boys, who presented with GDD and
paroxysmal non-kinesigenic dyskinesia, had either the E884K or
N1053S variants, but again no functional study was carried out
(Zhang Z. B. et al., 2015). Yesil et al. (2018) described a patient
with a homozygous truncating mutation (R458∗), who presented
with severe ID, epilepsy, corticospinal-cerebellar tract atrophy,
and paroxysmal dyskinesia. His phenotype was explained by both
loss- and gain-of-function mechanisms. Thus, it seems that both
gain- and loss-of-function mutations in KCNMA1 are related to
ID. Currently, there is no animal model for the KCNMA1 gene.

Small Potassium Channels
Small potassium (SK) channels are important for learning and
memory as they are expressed in the postsynaptic membrane
of glutamatergic synapses (Adelman et al., 2012). There,
they control synaptic transmission and stimulate synaptic
plasticity (Adelman et al., 2012). It has been shown that
an increase in SK channels activity impairs learning (Vick
et al., 2010; Adelman et al., 2012); whereas SK channel
blockers ameliorate learning and memory in animal models
(Hammond et al., 2006; Lin et al., 2008).

KCNN3

KCNN3 encodes one of three members of the small-conductance
calcium-activated potassium channels (SK3 channels) (Sailer
et al., 2002). SK3 channels are abundant in the hippocampus,
where they regulate memory and learning (Sailer et al., 2002).
They are voltage-independent and gated by submicromolar
intracellular calcium levels (Sailer et al., 2002). They form large
multiprotein complexes comprising of pore-forming channel
subunits, constitutively bound calmodulin calcium sensor,
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protein kinase CK2, and protein phosphatase 2A (PP2A) (Xia
et al., 1998; Bildl et al., 2004; Allen et al., 2007). Binding of
calcium ions to calmodulin opens SK channels (Xia et al., 1998).
CK2 and PP2A phosphorylate or dephosphorylate SK-bound
calmodulin, thus further controlling calcium sensitivity of the
channels (Bildl et al., 2004; Allen et al., 2007; Adelman et al.,
2012). Bauer et al. (2019) reported three cases diagnosed with
Zimmermann–Laband syndrome and carrying either one of
the following de novo missense variants: S436C, K269E, and
G350D. They presented with mild to moderate ID, epilepsy,
facial dysmorphism, hypertrichosis, and gingival overgrowth
(Bauer et al., 2019). Electrophysiological studies revealed gain-
of-function as an underlying mechanism for this syndrome
(Bauer et al., 2019). Gain-of-function mutations increases
calcium sensitivity of SK3 channels resulting in higher open-
state probability and conductance of KCNN3 mutant channels
(Bauer et al., 2019). Targeted studies onKcnn3 knock-in mice will
finally confirm the occurrence of ID through gain-of-function
mutations in this gene.

Sodium-Activated Potassium Channels
Slack Channels

KCNT1

KCNT1 encodes the sodium-activated Slack channel, also known
as Slo2.2, whose name derives from “sequence like a calcium-
activated K+” (Kim and Kaczmarek, 2014). KCNT1 mRNA and
protein are abundant in neurons across the brain, including in the
frontal cortex and hippocampus (Bhattacharjee et al., 2002; Santi
et al., 2006; Brown et al., 2008). A sodium-sensitive potassium
current is elicited in various neuronal cell types following an
inflow of Na+ through sodium channels or neurotransmitter
receptors (Bhattacharjee and Kaczmarek, 2005). This current
modulates the hyperpolarization that occurs following repetitive
firing, as well as neuronal excitability and adaptation following
repeated, high-frequency stimulation (Zhang et al., 2012; Ferron,
2016). Slack channels interact with downstream cytoplasmic
signaling pathways, and dysregulation of this coupling could
prompt the unusual association of ID and epilepsy (Fleming
et al., 2016). They interact with FMRP (Brown et al., 2010),
phosphatase and actin regulator 1 (Phactr1), and cytoplasmic
FMR1-interacting protein 1 (Cyfip1) (Fleming et al., 2016).
The FMRP/Slack interaction controls the probability that Slack
channels would open (Brown et al., 2010; Zhang et al., 2012).
The Phactr1/Slack interaction is entirely abolished in mutant
Slack channels, which could explain the occurrence of severe ID
and epilepsy (Fleming et al., 2016). Bausch et al. (2015, 2018)
showed that this channel was important for cognitive flexibility
and normal social behavior in mice.

Mutations in the KCNT1 gene have been correlated with
numerous phenotypes, the most common being epilepsy of
infancy with migrating focal seizures, followed by autosomal
dominant nocturnal frontal lobe epilepsy (ADNFLE) (Barcia
et al., 2019). Other rare phenotypes include early infantile
epileptic encephalopathy and severe dystonia (Gertler et al.,
2019), severe ID and epilepsy (Alsaleem et al., 2019), myoclonic-
atonic epilepsy and moderate ID (Burgess et al., 2019),
Ohtahara syndrome (Martin et al., 2014), temporal lobe

epilepsy, cerebellar ataxia and ID (Hansen et al., 2017), as
well as leukoencephalopathy accompanied by severe epilepsy
and severe ID (Vanderver et al., 2014; Evely et al., 2017;
Burgess et al., 2019). Except for ADNFLE, a large proportion of
cases with this channelopathy present with severe to profound
ID (Supplementary Table 1). Electrophysiological studies have
shown that gain-of-function (hyperactivation of slack channels)
(Bearden et al., 2014; Martin et al., 2014; Rizzo et al., 2016;
Kawasaki et al., 2017; Zhang et al., 2017; Dilena et al., 2018;
McTague et al., 2018; Numis et al., 2018; Alsaleem et al., 2019;
Barcia et al., 2019; Gertler et al., 2019; Borlot et al., 2020) and
loss-of-function are the underlying mechanism contributing to
the occurrence of ID (Evely et al., 2017).

