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SUMMARY

Genomics and proteomics have been central to identify tumor cell populations,
but more accurate approaches to classify cell subtypes are still lacking. We pro-
pose a new methodology to accurately classify cancer cells based on their organ-
elle spatial topology. Herein, we developed an organelle topology-based cell
classification pipeline (OTCCP), which integrates artificial intelligence (AI) and im-
aging quantification to analyze organelle spatial distribution and inter-organelle
topology. OTCCPwas used to classify a panel of human breast cancer cells, grown
as 2D monolayer or 3D tumor spheroids using early endosomes, mitochondria,
and their inter-organelle contacts. Organelle topology allows for a highly precise
differentiation between cell lines of different subtypes and aggressiveness.
These findings lay the groundwork for using organelle topological profiling as a
fast and efficient method for phenotyping breast cancer function as well as a dis-
covery tool to advance our understanding of cancer cell biology at the subcellular
level.

INTRODUCTION

Organelle compartments are highly regulated in a spatiotemporal manner.1 However, an advanced under-

standing of the cellular distribution of a network of organelle compartments, i.e., organelle topology, both

in 2D and 3D cell growth environments is lacking. Breast cancer cells have high heterogeneity both genet-

ically and phenotypically.2–6 Still, organelle morphology and function have been used as a direct readout of

the functional phenotypic state of an individual cancer cell.1,7,8 A less understood source of cellular hetero-

geneity is the large diversity of organelle morphology and function found across cancer cells. For instance,

mitochondrial morphology has been used to classify different types of cancer.7,9,10 In particular, alterations

in the mitochondria network of pancreatic cancer cells have been shown to correlate with reduced tumor

growth and increased survival in preclinical models.11 Early endosome heterogeneity and dysfunction have

also been linked to a variety of human diseases including cancer.12,13 Recently, endosomal size and dy-

namics have been shown to modulate receptor-mediated signaling in breast cancer cells.14,15 Nuclei

size and overall morphology can be used by cells to assess their degree of spatial confinement and facil-

itate their transition into an invasive phenotype.16 Thus, organelle heterogeneity provides a way for cancer

cells to customize their cellular responses to intracellular alterations or external stimuli.

Investigating subcellular cancer biology in human breast cancer cells grown in 2D cell culture is not

adequate to fully understand how organelles can be re-programmed to support and enhance cancer

cell proliferation, survival, migration, and/or invasiveness. Since 3D cell growth has been shown to affect

cell size and shape,17–20 the analysis of the morphology, distribution, and function of organelles in 3D tu-

mor systems is the new frontier of cancer cell biology. In the present study, we have tackled this challenge

by applying artificial intelligence (AI)-based approaches to analyze the influence of 2D vs. 3D cancer cell

growth on the organelle morphology and distribution across several human breast cancer cells.

Understanding the interconnectivity of organelle compartments is fundamental to untangle how cells are

organized and how different cellular processes are regulated.21 Organelle morphology, which measures

the shape of individual organelle objects, lacks the ability to evaluate cellular organelle networks in a quan-

titative and global manner. In contrast, cellular topology refers to the connectivity among cells in a tissue,22

and here we posit organelle topology as the interconnectivity among organelle structures of a specific or-

ganellar network in a cell. Recently, Valm et al. demonstrated that organelles, such as endoplasmic
iScience 26, 107229, July 21, 2023 ª 2023 The Author(s).
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reticulum, Golgi, lysosome, peroxisome, mitochondria, and lipid droplets, have a characteristic distribu-

tion pattern in a three-dimensional space.23 Moreover, inter-organelle contacts have been shown to

mediate cellular processes and regulate metabolism.24 In particular, we have shown that endosome-mito-

chondria interactions can facilitate iron translocation into mitochondria.25,26 Quantitative information

about the morphology and topology of organelle networks is key to achieve a comprehensive understand-

ing of how their heterogeneity and adaptation impact the establishment of important cellular regulatory

systems.8 Here, we use organelle topology as a way to classify different breast cancer cells grown in 2D cul-

ture and in in vitro 3D tumor spheroids with high accuracy and reproducibility.

Machine learning (ML) and deep learning (DL) approaches have been applied in cell biology research for

several decades, in particular to the analysis of microscopy images.27–33 ML classification has been ex-

ploited in cell segmentation, such as the Fiji Weka segmentation plugin,34 SuRVoS,35 FastER,36 and Micro-

scopy Image Browser,37 as well as in object classification, which has been incorporated into the Imaris,15

Cytomine,38 and Ilastik39 software packages. Other ML classifications have been used for phenotyping in

high-throughput imaging setups, e.g., Cell Profiler40 and CellCognition,41 for establishing subcellular

compartment-based protein-protein interaction databases such as Cell Atlas,1 ComPPI,42 and Transloca-

tome43 and for the characterization of mitochondrial morphogenesis, e.g., MitoMo44 and Mitometer.45

The combination of fluorescence microscopy with DL analysis has been advanced recently by the develop-

ment of the ZeroCostDL4Mic29 platform, which performs several of these tasks, e.g., segmentation, object

detection, denoising and others, while evaluating model performance, and conducting model optimiza-

tion. Recently, DL approaches have been used to identify cellular phenotypes that discriminate aggressive

from less aggressive metastatic melanoma using label-free images of living cells.33 Moreover, ML and DL

models have been applied for the identification of individual cells with altered organelle morphology or

cellular protein localization, in 2D cultured cells or immunostained tissue sections.46–51

To date, most cancer cell classification approaches using ML algorithms have leveraged the strong connection

between cell shape and cancer progression together with the large number of cell/nucleus shapemorphological

features that can be extracted from cells grown in 2D cell culture conditions usingmicroscopy and software pro-

grams, e.g., CellProfiler.52 Although,ML algorithms have also been applied to cells grown in 3D conditions, high

accuracy has been limited to the classification of a reduced number of cancer cell lines,53 healthy vs. apoptotic

cancercells54,55or cellsmigratingwhileembedded incollagen.56,57For example, theVAMPIREalgorithmanalysis

was shown to provide morphological information not centered around geometric-specified parameters.48 The

shapeand size of 3D tumor spheroidswere also used toclassify a rangeof cellular states basedonmorphological

imaging data.58ML andDL approaches have also leveraged both protein expression and subcellular location of

biomarkers to classify cancer cells. However, all these approaches rely on low-resolution imaging and a large

numbers of cells in medium- to high-throughput approaches.49,59–61

Here, we present OTCCP (organelle topology-based cell classification pipeline), using AI-based methods

for the classification of breast cancer cell lines. We have established ML and DL methodologies to perform

organelle-based topology cancer cell classification. OTCCP ML and DL-based classification is a single-cell

methodology that relies on the subcellular organelle organization characterized using microscopy ap-

proaches. Using this classification pipeline, topology-based organelle parameters dramatically outper-

formed morphology-based features, generating high classification accuracies (>95%) when discriminating

between several human breast cancer cell lines grown in 2D vs. 3D cell culture systems. These findings lay

the groundwork for using quantitative topological organelle features as an effective method to analyze and

classify breast cancer cell phenotypes.
RESULTS

Cell heterogeneity among different breast cancer cell lines grown in 2D cell monolayer or 3D

tumor spheroids

Several human breast cancer cells lines were selected as representatives of different breast cancer types:

