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a b s t r a c t

Breast cancer is the most common cancer and second leading cause of cancer-related death worldwide.
The mainstay of breast cancer workup is histopathological diagnosis - which guides therapy and prog-
nosis. However, emerging knowledge about the complex nature of cancer and the availability of tailored
therapies have exposed opportunities for improvements in diagnostic precision. In parallel, advances in
artificial intelligence (AI) along with the growing digitization of pathology slides for the primary diag-
nosis are a promising approach to meet the demand for more accurate detection, classification and
prediction of behaviour of breast tumours. In this article, we cover the current and prospective uses of AI
in digital pathology for breast cancer, review the basics of digital pathology and AI, and outline
outstanding challenges in the field.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Modern approaches to the treatment of breast cancer require
careful diagnostic stratification of patients and prediction of sur-
vival for tailored therapy. This stratification is primarily based on
manual interpretation of pathology slides - a time-consuming
process with significant interobserver variability [1,2]. The trend
towards digitization in pathology opens the door to computer-
based image analysis solutions which have the potential to pro-
vide a more objective and quantitative slide reviews [3].

Over the last several decades, due to algorithmic advances, more
accessible computing power, and the curation of large datasets,
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machine learning techniques have come to define the state-of-the-
art in many computer vision tasks - including many healthcare
applications [4,5]. Concurrently, digital pathology has emerged as a
method for imaging and handling high magnification images of
pathology slides - initially for research purposes but increasingly as
a clinical tool. Recently, these two fields have intersected as com-
puter scientists and pathologists have come together to apply the
latest artificial intelligence (AI) techniques to the problem of ana-
lysing pathology slides for diagnostic, prognostic, predictive and
other clinically relevant purposes in addition to other applications
such as improving the efficiency of the diagnostic workflow.

Many problems in breast cancer pathology involve assessing
morphological features of the tissue. However, this is often not
straightforward and significant research has gone into improving
reliability and reducing variability of the assessment [6e8]. The
reliability and variability problem has the potential to be solved
efficiently with computational methods. Once trained, the
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algorithms always give consistent results when the same input data
is provided.

In this article, we explore AI applications in breast pathology.
We start with an overview of digital pathology, a necessary pre-
requisite for the application of AI techniques. Then, we do a deep
dive into the applications of machine learning to digital pathology
for breast cancer, including both diagnostic and prognostic appli-
cations. Finally, we address outstanding challenges in the field and
promising future directions.

1.1. Digital pathology

Digital pathology is the process of transforming histopathology
slides into digital images using whole-slide scanners and subse-
quent analysis of these digitized images. In 1966, Prewitt [9e11]
and Mendelsohn [12] first proposed a method to scan images from
a microscopic field of a blood smear and use these scanned images
to discern the presence of different cell types. In the mid 1990’s,
advances in microscopic imaging and software systems for storing,
serving, and viewing large images (an average whole-slide image
scanned at 40� magnification is greater than 1 GB) led to the
development of whole-slide imaging (WSI) techniques. These
techniques allow an entire slide (rather than individual fields-of-
view) to be digitized and examined at a resolution comparable to
light microscopy. Further developments in the following decades
have brought digital pathology from a niche research topic to the
edge of mainstream adoption in clinical practice.

An early large-scale comparison of diagnostic performance be-
tween digital pathology and conventional microscopy was per-
formed byMukhopadhyay et al. and included specimens from 1992
patients with various types of tumours read by 16 surgical pa-
thologists.[13] The study showed that the diagnostic performance
with digitized WSIs was nearly equal to that achieved with tradi-
tional microscopy-based methods (with a major discordance rate
from the reference standard of 4.9% for WSI and 4.6% for micro-
scopy). This study was used as the pivotal study for the FDA
approval of Philips’ digital pathology system [14]. Similarly, in
pursuit of FDA approval for the Aperio AT2 DX WSI system, Leica
Biosystems conducted a clinical trial across five study sites
involving over 16,000 slides and found 97.9% intra-system
concordance (i.e. agreement between reads from glass and digital
images at any one site) [15].

Williams et al. performed a clinical validation of breast cancer
diagnosis from digital slides and found total concordance between
glass and digital slide reads in 98.8% of 694 cases by speciality
breast pathologists who had received a short digital pathology
training course [9]. The same group performed a systematic anal-
ysis of 8069 published comparisons between glass and digital reads
- finding discordant diagnoses in 335 cases (4%) [10].