Quinidine has been reported to rescue the gain-of-function
effect of the K+ channel mutation in vitro (Milligan et al., 2014;
Dilena et al., 2018). Nevertheless, its efficacy in clinical settings
is variable, which casts doubts over gain-of-function being the
underlying mechanism. Dilena et al. (2018) reported 2 cases
with epilepsy of infancy with migrating focal seizures. They both
carried gain of function mutations (either R950Q or E893K), and
quinidine could reduce seizure burden by 90%, however, it could
not normalize the milestones; both cases remained with severe
GDD. In another study, four cases carrying gain of function
mutations (either R1114W or A259D or M516V or R428Q) did
not respond to quinidine (2 cases both in vivo and in vitro,
and the remaining 2 in vivo only) (Numis et al., 2018). In
addition, four cases in another study received quinidine, however,
only one case showed >50% reduction of seizure frequency,
and no comment was given about the status of milestones
development (Yoshitomi et al., 2019). Likewise, one of the
three cases responded to quinidine (>50% reduction in seizure
frequency), as a result, the authors suggested that the response
could be explained by the early age of treatment commencement
(3 months) vs. (9 and 13 years, respectively) for non-responders
(Abdelnour et al., 2018). Nevertheless, another report indicated
that there was no benefit of quinidine on neither seizures nor
milestones despite the age at treatment initiation (6 months)
(Numis et al., 2018). Barcia et al. (2019) hypothesized that
quinidine failed to improve developmental problems as it did not
alter the non-conducting functions ofKCNT1.KCNT1mutations
can have a negative impact on the channel’s gating properties,
as well as its coupling to cytoplasmic signaling pathways as
mentioned above. Thus, FMRP, Phactr1, and Cyfip1 are potential
targets of novel therapeutic strategies, whereas future animal
model studies will reveal the role of other proteins.

Kcnt1 KO mice demonstrated eradicated sodium-sensitive
potassium current and increased excitability in dorsal root
ganglion neurons that resulted to more itching (Martinez-
Espinosa et al., 2015). Despite the fact that authors did not
perform cognitive tests, Kcnt1 KO mice demonstrated normal
ability to eat, mate, and function, as a result, authors speculated
that the alteration of Kcnt1 (gain-of-function) might lead to
more deleterious consequences than the complete absence of
Kcnt1 (loss-of-function) (Martinez-Espinosa et al., 2015). This
argument is supported by our review as majority of reported
cases have gain-of-function mutations in contrast to one case
with loss-of-function mutation. In another study, Kcnt1KOmice
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exhibited increased sensory neuron excitability that manifested
as an exaggerated pain sensitivity (Lu et al., 2015). Altogether,
the two studies (Lu et al., 2015; Martinez-Espinosa et al., 2015)
suggest that loss-of-function mutations are likely to increase
neuronal excitability while gain-of-function mutations are likely
to reduce neuronal excitability. Nevertheless, both gain- and
loss-of-function mutations have been reported to associate with
ID as shown above. Therefore, how gain- and loss-of-function
mutations lead to ID is yet to be explained by animal models.
Cognitive tests can be carried out for Kcnt1 KO mice, and there
is a need of developing Kcnt1 knock-in mice.

KCNT2

KCNT2 (potassium sodium-activated channel subfamily T
member 2), also known as Slo2.1 or Slick channel, is activated
by intracellular Na+ and Cl- and inhibited by intracellular
ATP (Bhattacharjee et al., 2003). It is expressed in different
neurons in the CNS including the hippocampus and cortex
(Bhattacharjee et al., 2005; Rizzi et al., 2016). KCNT1 and KCNT2
subunits can co-localize to form homo- or tetra-heteromeric
channels (Chen et al., 2009). Like Slack channels, slick channels
produce currents that modulate the hyperpolarization that
occurs following repetitive firing, as well as neuronal excitability
and adaptation following repeated, high-frequency stimulation
(Zhang et al., 2012; Ferron, 2016).

KCNT2 mutations have been reported to be associated with
early onset epileptic encephalopathy (Gururaj et al., 2017), West
syndrome advancing to Lennox–Gastaut syndrome (Ambrosino
et al., 2018) and epilepsy of infancy with migrating focal seizures
(Ambrosino et al., 2018; Mao et al., 2020). A total number of 5
cases have been reported so far, and all presented with severe ID
(Supplementary Table 1). Three cases carried loss-of-function
mutations (F240L, L48Qfs43∗, and K564∗) (Gururaj et al., 2017;
Mao et al., 2020) while the remaining two carried gain-of-
functionmutations (R190P and R190H) (Ambrosino et al., 2018).
One of the two cases reported by Ambrosino et al. (2018)
was treated with quinidine which improved both seizures and
milestones. Further studies with large sample size are essential
to consolidate the benefits of quinidine in developmental
progression. Despite the fact that Kcnt1 KO mice demonstrated
eradicated sodium-sensitive potassium current and increased
excitability in dorsal root ganglion neurons that resulted to
more itching, Kcnt2 KO mice did not exhibit similar findings,
and cognitive tests were not conducted (Martinez-Espinosa
et al., 2015). Kcnt2 KO mice exhibited normal sodium-sensitive
potassium current and neuronal excitability. Consequently, there
is a need of exploring the non-conducting functions of KCNT2
since our review shows that loss-of-function mutations associate
with ID. In addition, future studies can focus on understanding
why Kcnt2 KO mice did not have similar findings as Kcnt1 KO
mice. Finally, animal studies will unveil how gain- and loss-of-
function mutations lead to ID.