MDA-MB-231 (MDA231) cell line typifies triple-negative breast cancer,6 T47D represents luminal A breast

cancer (estrogen and progesterone receptor positive),62 and AU565 exemplifies human epithelial growth

factor receptor (HER) 2-positive breast cancer, which overexpresses HER2 and lacks both estrogen and pro-

gesterone receptors.6 Lastly, the MCF10A cell line was selected as a non-cancerous mammary epithelial

cell line (Table S1). Tumor spheroids have been shown to replicate in vivo tumor phenotypes since tumor

size and sphericity play a key role in establishing 3D pathophysiological gradients.63 These four cell lines
2 iScience 26, 107229, July 21, 2023
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were grown either in 2D culture or as 3D tumor spheroids using the liquid overlay method, as described

previously.64,65

To label different organelles, cells grown in 2D or in 3D systems were subjected to immunofluorescence

using anti-Tom20 (outer membrane mitochondrial marker; Mito) and anti-early endosome antigen 1

(EEA1) (early endosomal compartment; EEC) (Table S2). Z stacks were collected to acquire whole-cell im-

ages using high-resolution Airyscan microscopy in both 2Dmonolayer cells (Figures 1 and 2, S1 and S2) and

3D tumor spheroids (Figures 1 and 2). Due to the depth penetration limits of Airyscan microscopy, z stack

whole-cell images were collected at the edge of tumor spheroids (box, Figures 1A and 1B). Significant qual-

itative differences in cell and nucleus size and shape were identified between different cell lines grown in

either 2D or 3D cell culture systems (Figures 1C and 1D).

To quantify the differences in the size and cell shape, as well as in the organelle morphology and distribu-

tion between different cell lines, immunostained z stack images were subjected to cell segmentation

‘‘masking’’ and 3D rendering using Imaris Bitplane software to identify and analyze each individual cell

or organelle object. DAPI staining was used to highlight the nucleus (Nu). Pre-internalized fluorescently

labeled transferrin (Tf) was used to label cytoplasm and plasma membrane and extract cell shape and

morphology.14,15 Imaris ‘Surface’ 3D rendering module was used to create 3D organelle objects from a

‘‘masked’’ cell using 3D rendering settings (segmentation) as described previously.15,66 10 cells were ex-

tracted from several Z stacks per cell line grown in 2D vs. 3D culture systems (10 cells 3 4 cell lines x 2 con-

ditions = 80 fully characterized cells). In Figures 1C and 1D, mitochondrial 3D-rendered objects are shown

statistically coded by Mito object Position_Z in representative individual cells from MCF10A (Figure 1C) or

MDA231 (Figure 1D), either grown in 2D or 3D cell culture systems (Videos S1 and S2). Non-cancerous and

breast cancer cells display significantly different cell shapes when cultured in 2D vs. 3D conditions, as

shown by the dramatic increase in the dimensions of the Bounding_Box_AA (BB_AA) along the z axis, while

maintaining similar cell volumes (Figures 1E and 1F).

Numerous breast cancer cell classification studies have been performed using cell and nucleus morpholog-

ical features in histopathology images (2D images) at cellular level. Li et al. achieved 88.89% accuracy on the

overall test set using convolutional neural networks (CNNs), by composing a training set of 249 images for

four-class classification.67 Wang et al. extracted cell morphology parameters from 3,663 cells, included in

68 images, by establishing a support vector machine classifier.68 We tested Random Forest (RF) ML algo-

rithm using all the 52 cell and nucleus morphology parameters extracted after Imaris-based image process-

ing (including 26 parameters for both cell and nucleus) to perform the four-class classification (MCF10A,

MDA231, T47D, and AU565 cell lines) for the 2D culture system condition (See Table S3 for the description

of all parameters tested). RF is a well-established nonlinear classification technique that is based on deci-

sion trees. RF has been widely used in medical image analysis applications.69 Combining all 52 parameters

from cell and nucleus datasets (See Table S4) increases RF classification in 2D cultured condition accuracy

to 91.7%, in comparison with RF analysis using only the 26 parameters from cell (86.8%) or nucleus datasets

(65.0%), separately (Figure 1G, Table S5). The importance index (IMI) analysis showed that cellular shape-

related parameters are more relevant than the nucleus shape-related parameters in the RF classification

(Figure S3). For the IMI analysis, we constructed an RF-based classification model based on the 52 features

extracted from the cells (26 parameters) and nuclei (26 parameters) structures and examined their individ-

ual impact on the classification accuracy. Since all variables have been standardized to have a sample mean

of 0 and a sample variance of 1 before establishing the classification model, all values for a particular var-

iable were set at zero to record how this affects (reduces) the classification accuracy evaluated on a testing

set that was not included in establishing the RF classifiers. The IMI analysis yields 52 ‘‘reductions’’ that were

ranked from largest to smallest after scaling the reduced classification accuracies between 0 (least impor-

tant feature) to 1 (most important feature). This IMI analysis yielded a lower importance rank for ellipsoid

axis-based parameters (Table S4), which were removed from the list of parameters (Table S6) used in further

studies of organelle datasets to improve the classification efficiency.

When the same ML classification approach was applied to the 3D culture system datasets (Figure 1G), the

cellular and nucleus morphological analysis cannot differentiate well between the four cell lines grown as tu-

mor spheroids; the accuracy of four-class classification for the 3D cultured condition was 87.5%, while eight-

class classification for 2D&3D culture systems accuracy was even lower at 77.5%. In this dataset, with only 40

objects, we obtained a satisfactory accuracy of 91.7%, which requires the analysis of 52 cell features.
iScience 26, 107229, July 21, 2023 3



Figure 1. Airyscan high-resolution microscopy shows cell heterogeneity in different breast cancer cells in 2D and 3D culture conditions

(A and B) Representative MIPs of confocal microscopy with low magnification (25x) z stack images of 3D spheroids from MCF10A (A) and MDA-MB-231

(MDA231) cells (B). 3D spheroids were fixed and immunostained with anti-Tom20 (Mito; Green) and anti-EEA1 (EEC; Magenta) primary antibodies.

40,6-diamidino-2-phenylindole (DAPI) staining (Blue) indicates nuclei. Merged channels (Ai, Bi) and single channels (Aii, Bii) are shown in both enface X-Y and

sagittal X-Z to demonstrate the shape of spheroids, as well as the limitations of confocal imaging for capturing the full 3D geometry of the larger spheroids.

The yellow box indicates where the high-resolution images were collected by Airyscan microscopy, shown in Figure 2. Scale bar = 100 mm.