While equivalency of diagnostic accuracies from glass slides and
digital images is well validated, studies report conflicting evidence
on the potential impact that “going digital” can have on practicing
pathologists. In 2016, the Granada University Hospital system
adopted an entirely digital workflow for primary histopathology
diagnosis. Retamero et al. showed a 21% average increase in annual
per-pathologist case sign-outs [11]. In contrast, Hanna et al. report a
19% decrease in efficiency - defined as signout turnaround time -
per case for approximately 200 cases across six anatomic pathology
specializations at Memorial Sloan Kettering Cancer Centre. The
authors note that their study does not evaluate any learning effect
and that the participating pathologists had varied levels of expe-
rience with digital pathology. A similar study conducted by Mills
et al. assessed diagnostic efficiency on 510 surgical pathology cases
and found a median increase in diagnostic time of 4 s per case for
digital reads compared to glass [16]. They observed significant
inter-reader variability in the increased digital read times and
noted a dramatic learning effect over the duration of the study (� 6
weeks) which reduced the glass-digital difference to near zero by
the end of the experimental series.

A consistent theme in evaluations of digital pathology, both for
diagnostic accuracy and efficiency, is that successful implementa-
tion depends on proper training design and integration with
existing workflows. Beyond direct effects on time-per-slide work-
flow efficiency, other potential benefits of digital pathology adop-
tion include reduced risk of patient and slide misidentification,
reduced risk of tissue loss or damage, better case tracking and
workload allocation, streamlined retrieval of archival cases, and
improved telepathology consultations in addition to facilitating
cross coverage between hospitals for primary diagnosis, remote
reporting centralisation of pathology laboratories [17]. However,
one of the most important advantages of WSI for primary diagnosis
is the ability apply various AI-based algorithms in the routine
diagnostic workflow.

2. Machine learning basics

AI is a broad research field which aims at designing computer
systems that simulate human intelligence. Machine learning (ML) is
a subfield of AI that develops algorithms that allows computer to
adapt to a new problem without being reprogrammed. That is, a
machine learning system “learns” to solve a problem directly from
data. This is done by applying statistical methods to recognize
patterns from a set of provided data without human instruction.
Most ML algorithms can be viewed as mathematical models that
map a set of observed variables, known as ‘features’ or ‘predictors’,
of a data point or sample, into a set of outcome variables, known as
‘labels’ or ‘targets’ [18,19]. The observed variable and the output
labels can be simple scalars such as age, weight, and gender of a
patient, to a more primitive observation such as images of a his-
topathology slides. However, as the relationship between the
observed feature variables and the desired outcome labels becomes
more complicated (such as mapping raw pixel values of images to
its semantic label), the sophistication of the ML algorithms will
have to grow to match that complexity of the relationship.

As the computational power grew, more complex algorithms
become available. Deep learning techniques utilize millions of
neuron-like units in order to learn complex relationship between
image pixel values and its semantic labels, without the need for
manual feature engineering–the features are learned automatically
from data [20,21]. Deep learning algorithms can be subdivided into
categories based on network architectures. Convolutional neural
networks (CNN) with hierarchical layers of pattern detectors has
shown great success for image recognition problems. CNN-based
approaches have been used for image-based detection and seg-
mentation tasks to identify and quantify cells [22e25] and histo-
logical features [26e29]. Finally, recurrent neural networks (RNN)
use self-connecting pattern detectors for sequence processing.

ML methods have been widely explored for various histopa-
thology predictions. Broadly speaking, the types of predictions can
be categorized as learning from humans or enabling identification
of unknown signals. For the former, a model learns from human
annotated datasets with an aim to assist pathologists for their di-
agnostics task in the clinical workflow. For the latter, a model can be
developed using the same input data with outcome-based labels.
These models have the potential to provide more accurate prog-
nosis predictions and identify unknown signals for drug discovery
(Table 1). There have also been applications that are a mixture of
these types, such as models identifying well known morphological
features as building blocks for predicting novel outcomes. Here we
present the main applications of ML and AI-based algorithms in



Table 1
Current applications of artificial intelligence in breast pathology.