Inward Rectifier Potassium Channels
KCNJ6 (GIRK2)
KCNJ6 (potassium inwardly rectifying channel subfamily J
member 6) encodes the Kir3.2 GABAB receptor-coupled channel,

a member of the G protein-coupled family of Kir channels
(Hattori et al., 2000). This gene is located in the Down
syndrome critical region, in the middle of the dual-specificity
tyrosine phosphorylation-regulated kinase 1A (DYRK1A) and
Down syndrome critical region gene 4 (DSCR4) genes (Hattori
et al., 2000). The Kir3.2 channel mediates the inhibitory effect
of G protein-coupled receptors required by neuromodulators
and neurotransmitters, and thus controls neuronal excitability
(Yamada et al., 1998; Mark and Herlitze, 2000). It is highly
expressed in most mammalian tissues, where it participates
in several physiological processes through coupling with other
channel proteins, resulting in homo or hetero-multimeric
complexes (Uhlen et al., 2005, 2010). Masotti et al. (2015)
reported three cases with Keppen–Lubinsky syndrome, which is
characterized by severe ID and multiple congenital anomalies.
Genetic testing revealed the following mutations: in-frame
heterozygous deletion of three nucleotides causing the loss of one
amino acid (T152del) for two cases, and heterozygous missense
mutation introducing the G154S amino acid change (Masotti
et al., 2015). Animal models for in-frame deletions is presently
not available and the mechanism underlying the above missense
mutation is unknown.

Nevertheless, it has been demonstrated that an increase in
Kcnj6 gene dosage is essential for insufficiencies in behavior and
synaptic plasticity of the dentate gyrus in the Ts65Dn murine
model of Down syndrome (Kleschevnikov et al., 2017). The
Kir3.2 channel blocker fluoxetine could rescue synaptic plasticity
(Kleschevnikov et al., 2017), suggesting that gain-of-function
property is likely the underlying mechanism; nevertheless,
further studies are required to confirm that.

KCNJ10
KCNJ10 (potassium channel inwardly rectifying subfamily J,
member 10) encodes an ATP-sensitive inward rectifier potassium
(Kir) channel comprising two putative transmembrane domains
held together by an extracellular pore-forming region and flanked
by amino and carboxy termini on the cytoplasmic side (Takumi
et al., 1995). The KCNJ10 protein is present in glial cells of the
CNS, predominantly in the cerebral cortex, cerebellar cortex,
putamen, and caudate nucleus, as well as in renal epithelial
cells and inner ear cells (Bockenhauer et al., 2009). Known also
as Kir4.1, it is expressed in astrocytes and oligodendrocytes
neighboring synapses and blood vessels, chiefly in the cortex,
hippocampus, cerebellum, brainstem, spinal cord, thalamus, and
olfactory bulb (Higashi et al., 2001; Hibino et al., 2004, 2010; Sicca
et al., 2011).

Mutations in this gene have been demonstrated to reduce
the channel’s potassium current amplitude, surface expression,
heteromer activity, and pH sensitivity (Bockenhauer et al.,
2009; Hibino et al., 2010). These changes may alter the
primary functions of astrocytes, including extracellular glutamate
homeostasis, K+ siphoning, maintenance of resting membrane
potential, and water volume regulation (Nwaobi et al., 2016).
KCNJ10 has been linked with EAST/SeSAME syndrome, which
is characterized by epilepsy, ataxia, tubulopathy, sensorineural
hearing loss, and occasionally ID (Celmina et al., 2019). Loss-
of-function mutations are associated with mild ID (Scholl et al.,
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2009); whereas gain-of-function mutations correlate with mild
to severe ID, depending on the variant (Sicca et al., 2011). The
majority of reported mutations are of the loss-of-function type
(Supplementary Table 1).

Sibille et al. (2014) showed that astroglial potassium
clearance played a role in creating short-term plasticity of
the tripartite synapse. Consequently, glial conditional Kir4.1
KO mice demonstrated that astroglial potassium uptake
decreased synaptic plasticity (Sibille et al., 2014). The authors
concluded that astrocytes participated in synaptic activity
through numerous channels and transporters and contributed
to short-term plasticity partly through removal of K+ via
Kir4.1 channels (Sibille et al., 2014). Likewise, conditional
KO of hippocampus- Kir4.1 led to inhibition of potassium
and glutamate uptake, glial membrane depolarization, and
heightened short-term synaptic potentiation (Djukic et al., 2007).
Conditional KO of oligodendrocytes-Kcnj10 resulted in late-
onset axonal degeneration and mitochondrial damage associated
with neuronal loss and neuro-axonal dysfunction (Schirmer et al.,
2018). Mice deficient in oligodendrocyte Kir4.1 channels showed
slow clearance of extracellular K+, delayed axonal recovery
following repetitive stimulation in white matter, as well as low
seizure threshold and motor deficits (Larson et al., 2018).