(C and D) Comparison of 3D-rendered representative single cells in 2D and 3D culture systems of MCF10A (C) and MDA231 (D). Mitochondria (Mito) is the

3D-rendered organelle shown in this image. Cells are shown in both enface X-Y and sagittal X-Z to demonstrate the shape change of 2D and 3D culture

systems. Cells were base color-coded by purple. Mito objects were statistically color-coded by Position Z from Origin (Origin is nucleus’s geometric center),

range from -10-10 mm. Scale bar = 10 mm.

(E and F) Cell volume (mm3) (E) and Cell BBAA_Z (mm) (F) data across 4 cell lines grown in 2D vs. 3D spheroids are presented as scatterplots. These scatterplots

show the observed values along with descriptive statistics (medium and 95% CI). p values are calculated using Tukey’s multiple comparisons test, only show

the same cell lines 2D vs. 3D, n = 10, p value >0.05 (ns), <0.01 (**), or <0.0001 (****). Data are presented with a mean and 95% confidence interval.

(G) Scatterplots show Random Forest machine learning classification accuracy when using cell, nucleus, and cell combined with nucleus morphology features

at the cellular level. The 65.0% line indicates the lowest accuracy obtained by nucleus morphology datasets, and the 91.7% line indicates the highest accuracy

obtained by combining both cellular and nucleus morphology data.
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Figure 2. Organelle and inter-organelle contact heterogeneity in different breast cancer cells in 2D and 3D

culture conditions

(A and B) Maximum intensity projections (MIP) of representative Airyscan z stacks of 2D cultured cells (A) or 3D spheroids

(B) prepared by liquid overlay method. Z stacks were collected using 63x objective and Airyscan high-resolution

microscopy. Four cell lines were immunostained with anti-EEA1 (EEC; Magenta) and anti-Tom20 (Mito; Green). DAPI

staining (Blue) indicates nuclei. One non-cancerous mammary epithelial cell line, MCF10A, was compared to three breast

cancer cell lines: AU565, MDA-MB-231 (MDA231) and T47D. Raw images show MIP in z stacks of EEC, Mito, and merged

channels. Rendered images show a 3D surface-rendered single cell extracted from raw image. To have the best

visualization effect, the rendered cells were rotated 45� at X-Z plane. Cells, nucleus, and organelles were statistically

color-coded by cell volume, nucleus area, and Organelle_Position_X from Origin (Origin is nucleus’s geometric center),

respectively. For Panel A, color bars of Nucleus Area, Cell Volume, and Organelle_Position_X have the range of 200–

450 mm2, 600–1700 mm3, and -25 - 25 mm, respectively. For panel B, color bars of Nucleus Area, Cell Volume, and Position X

from Origin has the range of 300–1000 mm2, 1400–2200 mm3, and -7 - 10 mm, respectively. Scale bar = 10 mm.

(C and D) 3D-rendered nuclei (blue), EEC (magenta), Mito (green), and INT (yellow) objects are shown for the 4 cells

described earlier grown in 2D or 3D systems. Red lines indicate cell mask. Inter-organelle contacts between endosomes

and mitochondria were calculated using the ‘‘Surface Contact Area’’ (SCA) Imaris XTension integrated plugin.

(E and F) Higher magnification of inter-organelle contacts is shown. Scale bar = 5 mm (C and D) and = 0.5 mm (E and F).
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3D organelle rendering enables quantification of organelle morphology and topology

features at single-cell level

Representative raw images of MCF10A, MDA231, T47D, and AU565 cells grown in 2D vs. 3D cell culture

conditions, immunostained using anti-EEA1 (EEC) and anti-Tom20 (Mito) and imaged using Airyscan mi-

croscopy as described earlier, are shown in Figures 2A and 2B. Individual 3D-rendered cells and organelles

are shown statistically coded by cell volume, nucleus area, and each organelle’s object position X in

Figures 2A and 2B, panels EEC or Mito rendered. After 3D rendering, we analyzed inter-organelle contacts

(INT) via the surface contact area (yellow) Imaris XTension applied to EEC (magenta) and Mito (green) 3D-

rendered objects (Figures 2C–2F), as described previously.26 Here, we showed that in all cells tested, both

in 2D and 3D cell culture conditions, EEC is found in proximity with Mito objects as highlighted by INT ob-

jects connecting both organelles (Figures 2E and 2F).

The differences in the organelle morphology between different cell lines were quantified by measuring

the number and sum of EEC, Mito, and INT objects as an indicator of the total EEA1-containing endo-

somes (EEC), Tom20-containing mitochondria (Mito), and EEC-Mito interactions (INT) per cell in 2D vs.

3D cell culture conditions (Figure 3). A larger number of 3D objects are detected in EEC dataset

(7,305 objects in 2D culture vs. 9,273 objects in 3D culture systems), when compared to that in Mito data-

set (3,283 objects in 2D culture vs. 7,723 objects in 3D culture systems) (Tables S9 and S10). Organelle

object 3D rendering yielded a larger dataset, even though only 10 cells were used per cell line for

both the 2D and 3D culture systems (Figures 3A and 3B). Except for MCF10A cells, all other cell lines

maintain the same trend within each cell line. Interestingly, INT datasets follow similar behavior as EEC

with MDA231 and T47D showing a reduced number of objects in 2D but not in 3D (Figure 3C). In contrast,

in the Mito dataset, there are increased object numbers in 3D culture than in the 2D culture systems. In

3D tumor spheroids, the number of objects per cell does not display a detectable difference among the

different cell types and across EEC, Mito, and INT datasets (Figure 3). The quantitative whole-cell imaging

analysis of EEC, Mito, and INT endogenous structures indicates that MCF10A and AU565 display a higher

total volume of EEC, Mito, and INT objects in 2D cell culture (Figures 3D–3F). However, in 3D tumor

spheroids, there is no visible pattern among the different cell types concerning their total EEC, Mito,

and INT organellar volume (Figures 3G–3I).

To describe the morphological features of each 3D-rendered object, sixteen morphometric parameters

were extracted from each organelle structure. In contrast, the topology parameters describe the spatial

relationship among organelles and between organelles and the nuclei within the same cell. The topology

parameter group (TPG) includes 18 parameters that can be divided into 6 nucleus-related (NPG) and 12

distance-related parameters (DPG) (Figure S4, Tables S3 and S6 for the MPG and the TPG calculation

and description). Within each individual cell, NPG describes the distance between the geometric center

of each organelle object, as defined by its Cartesian coordination (xi, yi, zi), and that of the nucleus geomet-

ric center, which represents the Cartesian coordination (0, 0, 0) and is indicated by the pink dot in Figure S4.