Applications Comments

Diagnostic applications
Tumor detection
Primary tumor detection: AI-based algorithms have been developed to detect malignant tumours in the breast and to differentiate it from benign

and normal structures. Osareh et al. introduced ML techniques to differentiate between malignant and benign tumours
using digitalized images of fine-needle aspiration biopsy samples [73]. Also, algorithms have been developed to
provide quantitativemeasurements of nuclear shape and size, which could be applied across different tumour subtypes
[54].

Metastatic deposits detection in lymph nodes: One of themost important application is detection of metastatic tumour deposits in the lymph nodes. Babak et al., 2017
detected lymph node metastasis in breast cancer patients with a higher diagnostic achievement over 11 pathologists
[33]

Breast cancer grading Several algorithms have been developed to assess breast cancer grade. Coutre et al. [50] have used image analysis with
DL to predict breast cancer grade.
Other algorithms were developed to allow objective enumeration of mitotic figures [26], measurements of nuclear
shape and size, and with the automatic detection and segmentation of cell nuclei in histopathology images [74].

Breast cancer subtype Breast cancer comprises more than 20 histotypes. Coutre et al., used image analysis with DL to detect breast cancer
histologic subtypes [50].

Assessment of tumour heterogeneity and
tumour microenvironment

AI-based assays to measure tumour intra-tumour and inter-tumour heterogeneity [26,56], identify and quantify non-
epithelial cells such as fibroblast, neutrophils, lymphocytes and macrophages [77] and computerized image-based
detection and grading of tumour infiltrating lymphocytic (TILs) in HER2þ breast cancer [78] have been developed

Receptor status and intrinsic subtype
assessment

AI algorithms have been developed to provide quantitative measurements of immunohistochemically stained Ki-67
[52], ER [50], PR and Her2neu images [75].
Xu et al. proposed a novel GAN-based approach to provide a virtual immunohistochemistry staining pattern from the
H&E stained WSIs that potentially obviates the need for IHC-based tissue testing [52,76]
Coutre et al., used image analysis with DL to predict breast cancer intrinsic subtype [50].

Prognostic Applications
Prognostic significance of tumour

morphological features
Morphological features as nuclear shape, texture and architecture can predict risk of recurrence and overall survival.
Whitney et al., [54] showed that quantitative features of nuclear shape, texture and architecture independently enable
prediction risk of recurrence in patients with ER-positive breast tumours

Prognostic significance of different peri-
tumoral elements

AI-based assays to measure the arrangement and architecture of different tissue elements such as TILs within the
tumour have been developed and demonstrated their value in predicting survival [79] and that the spatial distribution
of TILs among tumour cells expression profiling is associated with late recurrence in ER-positive breast cancer [57].

Applications related to predictive values and
response to treatment.

ML approached can be used to correlate the expression of certain markers such as cell cycle and proliferation markers
[80] or the presence of certain morphological features in the tumour to the response of specific therapy.
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breast pathology with emphasis on the diagnostic and prognostic
applications.

2.1. Diagnostic applications

A critical first step in the diagnostic workup of suspected breast
cancer is the detection of invasive tumor cells, the characterization
of tumor type, and the quantification of tumor extent. Cruz-Roa
et al. [30] built CNN to classify images patches from breast cancer
WSIs as either containing invasive ductal carcinoma or not. They
used manually annotated region labels for 400 slides frommultiple
sites to train their model and validated its performance on 200
slides with similar annotations from The Cancer Genome Atlas.
They report a pixel-level F1 score of 75.86%. Han et al. [31] use the
BreaKHis dataset [32] to train a classifier which can distinguish
between eight classes of benign and malignant breast tumours
with 93.2% accuracy. Their model is pretrained on imagenet and
they employ extensive data augmentation to prevent overfitting.

One of the prominent ML diagnostic applications for breast
cancer is the diagnosis of lymph node metastasis. Bejnori et al. re-
ported on the performance of seven DL algorithms developed as
part of a challenge competition; the algorithms were found to
outperform a panel of 11 pathologists in a simulated time-
constrained diagnostic setting [33]. On the basis of training data
that included 270 images from two centres with (n ¼ 110) and
without (n ¼ 160) nodal metastases, and evaluation on an inde-
pendent set of 129 images (49with and 80withoutmetastases), the
AUC of the best algorithm was 0.99, whereas the best performance
by a pathologist achieved an AUC of 0.88. A similar study had 6
pathologists reviewed 70 digitized slides with and without ML
assistance [34,35]. The review time was measured as a primary
endpoint. The average review time was significantly shorter with
assistance than without assistance for both micrometastases (1.9
times faster) and images without any metastases (1.2 times faster).