KCNJ11
KCNJ11 (potassium voltage-gated channel subfamily J member
11) encodes the Kir6.2 subunit of the pancreatic ATP-sensitive
potassium (KATP) channel (Nichols and Lopatin, 1997; Aguilar-
Bryan and Bryan, 1999). This channel has two important
subunits: the pore-forming Kir6.2 subunit and the sulfonylurea
receptor 1 regulatory subunit (Clement et al., 1997). Its
expression is elevated in beta cells and neurons (Nichols and
Lopatin, 1997; Aguilar-Bryan and Bryan, 1999). An increased
KATP current caused by channel opening results in membrane
hyperpolarization in beta cells and consequent inhibition of
insulin secretion (Bennett et al., 2010). Conversely, closure of
this channel in reaction to augmented glucose triggers the release
of insulin from beta cells into the bloodstream, thus helping
to control blood sugar levels (Bennett et al., 2010). In neurons,
an increased KATP current results in reduced electrical activity
(Fendler et al., 2013).

KCNJ11mutations are associated with two major phenotypes:
neonatal diabetes with moderate developmental delay and/or
muscle weakness but not epilepsy (I-DEND) and developmental
delay, epilepsy, and neonatal diabetes (DEND) (Flanagan et al.,
2006; Mohamadi et al., 2010; Shah et al., 2012; Fendler et al.,
2013; Lin et al., 2013; Carmody et al., 2016). Several variants with
gain-of-function properties have been associated with ID: V59M,
Y330C, V59A, G53D, R201C, C166Y, V59G, and Q52R. Most
cases carry the V59M variant Supplementary Table 1, which
shows clear association with ID symptoms (Svalastoga et al.,
2020). Notably, Lin et al. (2013) reported a case with gain-of-
function derived from the S225T mutation and P226_P232del,
suggesting that both gain- and loss-of-function mutations could
lead to I-DEND. Sulfonylureas act as inhibitors of KATP channels
and represent an optimum treatment for diabetes and they can
ameliorate the related neurological disorders (Pearson et al.,

2006). However, other studies have not detected any benefits
of sulfonylureas on neurological symptoms (Sagen et al., 2004;
Klupa et al., 2005; Svalastoga et al., 2020), suggesting that
sulfonylureas can partially cross the blood–brain barrier, and that
the improved neurological symptoms observed resulted from
increased cerebellar perfusion (Fendler et al., 2013). Thus, ID
could be initiated from gain-of-function or as a complication
of neonatal diabetes or due to unknown mechanisms associated
with KATP channel, which the partial effects of sulfonylureas on
neurological symptoms cannot confirm. The pathways involved
to fully restore KATP channel function in other tissues might
differ from those in the CNS (Bowman et al., 2019). Animal
studies will help to determine which of these is most likely.

Voltage-Gated Potassium Channels
Voltage-gated potassium (Kv) channels, the largest superfamily
of potassium channels, are important for generating and relaying
electrical impulses in the nervous system. By allowing the
selective flow of K+ across neuronal membranes, they help
establish the level of excitability and resting potential of the
membrane, stimulate action potential waveforms and firing
patterns, and regulate synaptic behavior (Ried et al., 1993). They
are classified into 12 subfamilies.

KCNA2
KCNA2 encodes the Kv1.2 channel, which is expressed widely in
both the central and peripheral nervous systems (Vacher et al.,
2008; Trimmer, 2015). Kv1.1, encoded by KCNA1, and Kv1.2 are
co-expressed in big axons and are usually found in the same
tetramers (Vacher et al., 2008; Trimmer, 2015). They contribute
to the low-voltage-activated potassium current I Kv1. Kv1.2
channels are distributed in the distal axon initial segment and
juxtaparanodes bordering the nodes of Ranvier (Trimmer, 2015).
They mediate the D-type (delay) current (Storm, 1990; Grissmer
et al., 1994; Brew et al., 2003), which is a critical controller of
neuronal excitability as it actuates at subthreshold membrane
potentials, rapidly deferring action potential commencement and
averting repetitive firing (Storm, 1988, 1990). In addition, these
channels work as delayed rectifiers, since blockage of Kv1.2 and
D-type currents halts the surge in duration of action potentials
(Kole et al., 2007; Shu et al., 2007), which is followed by
increased calcium inflow in the presynaptic terminals and release
of glutamate.

KCNA2mutations are related to various phenotypes including
mild to severe ID/GDD and epilepsy (Syrbe et al., 2015;
Hundallah et al., 2016), encephalopathy (Masnada et al., 2017),
hereditary spastic paraplegias, mild ID, and ataxia (Helbig et al.,
2016). Both gain- and loss-of-function mutations have been
reported. Gain-of-function mutations such as L298F and R294H
are linked to severe ID (Syrbe et al., 2015; Helbig et al., 2016).
In contrast, loss-of-function mutations are associated with mild
to moderate ID (Syrbe et al., 2015; Helbig et al., 2016). Kcna2 KO
mice revealed an important role of this channel in brain function,
as gene deletion increased seizure susceptibility, reduced lifespan,
and augmented the chance of premature death starting from the
second week after birth (Brew et al., 2007). In a separate study,
Kcna2 KO mice demonstrated less non-rapid eye movement
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sleep and fewer seizures originating during such period (Douglas
et al., 2007). Further studies will determine how both gain- and
loss-of-function mutations lead to GDD/ID.