In contrast, DPG is based on distance measurements between each object’s geometric center, denoted

here by (x, y, z), and those of all other organelle objects per cell. The Euclidean distance, D($), between

the object Pi = (xi, yi, zi) and the object Pj = (xj, yj, zj) is given by

DðPi;PiÞ = jPi � Pi j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xi � xj

�2
+
�
yi � yj

�2

+
�
zi � zj

�2r
(Equation 1)

For each organelle object, if there are n organelle 3D objects in one cell, there will be N distances to each

other, where

N = n ðn-- 1Þ = 2 (Equation 2)

Thus, organelle topology represents the distance between each organelle object and all of its neighbors.22

In Figures 3J–3O, we have plotted the EEC (Figures 2J and 2K), Mito (Figures 3L and M), and INT

(Figures 3N and 3O) object distance distributions across each cell of the four cell lines grown in 2D

(Figures 3J, 3L, and 3N) or 3D (Figures 3K, 3M, and 3O) culture conditions. MCF10A cells showed a wider

distance distribution in comparison to all the breast cancer cell lines. In contrast, the three breast cancer

cell lines showed substantial heterogeneity in organelle distance distribution, which generates a specific

organelle topology fingerprint. Interestingly, each cell line’s organelle-organelle distance has its own

pattern, but different organelle datasets showed similar distribution pattern in the same cell line.
6 iScience 26, 107229, July 21, 2023
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Figure 3. Intra-organelle distance reveals heterogeneity among different breast cancer cells

(A–C) Box whisker plots show the median of each cell line’s rendered organelle object number of single cell in 2D and 3D

culture systems; mean is plotted as a ‘‘+’’. The whiskers are drawn down to the 5th percentile and up to the 95th percentile.

The black line shows the median of each organelle’s object number through 4 cell lines per cell. Although each cell line

has a different number of objects within the same organelle dataset, the ranking of object numbers is consistent

throughout 4 cell lines INT > EEC > Mito in both 2D and 3D cultured systems, n = 10 cells.

(D–I) Sum volume per cell (mm3) is shown for the three different organelle compartments (EEC, Mito, and INT) in 2D cell

culture (D-F) vs. 3D tumor spheroids (G–I). ns, indicates non-significance p > 0.05 using Student’s t test. Data are

presented with a mean and 95% confidence interval.

(J–O) Different cell lines show distinct organelle-organelle distance distributions. Histograms show EEC (J–K), Mito (L–M),

and INT (N–O) organelle-organelle distances distribution in 2D (J, L, and N) and 3D (K, M, and O) cultured systems. Left Y

axis is the distance frequency percentage, which is plotted as color bars in the histogram. Right Y axis is the number of

distances counted of this histogram, which is plotted as dark gray bars in each histogram.
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Therefore, we propose to use these organelle-specific distribution patterns as the basis for a highly accu-

rate cell classification methodology.
AI methods validate organelle topology as a highly accurate classifier in both 2D and 3D cell

culture systems

We have applied ML-based approaches to the three organelle object datasets (EEC, Mito, and INT) to test

whether morphological- or topological-based parameters can provide a more efficient way of single-cell

classification analysis. Three different AI methods were applied to validate and compare the classification

accuracy obtained when using the topology or morphology parameter groups (TPG vs. MPG). For all AI

methods, both groups were analyzed under the same analysis settings: 85% of randomly selected data

served for training the individual AI models, and the remaining 15% of data were used to independently

evaluate the performance of the classification models. The three AI methods were applied to model two

four-class classification problems, i.e., the four cell lines grown in 2D or 3D cell culture systems. In addition

to that, we also formulated an eight-class classification problem, which comprises combining the four cell

lines grown in 2D and 3D culture systems (2D&3D) (Figures 4A–4C).

RF was selected as one of the AI methods as it is a well-known and robust method for regression and clas-

sification.66,69 Interestingly using the EEC dataset (Figure 4A), the TPG obtained the highest accuracy of

99.6% (2D 4-class), 93.8% (3D 4-class), and 93.9% (2D&3D 8-class), while the MPG led to considerably lower

accuracy of 75.7%, 75.5%, and 69.6%, respectively (Table S9). In the Mito dataset (Figure 4B), again the TPG

achieved the highest accuracy of 96.2%, 94.7%, and 92.0%, while the MPG obtained the accuracy of 57.1%,

71.1%, and 64.0%, respectively (Table S10). The INT dataset showed the highest accuracies for the three

different classification problems (2D, 3D, and 2D&3D). Specifically, using the TPG features produced accu-

racies that exceeded 98%. In sharp contrast, utilizing the MPG features yielded a mere 83.8% accuracy for

the 2D 4-class problem (Figure 4C and Table S11).

The second classification method we used in our analysis is kernel Fisher discriminant analysis (kFDA)70 as it

distills the discriminative information of the 16 MPG and the 18 TPG features into a small set of latent fea-

tures (scores) for separating the cancer cell lines. In contrast to RF, which is an ensemble learning method

that relies on classification trees, kFDA extractsm � 1 nonlinear scores (m being the number of classes) to

optimally separate the cancer cell lines. When kFDA was applied to the EEC dataset, in the three different

classification analyses (2D four-class, 3D four-class, and 2D&3D eight-class), using the TPG achieved a

higher accuracy of 99.2%, 95.9%, and 94.2%, in comparison to 69.8%, 68.7%, and 59.5% for MPG, respec-

tively (Figure 4A and Table 9). Similarly, when kFDAwas applied to theMito dataset, using the TPG features

generated an accuracy of 96.3%, 97.2%, and 94.1%, which are significantly higher than the accuracy of

45.0%, 61.7%, and 51.5% when relying on the MPG features, respectively (Figure 4B and Table 10). Again,

the application of kFDA to the INT dataset using the TPG features generated the highest accuracies for the

three different classification problems: 99.6%, 98.6%, and 97.2% (Figure 4C and Table 11).

Given the high number of data points in the datasets, we applied a DL neural network algorithm as the third

classification method. In the presence of sufficiently large datasets, the flexibility of the DL methodology

allows training complex network topologies to approximate nonlinear functions without human interven-

tion. Advanced training algorithms, e.g., adaptive momentum gradient descent-based optimizers,71 allow

training the network parameters of the nested layers as the training data are being passed through this
8 iScience 26, 107229, July 21, 2023
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Figure 4. Artificial Intelligence classification using organelle morphological and topological parameters in 3 conditions: 2D cultured condition, 4

classes; 3D cultured condition, 4 classes, and 2D&3D conditions, 8 classes

(A–C) Classification accuracy comparison using morphology parameter group (MPG, M) and topology parameter group (TPG, T) by the Random Forest

(RFC), kernel Fisher Discriminant Analysis (kFDA), and Deep Learning Neural network (DL) in 2D, 4 classes, 3D, 4 classes, and 2D&3D, 8 classes.

Superimposed scatterplots show classification’s accuracy when using theMPG and the TPG features at the organelle level of EEC (A), Mito (B), and INT (C). In

A, the line 75.7% indicates the highest accuracy obtained by the MPG in EEC datasets across 3 algorithms, and the line 93.8% indicates the highest accuracy

obtained by the TPG in EEC datasets across 3 algorithms. In B, the line 60.0% indicates the highest accuracy obtained by Mito morphology datasets across 3
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Figure 4. Continued

algorithms, and the line 92.0% indicates the highest accuracy obtained by Mito topology datasets across 3 algorithms. In C, the line 83.8% indicates the

highest accuracy obtained by INT morphology datasets across 3 algorithms, and the line 99.6% indicates the highest accuracy obtained by INT topology

datasets across 3 algorithms. Solid circles indicate accuracies obtained by the TPG, and open circles indicate accuracies obtained by the MPG (EEC

purple, Mito green, and INT orange). Solid circles indicate accuracies obtained by the TPG, and open circles indicate accuracies obtained by the MPG

(EEC purple, Mito green, and INT orange). Please see Tables S9–S11, for more detailed information.