In addition to tumour identification, AI and ML methods were
used to characterise invasive breast tumours and histologic grading
of breast cancer was a prime candidate due to the inherent
subjectivity with low concordance rates despite its important
prognostic value. Various cell-level and tissue-level features can be
identified to describe the morphological structure of objects to
discriminate between histological components, e.g., tumor/
epithelial cells (for tubular formation) and mitotic cells (for mitotic
count). However, most work in this area focuses on mitosis detec-
tion, which is the most prognostic but also the most laborious task.
In 2013, Veta et al. proposed a public mitosis detection challenge
[36] with a dataset containing 12 training, 11 testing slides, and
roughly one thousand mitotic figures annotated. The winner of the
challenge used a 10-layer deep convolutional neural network to
achieve 0.61 overall F-1 score against the consensus of pathologists,
whereas individual pathologist achieves >0.75 overall F-1 score. In
2016, Veta et al. published a follow up challenge that focuses on
slide-level mitotic score [37]. The winners of this challenge ach-
ieved a Cohen’s kappa score of 0.56 with the pathologists’ slide-
level score, and 0.65 F-1 score on cell-level mitosis detection.

The labour-intensive nature of mitotic counting can lead to high
degree of discordance. PHH3 stains, which detects mitosis at high
sensitivity, is an immunohistochemistry method for resolving this
issue. Tellez et al. uses aligned scans of PHH3 and H&E stains to
generate annotations for CNN [38]. Because of PHH3, they collected
over 22,000 annotations from less than 100 slides. Their CNN did
not achieve the state-of-the-art on TUPAC16, which could be caused
by annotation variability. Nonetheless, their subsequent work
shows that using CNN mitosis detection as an assistant can help
improve the level of concordance among human pathologists [39].
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Tubular formation and nuclear grade are the other two impor-
tant components in the histopathological grading of breast cancer.
However, fully automated methods for these two tasks are still to
be developed. Current published work focuses on analysing tissue
structure that could be used for these tasks. Romo-Bucheli et al.
train a CNN to detect tubule nuclei, and compute statistics about
the nuclei to predict Oncotype DX risk categories [39,40]. Veta et al.
proposed a series of non-CNN algorithms to segment and detect
nuclei [41,42]. These segmentation are then used to detect nuclei
for further morphological analysis [39].

Biomarker status determination is another important element
of breast cancer diagnosis. Oestrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor (HER2),
and ki67 are all commonly assessed and used to determine which
therapy options are offered to the patient. Current clinical practice
relies on immunohistochemical (IHC) staining and manual com-
parison of staining intensity against a set of biomarker-specific
scoring systems [43,44]. IHC techniques use targeting molecules,
usually antibodies, paired with enzymes which are used to visu-
alize specific antigen sites in tissue. Although this approach is well-
validated and widely used, there is significant inter-observer vari-
ability in manual biomarker status assessment from IHC [45,46]
suggesting an opportunity for machine-learning based systems to
assist pathologists with biomarker status assessments.

Automated quantification of IHC staining intensity was an early
application of statistical learning methods in digital breast cancer
pathology. Wang et al. [47] used an automated cellular imaging
system to determine the fraction of breast cancer cells which
stained at varying levels of HER2 intensity and found a higher
correlation between the algorithmic assay and HER2 status as
determined by FISH (the gold standard) than between FISH and
manual assessment of the IHC slides. In a similar approach,
Rexhepaj et al. [48] designed a nuclear detection algorithm and
used it to quantify IHC staining for ER and PR expression and found
a correlation of 0.9 betweenmanual and algorithmic quantification.
Skaland et al. [49] used open source digital image analysis software
to analyse HER2 IHC stains from 60 breast cancer cases with scores
of 2þ or 3þ and found 100% concordance between the algorithm’s
prediction and the consensus clinical status assessment.