KCNA4
KCNA4 encodes the Kv1.4 channel, also known as the Shaker-
type potassium channel of the Kv channel family. The Kv1.4
channel is highly expressed in the striatal neurons, cerebral
cortex, hippocampus, globus pallidus, cerebral peduncle, dorsal
cochlear nuclei, and substantia nigra (Chung et al., 2000; Lujan
et al., 2003), as well as in the retina (Holtje et al., 2007; Kaya
et al., 2016). The Kv1.4 channel contributes to the generation
of A-type K+ current channels in mature cortical pyramidal
neurons (Carrasquillo et al., 2012) and the fast repolarizing phase
of action potentials. A-type K+ currents play a central role in
long-term plasticity, which is an essential mechanism for learning
and memory (Chen et al., 2006).

Bauer et al. (2018) reported three cases that presented with
facial dysmorphism, hypertrichosis, epilepsy, ID, and gingival
overgrowth. Genetic testing revealed them to carry one of the
following de novo mutations A172E, A244P, and A172E (Bauer
et al., 2018). All three cases presented with severe ID and
electrophysiological studies indicated gain-of-function as the
underlying mechanism for this disorder (Bauer et al., 2018). Kaya
et al. (2016) reported four cases from consanguineous family
members, who presented with a novel disorder characterized
by borderline ID, attention deficit hyperactivity disorder, striatal
thinning, and congenital cataract. They all carried the R89Q
variant (Kaya et al., 2016). Electrophysiological studies revealed
loss-of-function as the mechanism responsible for this disorder
(Kaya et al., 2016). Nevertheless, it remains unclear how
KCNA4 loss-of-function may lead to ID, thus further studies
are warranted.

KCND3
KCND3 (potassium voltage-gated channel, Shal-related
subfamily, member 3) encodes the Kv4.3 channel, an alpha
subunit of the Shal family of Kv channels (Serodio et al., 1996;
Isbrandt et al., 2000). It is found in the brain and heart, and is
important for membrane repolarization (Serodio et al., 1996;
Isbrandt et al., 2000). Smets et al. (2015) reported a case with
mild ID, epilepsy, attention deficit hyperactivity disorder, early
onset cerebellar ataxia, strabismus, and oral apraxia. A de novo
mutation (A293F295dup) was identified and the mechanism of
disease was found to be haploinsufficiency (Smets et al., 2015).
Kurihara et al. (2018) reported another case, this one carrying a
de novo missense mutation (G384S). The clinical presentation
consisted of mild ID, early onset cerebellar ataxia, myoclonus,
and dystonia; however, no follow-up electrophysiological study
was performed (Kurihara et al., 2018). What remains to be
determined is how KCND3 loss-of-function mutations may lead
to ID.

KCNH1
KCNH1 (potassium voltage-gated channel, subfamily H (eag
related), member 1) encodes the voltage-gated Kv10.1 potassium
channel, also called ether-a-go-go-related gene 1 (Gutman

et al., 2005). The Kv10.1 channel is expressed in the cerebral
cortex, hippocampus, cerebellum, and olfactory bulb (Ludwig
et al., 1994, 2000; Gomez-Varela et al., 2010). Its presence
in dopaminergic cells and the dentate gyrus of hippocampal
neuronsmaintains electrophysiological activity patterns (Ferreira
et al., 2012). It has an N-terminal Per-Arnt-Sim (PAS) domain
and a C-terminal cyclic nucleotide-binding domain that control
gating (James and Zagotta, 2018). Activation of this channel
depends on the extracellular concentration of Mg2+ and on
membrane potential (James and Zagotta, 2018).

Mutations in KCNH1 are linked to Temple–Baraitser
Syndrome, whose phenotype includes ID, epilepsy, and
hypoplasia/aplasia of the nails of the thumb and great toe
(Simons et al., 2015; Megarbane et al., 2016) and Zimmermann–
Laband syndrome, which is characterized by ID, hypoplasia
of nails and terminal phalanges, facial dysmorphism, gingival
enlargement, and hypertrichosis (Kortum et al., 2015). In
both conditions, cases present with severe to profound
ID (Kortum et al., 2015; Simons et al., 2015; Megarbane
et al., 2016). Reported variants include, G348R, G503R,
L489F, I494V, K217N, I467V, S325Y, V356L, G469R, and
L352V; all of them have gain-of-function channel properties
(Kortum et al., 2015; Simons et al., 2015).

Zebrafish knockdown of kcnh1 demonstrated severe neuronal
developmental impairment, manifested as delayed hindbrain
formation, growth retardation, and embryonic lethality (Stengel
et al., 2012). Surprisingly, Kv10.1 null mice display normal
memory, learning, social behavior, and sensorimotor functioning
with mild hyperactivity (Ufartes et al., 2013). Bronk et al.
(2018) showed that increased activity of the Kv10.1 channel
in Drosophila resulted in lower presynaptic activity but higher
postsynaptic activity through homeostatic plasticity. While the
experiment attempted to explain the occurrence of epilepsy, it
remains unclear how increased activity of the Kv10.1 channel
and subsequent surge in postsynaptic activity could lead to
severe forms of ID. Mortensen et al. (2015) reported that
the Kv10.1 channel was more abundant in the presynaptic
terminals and did not contribute to somatic action potentials;
instead, it controlled Ca2+ influx and neurotransmitter discharge
throughout repetitive high-frequency activity. Future studies
using different Kv10.1 variant knock-in mice will help identify
the mechanism by which Kv10.1 gain-of-function mutations lead
to severe ID and epilepsy.