(D, J, and G) The parameter importance index (IMI) extracted from Random Forest classifier shows topology is the crucial feature for the classification. The

bar chart shows parameter IMI in 3 conditions (2D, 3D, and 2D&3D) of 3 organelle datasets EEC (D), Mito (G), and INT (J). IMI is shown as relative importance

which is defined as % parameter importance in comparison to the top parameter. These results include 34 parameters in 2 different parameter groups (TPG,

18 solid bars; MPG, 16 open bars) with the relative ranking provides information about parameters’ contribution to the classification. Steep drops in IMI value

from one parameter to the next one can guide decision about which parameters contribute to the classification more than others.

(E-F, H-I, and K-L) Representative top 4 parameters from 3 organelle datasets are shown as violin plots with solid shapes (EEC: E; Mito: H; INT: K), and

representative bottom 4 parameters are shown as violin plots with open shapes (EEC: F; Mito: I; INT: L). p values are calculated using Tukey’s multiple

comparisons test, testing only same cell lines 2D vs. 3D. p value >0.05 (ns), <0.01 (**), <0.001 (***), or <0.0001 (****).
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hierarchical arrangement. In other words, the gradient-descent optimizer, embedded in a backpropaga-

tion training algorithm,72 adjusts the network parameters of a DL model based on its own errors. The

network architectures used included 7 layers (one hidden layer for the 18/16 features of the topological

and morphological parameters), 5 hidden layers including: 400, 200, 100, 50, and 25 neurons that make

up the first (receiving the values from the input layer), second, third, fourth, and fifth hidden layer, respec-

tively, for the 4-class classification problems, and 500, 250, 125, 62, and 31 neurons making up the first, sec-

ond, third, fourth, and fifth hidden layer, respectively, for the 8-class classification problems, and an output

layer that assigns a class to a data point using one-hot encoding. More details concerning the network

training are given in the Methods section. When DL was applied to the EEC dataset (Figure 4A) to discrim-

inate the various classes in the 2D (four-class), the 3D (four-class), and the combined 2D&3D (eight-class)

cases, using TPG features resulted in accuracies of 99.9%, 98.2%, and 97.2%, respectively. In contrast, using

the MPG features produced an accuracy of 68.8%, 69.3%, and 58.2%, respectively. Similarly, with the Mito

dataset, using the TPG features yielded considerably higher accuracies of 97.0%, 97.5%, and 96.3% as

compared to themere 45.2%, 58.7%, and 52.6%, respectively, when relying on theMPG features (Figure 4B).

Interestingly, both kFDA and DL showed reduced accuracy when applied to the MPG features of the INT

dataset across the three different cases (2D, 3D, and 2D&3D). In contrast, the highest accuracy was

achieved when DL was applied to the INT dataset using the TPG parameters: 99.6% (2D 4-class), 99.2%

(3D 4-class), and 98.9% (2D&3D 4-class) (Figure 4C; Table S11).

Overall, the classification accuracy of the three AI methods is comparable with the trend of DL > kFDA > RF.

We found that utilizing the TPG features leads to considerably higher accuracies when compared to the use of

MPG features.Our findings are consistent across the threemethods (RF, kFDA, andML) and the three different

classes (2D, 3D, and 2D&3D) for the EEC, Mito, and INT datasets. This indicates that the TPG provides robust

features for highly accurate cell classification. Moreover, the ranking based on the classification accuracy is

TPG > MPG, INT >EEC >Mito, and that is consistent throughout the entire study reported herein (Figure 4).

In the EEC dataset analysis, the highest accuracies were obtained when the three classification methods

were applied to the TPG features of the 2D cell culture system (four-class classification problem).

Conversely, the lowest accuracies were obtained when using the MPG features of the combined 2D&3D

(eight-class classification), indicating that EEC object morphology does not change dramatically between

cells grown in 2D vs. 3D systems. In the Mito dataset, the highest classification accuracies were obtained

when the three AI methods were applied to the TPG features. In sharp contrast, the lowest accuracies

were obtained when applying the three AI methods to the MPG features of the two four-class classification

problems, indicating that the Mito morphology changed dramatically when the cell culture condition

changed from 2D to 3D. In the INT dataset analysis, the highest accuracies were obtained when the TPG

was applied, by the three AI methods, to the three classes tested. The lowest accuracies were obtained

when the MPG was applied to 2D&3D eight-class classification when using kFDA and DL approaches.

To summarize, these results demonstrate that organelle topology is a key feature for classifying different

breast cancer cells with high accuracy, reliability, and reproducibility.
Organelle topology parameters play a crucial role in breast cancer cell classification

To uncover the key organelle features at the basis of the cancer cell classification in both 2D and 3D culture

systems, the contribution of each parameter was ranked based on the IMI. Parameters from both organelle
10 iScience 26, 107229, July 21, 2023
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topology and morphology object groups were combined to form an overall ranking list, as described

earlier. For each organelle database, IMI was used to evaluate each parameter’s contribution to the clas-

sification, shown in a scaled version from [0, 1] based on the permutation importance (Figures 4D, 4G

and 4J).

For the EEC dataset, the top 14 parameters in EEC 2D cell culture condition are from the TPG (Figure 4D).

Moreover, most of the MPG parameters show IMI values close to zero. Sum_Dist is the top parameter

throughout 3 different classification analyses. Std_Dist, Dist_Surface, and Sum*Pos_Z_Dist are the 2nd pa-

rameters in 2D, 3D, and combined 2D&3D cell culture systems, respectively. Concurringly, the morphology

parameter BB_AA_Z plays a more important role in cell classification in the 3D culture system than in 2D

culture systems. BB_AA_Z describes the organelle object’s elongation in the z axis, which may be related

to cell sphericity increasing from the 2D to 3D culture system. Interestingly, except for BB_AA_Z, the top 11

parameters in the 3D culture system and the top 9 parameters in the combined 2D&3D condition are all

part of the TPG. These results suggest a key role for cell shape in organelle distribution, orientation,

and shape.

Another way to validate the role of different features in the ML classification is to compare their measured

values across the four cell lines, in the different cell culture conditions. In Figures 4E–4F, 4H–4I, and 4K–4L,

the violin plots representative of the top-ranking parameters of EEC, Mito, or INT show significant differ-

ences between the four different cell lines grown in 2D versus 3D cell culture systems. Although the violin

plots representative of the bottom ranking parameters also show statistically significant differences, their

empirical data distribution is strikingly similar among different datasets (Figures 4E–4F, 4H–4I, and 4K–4L).