More recently, efforts have been made to predict breast cancer
biomarkers directly from H&E slides - potentially bypassing the
need for immunohistochemical staining altogether. Couture et al.
[50] implemented both feature-based and deep learning models to
predict ER status (as well as intermediate vs high grade, basal-like
vs non-basal-like, and ductal vs lobular), trained on 571 H&E tissue
micro-array images and tested on 288 images with a final test ac-
curacy of 84% for ER status. In a related study, Shamai et al. [51] built
a deep learning system to predict the statuses of 19 biomarkers
including ER and PR. For ER status prediction, they chose positive
and negative prediction thresholds such that they were only able to
predict the statuses for 51% of their validation set - but within this
subgroup of high-confidence cases they obtained 92% accuracy.

Other groups have generated immunohistochemically stained
Ki-67 images using conditional GANs. Senaras et al. [52] presented
15 real and 15 synthetic images of breast cancer pathology to five
experts, and their mean accuracy in distinguishing themwas 47.3%,
suggesting that the synthetic images were indistinguishable from
real images and supporting the application of GANs to boost the
training sets used to optimize classification of prostate cancer.

In breast pathology, 10 cellular features introduced by Osareh
et al. [53] into ML that were identified by an expert breast
pathologist to differentiate between malignant and benign tu-
mours using images of fine-needle aspiration biopsy samples [53].
2.2. Prognostic applications

Many morphological features of the tumour tissues are known
to have prognosis values. Veta et al. [39] showed that, in a tissue
microarray (TMA) of male breast cancers, features such as nuclear
shape or texture can be used to predict a patient’s prognosis.
Whitney et al. [54] showed that quantitative features of nuclear
shape, texture and architecture independently enable prediction of
recurrence risk in patients with ER-positive breast tumours (on the
basis of the 21-gene expression-based companion diagnostic test
Oncotype DX).

Structure and organization of tumour-infiltrating lymphocytes
(TILs) are found to be prognostic of the clinical outcome. A study
used a CNN to detect and quantify the structure of TILs in images
from The Cancer Genome Atlas and found that this feature was
prognostic of outcome for 13 different cancer subtypes [55]. Yuan
proposed a method to model and analyse the spatial distribution of
lymphocytes among tumour cells on triple-negative breast cancer
WSIs [56]. Using this model, they identified three different cate-
gories of lymphocytes according to their spatial proximity to cancer
cells. The ratio of intratumoral lymphocytes to cancer cells was
found to be independently prognostic of survival and correlated
with the levels of cytotoxic T lymphocyte protein 4 (CTLA-4)
expression determined by TMA gene expression profiling. These
investigators further expanded this method and found that the
spatial distribution of immune cells was also associated with late
recurrence in ER-positive breast cancer [57]. Ali et al. used classical
ML methods to count features on breast cancer biopsies, and were
able to predict neoadjuvant response [58]. Lymphocyte density in
the surrounding tissue was found to be the biggest predictor.

Recurrence risk is another important aspect of prognosis. In a
recent study [59] we developed a novel ML pipeline to predict risk
of ipsilateral recurrence of DCIS using digitized WSI and clinico-
pathologic long-term outcome data from a retrospectively collected
cohort of DCIS patients (n ¼ 344) treated with lumpectomy [59].
The sections from primary tumours were stained with H&E, then
digitized and analysed by the pipeline. In the first step, a classifier
was applied to WSI to annotate the areas of stroma, normal/benign
ducts, cancer ducts, dense lymphocyte region, and blood vessels. In
the second step, a recurrence risk classifier was trained on eight
select architectural and spatial organization tissue features from
the annotated areas to predict recurrence risk, the recurrence
classifier significantly predicted the 10-year recurrence risk in an
independent validation set with high accuracy (85%). This tool
showed superior accuracy, specificity, positive predictive value,
concordance, and hazard ratios relative to tested clinicopatholog-
ical variables in predicting recurrences (p< 0.0001). Furthermore, it
significantly identified patients that might benefit from additional
therapy (validation cohort p ¼ 0.0006) [59].

While most work primarily focused on analysing cells of
epithelial origin within the tumour, several papers also considered
tumour stroma for its prognostic pattern. Beck et al. [60] showed
that the features relating to morphology as well as to spatial re-
lationships and global image features of epithelial and stromal re-
gions were extracted from digitized WSIs of specimens from
patients with breast cancer. The features were used to train a
prognostic model, and were found to be strongly associated with
overall survival (OS) in cohorts of patients with breast cancer from
two different institutions; features extracted from the stromal
compartment had a stronger prognostic value (P ¼ 0.004) than
features extracted from the epithelial compartment (P ¼ 0.02).