KCNQ2
KCNQ2 encodes the Kv7.2 subfamily Q member 2 Kv channel.
Kv7.2 channels are widely expressed in the brain, especially
in the axon’s initial segment and nodes of Ranvier (Greene
and Hoshi, 2017). They trigger the M current, a voltage-gated
non-inactivating potassium current. They control the firing
of pyramidal neurons in one of the following ways: (1) help
set the initial segment membrane potential; (2) contribute to
the generation of medium afterhyperpolarization for refractory
period; (3) regulate firing frequency, theta resonance, and
transient neuronal hyperexcitability (Greene and Hoshi, 2017).
The activation and possibility of opening this channel depend
on phosphatidylinositol 4, 5-bisphosphate (PIP2) (Li et al., 2005;
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Kim et al., 2016). Although mutations of this gene are associated
with early infantile epileptic encephalopathy, West syndrome,
and Ohtahara syndrome, all of which are often accompanied
by severe ID (Weckhuysen et al., 2012, 2013; Kato et al., 2013;
Zhang Y. et al., 2015; Dimassi et al., 2016; Zhang et al., 2017),
cases with ID related to childhood onset of seizures have also
been reported (Borgatti et al., 2004; Hewson et al., 2017). Hewson
et al. (2017) reported a three-generation pedigree (n = 6),
with ID ranging from borderline to moderate caused by R210C
loss-of-function mutation (Soldovieri et al., 2019). Borgatti
et al. (2004) reported two cases with moderate to profound
ID accompanied by benign familial neonatal convulsion focal
seizures, which were ascribed to the K554N loss-of-function
mutation. Most of those who present with early infantile epileptic
encephalopathy have loss-of-function mutations (Orhan et al.,
2014; Zhang et al., 2017); nevertheless, some cases with gain-
of-function mutations have been reported, too. Miceli et al.
(2015a) proved that R201C, R144Q, and R201H mutations
identified in patients with epileptic encephalopathies and/or ID
possessed gain-of-function characteristics. Millichap et al. (2017)
reported a case presenting with infantile spasms and severe ID,
without previous neonatal seizures, carrying the R198Q gain-of-
function variant. Gain-of-function R201C and R201H variants
were found in 10 cases with severe neonatal encephalopathy
but devoid of neonatal seizures (Mulkey et al., 2017). The M-
current blocker XE991 has been reported to improve learning
and memory in healthy mice (Fontan-Lozano et al., 2011).
Thus, gain-of-function mutations might explain ID. For epileptic
encephalopathy cases, it remains unclear whether the severe to
profound ID is a consequence of epileptic activity per se, because
seizure frequency and electroencephalography abnormalities
do not match the degree of ID and behavioral disturbances
in patients with SCN1A mutations (Nabbout et al., 2013).
Nevertheless, this link has not been studied in KCNQ2 epileptic
disorders. Retigabine, a Kv7.2/Kv7.3-channel opener, diminishes
KA-induced seizure activities in knock-in mice (Kcnq2Y284C/+

and Kcnq2A306T/+), was approved by the Food and Drug
Administration as an anticonvulsant (Ihara et al., 2016), however,
it was removed due to its side effects (Abou-Khalil, 2019).
Thus, more studies are required to explore how gain-of-function
mutations result in epileptic encephalopathies, as well as how
loss-of-function mutations lead to ID.

KCNQ3
KCNQ3 (potassium voltage-gated channel subfamily Q member
3) encodes the Kv7.3 voltage-gated ion channel subunit. This,
together with Kv7.2, facilitates the M-current (IKM), which is
vital for putting off neuronal excitability (Wang et al., 1998).
Kv7.3 channels are common in the brain especially in the axon’s
initial segment and nodes of Ranvier (Greene and Hoshi, 2017).
They control the firing of pyramidal neurons either by initiating
the axon initial segment membrane potential, restricting the
depolarization that follows an action potential or defining their
input resistance during relaxation and as neurons come near
the action potential threshold (Greene and Hoshi, 2017). The
activation and possibility of opening this channel depend on PIP2
(Li et al., 2005; Kim et al., 2016).

Gain-of-function mutations R230C and R227Q have been
reported in cases presenting with moderate to severe ID
(Sands et al., 2019); however, the same phenotype has been
associated also with the loss-of-function mutation R330L
(Miceli et al., 2015b). Hence, it remains to be determined
how both types of mutations in KCNQ3 can lead to mild
to severe ID. The M-current blocker XE991 has been
demonstrated to improve learning and memory in healthy mice
(Fontan-Lozano et al., 2011).

KCNQ5
KCNQ5 (potassium voltage-gated channel subfamily Q member
5) encodes the Kv7.5 channel (Schroeder et al., 2000).
This channel plays a key role in regulating M-type current
and afterhyperpolarization conductance, resulting in neuronal
excitability. It is highly expressed in the brain, especially in
presynaptic terminals of pyramidal neurons and hippocampal
interneurons, which enables the regulation of inhibitory inputs
within the hippocampal network (Fidzinski et al., 2015). Lehman
et al. (2017) reported three cases with mild to severe ID
accompanied with epilepsy and characterized by both loss-of-
function mutations, such as S448I, V145G, L341I, as well as
the gain-of-function mutation P369R in one case that presented
with severe to profound ID. Rosti et al. (2019) reported a
case presenting with mild ID and epilepsy, for whom genetic
tests revealed V133∗. The molecular mechanism underlying this
condition was haploinsufficiency. A dominant-negative Kcnq5
mutation in mice showed alteration of synaptic inhibition and
excitability in the hippocampus; however, no seizures were
detected (Tzingounis et al., 2010; Fidzinski et al., 2015). Because
the M-current blocker XE991 enhances learning and memory in
healthy mice (Fontan-Lozano et al., 2011), it is unclear how both
gain- and loss-of-function mutations in KCNQ5 can lead to ID.