In contrast, the different datasets from top-ranking parameters can clearly be visually discriminated, even

though each parameter was smoothed by the same kernel density estimator. Specifically, each individual

curve represents an estimated probability density function for the features of a particular cell line. We

computed the density estimates using a kernel density estimation (KDE).73

A similar trend can be detected for the Mito datasets, showing again that the organelle topology features

correlate with breast cancer cells heterogeneity (Figures 4G–4I). The two top-ranked parameters are

Max_Dist and Sum_Dist across 3 classification analyses belonging to the TPG. Moreover, in the 2D culture

and combined 2D&3D culture conditions, the top-ranked 8 parameters are all topology parameters. Due to

mitochondria’s tubular network characteristics, BI_AA (branching index from bounding box AA) is the most

important parameter from the MPG, ranked as the 9th top parameter. As shown in the EEC dataset,

BB_AA_Z is also ranked highly as the 5th parameter in the 3D culture system (Figure 4G). However, the re-

maining top 10 parameters all belong to the TPG. Importantly, the mitochondria volume, which has been

associated with important biological functions and pathologies,74 shows a very low ranking position (IMI

�0). Therefore, some of the standard mitochondrial morphological characteristics may not be adequate

parameters for cancer cell classification.

For the INT datasets, the top 14 parameters in INT 3D and 2D&3D classes are from the TPG feature set (Fig-

ure 4J). Sum_Dist is the top parameter throughout 3 different classification analyses. These results suggest

a crucial role for the locations highlighted by inter-organelle contacts in overall organelle distribution,

orientation, and shape. In addition to that, the violin plot analysis indicates that most topological param-

eters, in contrast to morphological parameters, show significant differences among the cell types and be-

tween 2D vs. 3D systems (Figures 4K–4L). Thus, the spatial distribution of INT objects, i.e., organelle topol-

ogy features, is crucial to accurately classify breast cancer cells.
Organelle topology-based kFDA classification spatially distinguishes cancer cells grown in 2D

culture vs. 3D tumor spheroids

kFDA provides high classification accuracy and is an alternative way to present the contributions of individ-

ual features in the ML classification. Importantly, kFDA computes a nonlinear transformation of data

describing the TPG features for the different known cancer cell lines into a high-dimensional feature space.

Then, kFDA projects the transformed data onto a predefined number of directions to best separate the

cancer cell lines (classes). Referring to the projection coordinates as scores, kFDA reduces the classification

problem from a larger number of TPG to a few score variables, which are the number of classesminus one.70

This small set of scores can be plotted against each other, allowing for the visualization of the clusters for

the individual classes. The contribution of different parameters in each component was plotted for four
iScience 26, 107229, July 21, 2023 11
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classes, including EEC 2D and Mito 2D (Figures 5A, 5C, 5E, and 5G), EEC 3D and Mito 3D (Figures 5B, 5D,

5F, and 5H), and INT 2D and INT 3D (Figures 5I, 5J, 5K, and 5L), as probability density estimates for the

scores of the individual classes (Figures 5A, B, and 5I), heatmaps to indicate the importance of the individ-

ual TPG features (Figures 5C, 5E, 5C, 5D, and 5J–5K), and 3D scatterplot of the (4–1 = 3) scores (Figures 5G,

5H, and 5K). The goal of this assessment is to define which parameters are important in classifying each cell

line. For example, in EEC dataset extracted from cells grown in 2D culture, score variable 1 can differentiate

MCF10A > T47D > MDA231 > AU565. Regarding the contribution of the TPG features to score 1 variable,

we noticed that Max_Dist contributed the most for the kFDA classification, followed by Std_Dist and

SUM_Dist. Overall, kFDA validated the same trend we observed using RF, providing a more fine-grained

analysis of which TPG feature combination contributes most to the classification. For example, the first

score variable separates MDA231 from the 3 remaining classes, and this separation is mainly driven by

Max Dist and to a lesser extent Dist Origin, Kurtosis Dist, Mean Dist, Skewness Dist, and Sum Dist for

EEC 3D. On the other hand, the second score variable separates all four classes with some overlap between

the AU565 and MDA 231 classes. When all datasets were organized in the 3D scatterplots by plotting the

three score variables against each other, the kFDA clustering indicates that the four cell lines are sufficiently

different from one another, when grown in 2D vs. 3D cell culture systems; all four cell lines were spatially

separated from each other both in EEC and Mito as well as in INT datasets (Figures 5G, 5H, and K).

DL increases cell classification accuracy using organelle topology features

Previously in the present work, we have used two different ML algorithms to demonstrate that topology

features are key for breast cancer cell classification. Additionally, we have further investigated how the

DL neural network method can improve the classification accuracy based on the 18 TPG features. The

DL results showed a higher classification accuracy than both RF and kFDA across 4 cell lines in 2D and

3D four-class as well as in 2D&3D eight-class analyses.

Overall, the DL analysis shows much higher true positive performance than ML algorithms as shown in Fig-

ure 6.With the 7 layers being considered for each neural network—one input (18 features), one output (one-

hot encoding classification), and 5 hidden layers— there are indexes that can still be further optimized as

well as more ways to select the most effective structure such as layer numbers, nodes, etc. However, fixing

the number of network layers to 7 and varying the number of nodes in each layer have not shown consider-

able differences, which highlights the robustness of the deep neural network methodology. Strikingly, the

DL neural network models obtained a notably higher classification accuracy when it was based on the TPG

features, in comparison to that of the other ML approaches.

In summary, all three algorithms showed a much better classification accuracy when using the TPG instead

of theMPG features (EEC:R93.8% by TPG,%75.7% byMPG; Mito:R92.0% by TPG,%71.1% byMPG; INT:

R97.2% by TPG, %83.8%), and among those methods, the more differences the TPG features entail the

higher is the classification accuracy. Conversely, the fewer differences that are embedded within the

MPG features the lower the classification accuracy. For example, among RF, kFDA, and DL, DL models

outperform theMLmethods as it offers a more accurate way to identify the engrained nonlinearities among

the TPG features that magnify the differences among the 4 or 8 classes. It is important to note here that the

classification accuracies were evaluated based on the testing dataset, which was not used to establish the

AI classification models.

Organelle topology-based kFDA classification discriminates non-cancerous cells from breast

cancer cells using live-cell imaging

Here, we tested whether organelle topology features can discriminate non-cancerous MCF10A cells from

MDA-MB-231 or T47D breast cancer cells using live-cell imaging. Cells were co-labeled with a 2-min pulse

of fluorescently labeled Tf and Mitotracker to monitor early endosomes and mitochondria as well as their

inter-organelle contacts, as described previously.26 Time-lapse live-cell imaging was performed, and Z

stacks were acquired using the Thunder microscope (Leica) with an integrated computational clearing al-

gorithm. Representative cells are shown in Figure 7A, after 3D rendering and processing to measure sur-

face contact area, as described earlier.