2.3. Challenges to AI application in breast pathology

With the advancement of AI applications in breast pathology,
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several challenges remain to be solved. For example the low
penetration rate of digital pathology, despite rapid technological
innovation and sustained enthusiasm for digital pathology among
pathologists and researchers [61,62]. In this section, we discuss
challenges that impede adoption and development of AI in breast
pathology.

2.4. Data and image quality

AI-based approach is markedly dependent on the quantity and
quality of the input data, for instance the lack of agreed file format
for digitized slides and absence of information system integration
[61]. Also the data used in training an AI algorithm should be clean,
artefact free, and comprehensive to develop a model that has good
predictive performance [22,62e64].

For image-based models, image quality can have a large impact
on AI performance. If the scanner cannot produce images at high
enough resolution, the model will not be able to distinguish details
required to make assessment of tissues. Out of focusing is another
challenging issue. Scans at high magnification tend to have limited
focusing range, and scanned images cannot be refocused after the
fact (unlike slides being observed under the microscope). This be-
comes problematic when small objects such as mitotic figures are
under consideration as refocusing digital image will require a re-
scan. Kohlberger et al. developed a technique that uses synthetic
data to train a CNN to detect out of focus area, which helps ensure
image quality of the scanned images [65].

Furthermore, the high degree of variability in morphological
features and biological structures might affect the performance of
the algorithms. Several factors such as staining, orientation, and
magnification of the biological sample contribute to the visual
heterogeneity of the images. Moreover, illumination variations and
the level of noise are affecting the morphological and architectural
structure of the histological regions [62]. Furthermore, challenges
such as foreground-background intensity overlaps, partial occlu-
sion, touching objects, and weak boundaries are usually presented
with histological images that make it hard to distinguish between
different classes in the images. Another challenge problem is the
computational efficiency of the analysis methodology and the
sensitivity to the parameter settings.

Besides the quality of input data, the quality of annotation is
equally, if not more, important. For an AI approach to segment
biological structures, the performance is dependent on the fidelity
of the annotations by expert pathologists in the learning set [30,66].
If the annotations contain high variability, the supervisory signal to
the model will be inconsistent, and the model can expect to fail.
Furthermore, the evaluation of model performance is often against
the reference standard. The rigor of the reference standard decides
the trustworthiness of the evaluation results. Situations such as
those discussed above warrant the need for the creation of accu-
rately annotated reference datasets by expert pathologists in order
to standardize the evaluation of the performance of AI algorithms.

2.5. Algorithm validation

Oncewe have a developedML-based tools for a specific task, it is
important to also consider how the model can be integrated in the
real world. This is challenging because proper evaluation can be
very different for different use cases. Lack of proper evaluation can
hinder trust from physicians and impede adoption of AI in breast
pathology.

First, the validation should be appropriate for the anticipated
use cases [5,67]. For example, in the pre-diagnosis and post-
diagnosis use cases, ML-based tools need to be adequately vali-
dated using representative multi-institutional data to ensure
generalization of the approaches and interoperability. Furthermore,
retrospective evaluation dataset may contain unexpected biases
that cause failure in the real world. Prospective studies can improve
trust in the ML model as its performance is proven over time, but
they are also much more challenging to implement because they
require integration with real world clinical workflow.

On the other hand, in the peri-diagnosis use case, a model is
used as an assisted tool to the pathologist during slide review. To
validate an ML-based tool for peri-diagnosis, additional evaluation
on the human-computer interface through a multi-case multi-
reader study is required [68]. In this regard, interpretability of the
model becomes an important topic [64,69,70]. In the medical
community, the lack of interpretability could hinder trusts from
physicians [70]. If the physician cannot understand why the algo-
rithms makes the decision, they may be forced to ignore the algo-
rithm’s decision, limiting its usefulness. Displaying confidence level
or limiting the amount of information shown to the physician may
alleviate this issue [34]. Previous study [35] also explored inter-
pretability methods [71,72] to understand what were the input
features that triggers the model’s activation in identifying tumor.
Nonetheless, improving interpretability remains an active area of
research both in the medical domain, and in the AI community at
large.