KCNAB1
KCNAB1 (potassium voltage-gated channel subfamily A member
regulatory beta subunit 1) encodes the Kvbeta1 Shaker-related
channel (Butler et al., 1998). Kvbeta1 channels are particularly
abundant in the cerebral cortex, hippocampus, cerebellum, dorsal
striatum, and colliculus (Butler et al., 1998). They control action
potentials through their effect on pore-forming alpha subunits
and facilitate closing of delayed rectifier potassium channels
by using their N-terminal domain to block the pore (Accili
et al., 1998). This ultimately makes it easier for other members
of the same channel family to close as fast as possible (Accili
et al., 1998). Zhang Y. et al. (2015) reported a case with
early onset epileptic encephalopathy with severe ID. Genetic
testing revealed de novo mutations in KCNAB1 (L355Hfs∗5),
but were not complemented by electrophysiological studies.
Murphy et al. (2004) demonstrated improved learning, neuronal
excitability, and synaptic plasticity in Kvbeta1.1 KO mice. The
Kvbeta1.1-deficient mice exhibited usual synaptic plasticity but
displayed impaired learning of a water maze test and in the
social transmission of food preference task, signifying that the
Kvbeta1.1 subunit contributes to certain kinds of learning and
memory (Giese et al., 1998). Thus, it remains unclear how
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KCNAB1 mutations lead to ID, and hence further investigations
are warranted.

KCNC1
KCNC1 (potassium voltage-gated channel subfamily C member
1) encodes the Kv3.1 channel, a subunit of the Kv3 subfamily
of channels. They are abundant in the CNS, particularly in
GABAergic interneurons (Gan and Kaczmarek, 1998). These
channels are critical constituents of the circuitry of neurons as
they can fire action potentials at high frequency (Wang et al.,
2007) and are among the channels regulated by FMRP (Strumbos
et al., 2010).

Loss of Kv3 function interrupts the firing of fast-spiking
neurons and disturbs the release of neurotransmitter (Sabatini
and Regehr, 1997; Erisir et al., 1999; Issa et al., 2011). Poirier et al.
(2017) reported three cases with moderate to severe ID carrying
the loss-of-functionmutation R339∗ while a similar case, T399M,
was reported recently by Park et al. (2019) and six cases were
reported by Cameron et al. (2019), including mutations A421V,
R317H, and Q492X.

Thus, it seems that both ID and epilepsy can occur due
to loss-of-function mutations, although the exact mechanism
underlying this process will require further studies. Mice lacking
Kv3.1 channels demonstrated altered synaptic transmission and
motor dysfunction, suggesting a role for this channel in cognition
(Matsukawa et al., 2003). However, other studies showed that
Kv3.1- deficient mice had no obvious learning or memory
deficit, only motor dysfunction (Espinosa et al., 2001; Zhang and
Kaczmarek, 2016). Kv3.1 channel modulator (AUT000206) could
rescue cognitive deficits in a schizophrenia phencyclidine model
(Reynolds and Neill, 2016).

KCNC3
KCNC3 (potassium voltage-gated channel subfamily C member
3) encodes the Kv channel Kv3.3 subunit (Gutman et al., 2005).
Its major purpose is to initiate the repolarization phase of
action potentials (Rudy and McBain, 2001). These channels are
abundant in the brain stem and cerebellum (Rudy and McBain,
2001; Chang et al., 2007; Puente et al., 2010). Duarri et al. (2015)
reported three cases, of which one presented with severe ID and
two with mild ID accompanied with cerebellar ataxia. They had
the following mutations: sporadic D129N (gain-of-function) for
the case with severe ID, sporadic R423H (loss-of-function) and
sporadic and familial V535M (gain-of-function) for the mild ID
cases. How gain-of-function mutations can result in both severe
and mild ID needs to be explored further. Mice lacking Kv3.3
channels demonstrated altered synaptic transmission and motor
dysfunction, suggesting a role in cognition (Matsukawa et al.,
2003). However, another study showed that Kv3.3-deficient mice
had no obvious learning or memory deficit but displayed motor
dysfunction (Espinosa et al., 2001; Zhang and Kaczmarek, 2016).

KCNB1
KCNB1 (potassium voltage-gated channel subfamily B member
1) encodes the Kv2.1 channel potentials (Guan et al., 2013;
Liu and Bean, 2014). Kv2.1 channels produce delayed-rectifier
potassium currents in hippocampal and cortical pyramidal

neurons, and are essential for afterhyperpolarization by their
action potentials (Guan et al., 2013; Liu and Bean, 2014). They
are abundant in the proximal axon initial segment (Trimmer,
2015) and can result in either excitatory or inhibitory neuronal
activity depending on the extent of the stimulus (Liu and
Bean, 2014). Torkamani et al. (2014) reported three cases with
severe ID accompanied by epileptic encephalopathy. All had
mutations with loss of function effect, such as de novo missense
mutations S347R, G379R, and T374I. Srivastava et al. (2018)
reported two cases with severe ID diagnosed as atypical Rett
syndrome. Genetic studies revealed their mutations to be G379R
and T374I (loss of function effect). In addition, Krey et al. (2019)
recently reported a case diagnosed with both severe ID and West
syndrome, which was revealed to originate from the de novo
heterozygous deletion mutationW370∗. Additional variants with
loss-of-function properties detected in cases with severe GDD/ID
include R583∗, K502fs, G401R, V378A, and R306C (Saitsu et al.,
2015; Thiffault et al., 2015; de Kovel et al., 2017). Thus, it seems
like loss-of-function mutations of KCNB1may lead to ID.