In Figurea 7B and 7D, we used kFDA models based on Matthews correlation coefficient (MCC) to perform a

binary classification between non-cancerous and breast cancer cells in fixed 2D, 3D spheroids, and 2D live

cells datasets for all three organelle compartments (EEC, Mito, and INT). Values of the MCC that are close
12 iScience 26, 107229, July 21, 2023
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Figure 5. Kernel Fisher Discriminant Analysis (kFDA) classification using organelle topology features can spatially

discriminate different cell lines in 2D four-class and 3D four-class

(A, B, and I) The curves show the estimated distributions of the three score variables for the 2D (4 classes) and 3D (4

classes) for EEC (A, top) andMito (B, bottom) organelles from cells grown in 2D (A) vs. 3D (B) culture systems and INT 2D (I,

top) vs. 3D (bottom, I).

(C, E, D, F, J, and K) show the heatmaps describing the contribution of the TPG features for the three different score

variables (EEC: C and D; Mito: E and F; INT: J-K). The darker the color, the more a particular TPG feature contributes to the

kFDA classification overall and a specific score variable in particular (G, H, and L). The three-dimensional scatterplots

visualize the (three) score variables obtained by the kFDAmodels. In 2D (G, L left) or 3D (H, L right) conditions, all cell lines

were well separated from each other in EEC (G and H, left), Mito (G and H, right), and INT (L) datasets.
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Figure 6. Neural network deep learning algorithm shows high classification accuracy when using the topology parameter group (TPG) in three

conditions: 2D four-class; 3D four-class, and 2D&3D eight-class

Confusion matrices based on the classification results of the neural network models of different organelles (EEC: A–C; Mito: D–F; INT: G–I) in 3 conditions for

the TPG features. Each row corresponds to the true (known) label and column corresponds to the label predicted by the DLmodels. Themain diagonal refers

to correctly classified data points (EEC, purple; Mito, green, and INT, orange). The off-diagonal numbers represent incorrectly classified (mis-classified) data

points.
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Figure 7. Live cell-based EEC-Mito interactions (INT) analysis in epithelial MCF10A versus breast cancer cell lines

MDA-MB-231 and T47D

(A) Imaris-based 3D-rendered reconstructions of EEC (magenta), Mitotracker-labeled Mito (green), and EE-mitochondria

surface contact areas (INT, white) from live-cell imaging experiments (42.5 s videos; 4 frames per second; interval 2.5 s)

showing examples EEC-Mito interactions (INT, arrows) in MCF10A, MDA-MB-231, and T47D breast cancer cells. Images

were analyzed using Imaris 9.6 software. Yellow border rectangles indicate the corresponding magnified regions. The

white dotted area denotes the nuclear area. Scale bar = 10 mm.

(B and D) Results of kFDAmodels for binary classification problem (MFC10A vs. MDA-MB-231 -B- or MCF10A vs. T47D -D-)

based onMatthews Correlation Coefficient (MCC) using topological (topol) and morphological (morph) features showing

a considerably better accuracy when using topological features for endosomes (EEC), inter-organelle contacts between

endosomes and mitochondria (INT), and mitochondria (mito).

(C and E) Using an iterative (add-one-variable) approach and examining all combinations yielded the most important

topological features (colored boxes) for separating MFC10A from MDA-BM-231; the white boxes, consequently,

correspond to less important and unimportant features. Adding variables is terminated when the classification accuracy

yields a maximum (using an independent assessment based on 15% of randomly selected data in the testing set).
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to 1 imply an almost perfect separation, and MCC values that are close to zero or even negative confirm a

poor classification. The top bar chart panel confirms that topological features deliver an almost perfect clas-

sification accuracy (except 3D fixed spheroids for the Mito case and 2D live cells for the EEC case which are,

however, still high) compared tomorphological features across the three different experimental models when

comparingMCF10A vs. MDA-MB-231 (Figure 7B) or T47D (Figure 7D). To assess the most important topolog-

ical features to achieve the high classification accuracies for separating MCF10A from MDA-MB-231 (Fig-

ure 7C) or T47D (Figure 7E), we performed an iterative analysis by adding one variable at a time until the clas-

sification accuracy yields a maximum (using an independent assessment based on 15% of randomly selected

data in the testing set). For 2D fixed cell datasets, the same 6–7 topological features are similarly important for

cell classification across the three organelles. In contrast, for 3D fixed as well as for live cell imaging datasets, a

more varied distribution is detected with different topological features being key for the non-cancerous vs.

breast cancer cell classification within distinct organelle datasets. The same trend is observed when

comparing the non-cancerous MCF10A cells with either MDA231 or T47D breast cancer cells.

In summary, organelle topology features are crucial for AI-based classification of non-cancerous vs. breast

cancer cells in different experimental models, e.g., live and fixed cells grown in 2D and fixed 3D tumor

spheroids.
DISCUSSION

The science of morphology studies the shape, texture, and orientation of objects, whereas topology fo-

cuses on the measurement of inter-object spatial relationships, independently of the change of shape or

size of objects. Here, we propose that organelle topology, defined as the relative measurement of the in-

ter-relationship or arrangement of organelle objects in a network across a cell, is crucial for a highly accu-

rate approach to classify breast cancer cells either grown in 2D cell culture or 3D tumor spheroids.

Subcellular organelle compartments are highly regulated in a spatiotemporally manner.1 However, under-

standing of the cellular distribution of a network of organelle compartments, i.e., organelle topology, in

cancer cells, is lacking. We have developed OTCCP, using ML and DL methods for the classification of

breast cancer cell lines. OTCCP encompasses five major steps: (i) Specific organelle markers are labeled

in fixed or live cells using immunofluorescence or fluorescently labeled ligands or organelle dyes to stain

EEC or Mito. Other organelles may also be tested. Importantly, inter-organelle contacts and their topology

such as the ones highlighted here between endosomes and mitochondria provide higher accuracy for can-

cer cell classification indicating their importance in cancer cell function and progression. (ii) Z stack images

are collected by microscopy-based approaches, including high-resolution Airyscan or wide-field Thunder

with computational clearing. Other imaging approaches could be used depending on their ability to visu-

alize organelle structures at the subcellular level and in 3D cell culture systems. (iii) Cell masks are selected,

and organelle objects are 3D rendered using Imaris Bitplane software. (iv) Organelle topology features are

extracted from hundreds of organelle 3D objects and calculated at single-cell level using MATLAB soft-

ware. (v) Cell classification based on these organelle features is carried out using AI-based methods.

We have used three distinct AI methods to demonstrate that the organelle topology, of either early endo-

somes or mitochondria objects, provides a more accurate way to classify breast cancer cells than organelle
16 iScience 26, 107229, July 21, 2023
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and cell morphology. The two organelle datasets have distinct object numbers, suggesting that the clas-

sification accuracy is not related to the number of objects per dataset but instead to the organelle topology

features. Moreover, these results were based on 10 cells imaged per cell line in different growth conditions,

indicating that OTCPP does not require a large set of cell images, reducing the time and cost of the clas-

sification analysis. OTCPP can be applied to single cells (10–20 cells) which distinguishes it from other cell

classification approaches that are based onmultiple cells/population (>100 cells). This innovative organelle

topology methodology uses the spatial distribution of intracellular organelles to distinguish cells of

different cell lines with high accuracy in fixed immunostained cells as well as in live cells using fluorescently

labeled ligands or live-cell organelle dyes, representing a way to categorize breast cancer cells.