2.6. Adoption of AI-based tools and future perspectives

As digital pathology continues to spread, larger and richer
datasets will become available enabling the development of
increasingly accurate models. Over time, we expect widespread
adoption of digital pathology, but the question of whether or not
this will extend to the acceptance of AI-based diagnostic tools is
less clear. The first major hurdles are scientific and regulatory: re-
searchers need to consistently demonstrate that their models can
achieve clinically useful performance on relevant tasks using data
from a diverse set of patients from a wide variety of institutes,
scanners, and slide preparation processes. Commercial and aca-
demic entities will need to collaborate to bring the best performing
approaches over the regulatory finish line.

Assuming that regulators can ultimately be convinced that ML
models are as reliable as pathologists, a potentially more chal-
lenging question remains: will pathologists actually adopt these
tools? The most compelling argument for adoption would be an
improvement in diagnostic accuracy. Considering that the ground
truth labels in most digital pathology ML experiments come from
pathologist annotaters, the best performing models will in general
only be able to match human performance rather than exceed it.
There are two notable exceptions here. First, a model may more
closely match specialist performance compared to general pathol-
ogists on a given task, driving adoption of the model by general
pathologists but not necessarily specialists. Second, prognostic la-
bels, such as disease-specific and overall survival, response to
therapy, and other outcome variables, provide a modelling target
that is not bound by human-generated labels. If a model can pro-
vide a better prediction of how long a given patient is likely to live
than existing risk stratification systems, it is likely to find wide-
spread use.

A secondmotivating factor in the adoption of ML tools for digital
pathology is potential workflow improvements. Automated tools
may make individual pathologists more efficient, particularly at
certain laborious tasks like counting mitoses. As discussed above,
the present evidence for the impact of digital pathology itself on
workflow efficiency is mixed and it seems premature to speculate
onwhether even the best machine learning tools could compensate
for a potential 20% increase in per-slide reading time. However, we
can say with confidence that just as the impact of adopting digital
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pathology depends on the execution - training methods, software
design, and integration with the existing toolset - so too will the
success of machine learning in digital pathology depend on the
details of its implementation. An algorithm is not a software tool
and even the best model won’t be useful if its predictions are not
presented in an understandable way. All too often researchers
adopt an “if we build it, they will come” mentality. It’s our belief
that for machine learning to actually impact breast cancer patients,
leading researchers need to recognize and shoulder (at least in part)
the responsibility for developing tools that people want to use.

An underlying question for the application of ML to digital
breast pathology is: to what extent should ML tools align with or
rely upon existing expert understanding of a given process?
Consider prognostic predictions for new breast cancer diagnoses.
One approach would be to attempt to predict known correlates of
survival, such as histological grade, tumor size, biomarker status,
tumor-infiltrating lymphocytes, and then to use these features to
train a survival prediction model. An alternative approach is to
“start from scratch”: rather than attempting to recapture what we
already know about breast cancer survival; we attempt to model
the relationship between the tissue and survival directly. This
approach has the potential to capture subtle patterns and indicators
of survival that have never occurred to us, but generally requires a
much larger dataset. In practice, this doesn’t have to be a binary
decision.We can build in expert knowledgewhenwe can, but allow
models to pick up on unimagined signals, hopefully finding the
balance which leads to the best performance given the data we
have. This outlook mirrors a general trend in machine learning
away from hand-engineered features towards models which cap-
ture the informational structure of the inputs but allow for
extremely open-ended function approximation.

There is a strong correlation between morphology and under-
lying molecular features and this could be the basis of AI applica-
tion in breast cancer to decipher and predict relevant molecular
alterations. AI-based tools can be used to predict biomarker status
of clinical relevance including ER, PR, Ki67 and HER2 status in
addition to the intrinsic molecular subtypes. Combining the power
of AI with autofluorescence or spectroscopic image technology can
also provide a potential powerful tool to characterise breast cancer,
differentiate between benign and malignant, in situ and invasive
malignant lesions.

3. Conclusions

The widespread use of WSI technology for primary diagnosis of
breast pathology will enable the adoption of AI-based tools. The
applications of AI in the field of breast pathology is increasing and it
is expected that will not only complement the work of breast pa-
thologists, reduce their workload and improve their diagnostic
accuracy but also provide information beyond that can be gain by
eyeball assessment of morphological features with the potential to
replace some of the expensive multigene assays to predict the
outcome of breast cancer.
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