Mutant Kv2.1(−/−) mice deficient for the Kv2.1 channel
demonstrated decreased long-term potentiation at the Schaffer
collateral-CA1 synapse, impaired spatial learning, failure to
perform better in a Morris water maze, and hyperactivity (Speca
et al., 2014). Besides, these mice were not prone to spontaneous
seizures but rather exhibited enhanced seizure advancement.
Kv2.1 is transferred to membrane-bound clusters, which are
detected in rodent dopamine neurons both in vivo and in vitro
(Lebowitz et al., 2019). This finding suggests that an altered
functional interaction between the dopamine transporter and
Kv2.1 impacts dopamine neuron activity (Lebowitz et al., 2019).

KCTD3
KCTD3 (potassium channel tetramerization domain containing
3) encodes a protein found to bind to the hyperpolarization-
activated cyclic nucleotide-gated channel HCN3 (Cao-Ehlker
et al., 2013). There are few studies regarding the function
of this gene. Kctd3 and Hcn3 co-localize in the cerebellum,
hypothalamus, and midbrain and Kctd3 upregulates the
expression of Hcn3 (Cao-Ehlker et al., 2013). HCN3 modulates
synaptic strength and cellular excitability (Biel et al., 2009;
Huang et al., 2011). Faqeih et al. (2018) reported seven cases with
severe GDD, epilepsy, and cerebellar hypoplasia, of which five
were carrying P346Tfs∗4 and the other two were carrying R56∗

mutations. Electrophysiological studies revealed loss-of-function
as a mechanism underlying the disease (Faqeih et al., 2018).
Similarly, Alazami et al. (2015) and Trujillano et al. (2017)
reported two cases with severe GDD, epilepsy, and cerebellar
hypoplasia, who carried the P346Tfs∗4 variant. Thus, it seems
KCTD3 loss-of-function is the underlying mechanism for
GDD/ID. However, more animal model studies are needed to
confirm this hypothesis.

DISCUSSION

Intellectual disability (ID) limits intellectual functioning and
adaptive behavior since an early age. Potassium channels have
diverse gating properties and are often involved in learning
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and memory. This review shows that potassium channelopathies
can play an important role in initiating ID, with both gain-
and loss-of-function mutations leading to ID. We report that
of the nineteen identified channelopathies, more than half are
characterized by both gain- and loss-of-function gene mutations,
and for many no suitable animal models exist. Moreover,
available channel blockers or openers offer only modest benefits
to patients. Likewise, a total number of twelve potassium
channelopathies have been reported to associate with epilepsy,
and some of them have both gain- and loss-of-function properties
(Niday and Tzingounis, 2018; Allen et al., 2020).

Recent studies have given insights into how to approach
channelopathies in other conditions besides ID. Strategies that
are currently used include gene therapy and/or gene editing
(Choong et al., 2016; Collins and Gottlieb, 2018; Wykes and
Lignani, 2018; Shahi et al., 2019). Approaches for gene therapies
aim to modulate neuronal excitability, increase inhibitory
tone, manipulate the expression levels of channels, as well as
optogenetics and chemogenetics (Wykes and Lignani, 2018).
Since Ginn’s et al., paper in 2018, 2,600 gene therapy clinical
trials were completed/ongoing/approved globally. Results have
indicated that gene therapy is safe and effective (Ginn et al., 2018;
Wykes and Lignani, 2018). However, it faces some challenges
which need to be addressed such as lack of efficient methods for
gene delivery and cell-mediated destruction of the gene-corrected
cells (Ginn et al., 2018; Wykes and Lignani, 2018). Wykes and
Lignani (2018) summarized strategies that can be utilized to
deliver gene therapies into neurons including lentivirus, adeno-
associated viruses, promoters, focal/global viral-mediated
delivery of transgenes or CRISPR-Cas and controlling
transgene expression. Likewise, gene therapy/editing can be
utilized in ID.

Despite the fact that we collected information regarding the
total number of cases reported, we did not focus on them.
We could not discuss the relationship between ID and other
channelopathies (sodium, calcium, and chloride) as it was beyond
the capacity of one article. This review is limited by the lack
of available information on distinct animal models allowing to
describe the specific role of each reported gene during brain
development and their specific modulators.

CONCLUSIONS

Potassium channelopathies contribute to the occurrence of ID
in several cases. A total of 19 channelopathies are known so
far, affecting the following genes: KCNMA1, KCNN3, KCNT1,
KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3,

KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1,
KCNC3, and KCTD3. Both gain- and loss-of-function mutations
are associated with GDD/ID. The mechanisms of how both
gain- and loss-of-function mutations lead to ID are unknown
to a large extent. There is a paucity of animal studies on the
mechanisms of ID in relation to potassium channelopathies.
Some of the few available treatment options (channel
openers or blockers) have demonstrated limited benefits in
clinical settings.

RECOMMENDATIONS

Future studies should focus on understanding the effect of
gain- and loss-of-function mutations in neurons responsible for
learning and memory. Those studies should go further to explore
the interaction between each specific channel and other proteins,
which might also play a role in cognition, as suggested by the
modest effect of available channel blockers or openers. This
knowledge will aid in identifying new targets and developing
new treatments for ID related to potassium channelopathies;
gene therapies/editing.
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