Topology-based parameters showed higher classification accuracy with all three AI methods, two distinct

organelle object datasets, and four- and eight-class analyses as well as in cells grown in 2D culture and/or

3D tumor spheroids. Organelle topology features showed a considerably better performance than

morphology ones, resulting in a classification accuracy >90% to discriminate between the human breast

cancer cell lines of differing subtype and aggressiveness grown in 2D and/or 3D culture systems. RF and

kFDA also provide the ranking of parameters importance in the classification accuracy, which can be

used for further investigation of organelle topology’s role in breast cancer cell function.

The AI-based classification platform when applied to cellular and nuclear morphology datasets can

discriminate breast cancer cells, although at lower accuracy levels than OTCCP. These results suggest

that cells grown in 3D tumor spheroids show distinct cell size and shape from cells grown in 2D, and

we posit that these changes will alter organelle topology. Indeed, our results show that cells grown in

2D have a distinct organelle topology from those in 3D since OTCCP AI classifier methods can clearly

discriminate between populations of the same parental cell line grown in 2D culture vs. 3D tumor spher-

oids. Thus, organelle topology is sensitive to changes in the cancer cell shape and size and can be used

to investigate the role of 3D cancer cell growth in subcellular biology and organelle function. Our results

indicate that organelle distribution, as quantified by the OT-based approach, provides a significant

improvement for cancer cell classification when compared to that based on cell and nuclear shape or

organelle morphology.

Endosomes and mitochondria were selected for OTCCP analysis as examples of different types of organ-

elles with distinct types of morphology: puncta (endosomes) and filamentous network (mitochondria).

Previously, we have shown that the distribution of these organelles is very heterogeneous between a

wide variety of breast cancer cells.15 Our prior results have also shown that endosomes and mitochondria

undergo transient and dynamic interactions to facilitate iron translocation to mitochondria.25 These re-

sults suggested that these organelles would be ideal for classifying breast cancer cells using a method-

ology based on their intracellular distribution and interconnectivity. Indeed, organelle topology (OT) ML

based on endosomes, mitochondria, and their inter-organelle contacts provides a way to measure the

spatial topology of organelles, which allows for a highly accurate cancer cell classification methodology.

Filamentous structures such as microtubular or actin networks may be difficult to use in the OT approach

reported herein. However, any organelle displaying a punctate distribution such as lysosomes, late endo-

somes, and others should be adequate for OT methodology and may be able to classify other cell types

with an even higher accuracy.

Importantly, it is well known that mitochondria fragmentation occurs in a cell-specific manner and is related

to cancer cell growth and function. Clearly, the number of Mito objects is directly related to their intercon-

nectivity. Cells with more interconnected mitochondria should show a smaller number of Mito objects.

Although OTCCP accuracy does not appear to be directly dependent on organelle object number, EEC

and INT show increased classification accuracy than Mito. EECmay be more adequate for the OTCCP plat-

form due to its punctate structure, which allows for a precise determination of the geometric origin of en-

dosome objects. Integrating intra-mitochondria cristae organization75 into OT methodology may increase

cell classification accuracy using mitochondria databases. Otherwise, TPG parameters extracted from INT

datasets provided the highest classification accuracy, indicating that sites of inter-organelle contacts could

be at the basis of the OT classification of cancer cells. Although all results shown here are applicable only to

cancer cells, OT may also be appropriate for the classification of physiological or pathological cell types.

Considering the relationship between inter-organelle contacts and disease,76 OT methodology may be

relevant to assess the pathological status of other cell types. Metabolic or signaling adaptations can
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lead to changes in organelle organization and distribution, such as mitochondria nanotunnels,77 megami-

tochondria78 or endosomal tubulovesicular structures79 which could be leveraged by OT methodology to

classify different normal or pathological cell types,80–82 beyond cancer.

Parameter selection plays a crucial role in the classification system since it not only increases classification

accuracy but also reduces the data dimension and the computational costs. Furthermore, parameter

ranking shows that distance-based parameters play the most important role in the AI-based cell classifica-

tion. Parameters related to the organelle-organelle distance and distribution such as Sum_Dist and

Max_Dist were crucial in the classification tasks. These results indicate that organelles’ spatial distribution

and their distance relationship with neighbor organelles may play a key role in measuring cellular hetero-

geneity. Thus, in different cell lines, each organelle object is positioned in a non-randommanner establish-

ing a cell-specific signature organelle topology fingerprinting.

In summary, organelle’s spatial distribution (topology) plays a very important role in underscoring breast

cancer cell classification. OTCCP is a robust, scalable, and modular organelle topology-based method

to classify and identify breast cancer cell lines. The spatial context of organelles within cancer cells, specif-

ically their subcellular location and inter-organelle relationships (topology), can be used to discriminate

cancer cell populations grown in different microenvironments. Moreover, DL networks can be imple-

mented as an automated, fast, unbiased quantitative analysis of organelle topology to identify distinct can-

cer cell subpopulations in heterogeneous cancer cell systems.

Great progress has been made in the last decade in uncovering breast cancer heterogeneity to help

develop cancer treatment. Previously, quantity or subcellular location of protein biomarkers has been

compared to identify tumor tissue types. Recently, cell morphology has been indicated as a direct readout

of the functional phenotypic state of an individual cancer cell. Here, usingOTCCP in both 2D and 3D culture

systems, we discovered that the spatial context of organelles within cancer cells, specifically their subcel-

lular location and inter-organelle relationships (topology), can be used to inform breast cancer cells clas-

sification. These findings lay the groundwork for using subcellular topology features for cancer cell diag-

nosis, as well as identifying other cell types and conditions. For future work, we recommend considering

other organelle types, e.g., puncta-based organelles such as late endosomes or lysosomes, to ascertain

whether their distribution is also discriminative in discerning various cancer cells or can yield higher clas-

sification accuracies.
Limitations of the study

In this study, we only used breast cancer cell lines, which limits the impact of the conclusions. To broaden

the impact of the organelle topology cancer cell classification methodology, we will apply it to human tu-

mor tissue sections extracted from breast tumor xenografts or patient tumor samples.

Testing the organelle topology approach in co-culture mixed cancer cell samples or in metastatic tissue

samples should be included in future work.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti EEA1 BD Biosciences Cat# 610456; RRID: AB_397830

Anti-Tom 20 Santa Cruz Biotechnology sc-11415 has been discontinued. We are now

using Cat# 11802-1-AP from Proteintech; RRID: AB_2207530

AF647-anti-mouse Life technologies Cat# A21237; RRID: AB_2535806

AF647-anti-rabbit Life technologies Cat# A11070; RRID: AB_2534114

Experimental models: Cell lines

MCF10A ATCC CRL-10317

AU565 ATCC CRL-2351

MDA-MB-231 ATCC HTB-26

T47D ATCC HTB-133

Software and algorithms

Imaris software Andor 9.6

For measurements between organelle markers (INT),

the XTension ‘‘Surface Contact Area’’ IMARIS

plugin was used.

Andor https://imaris.oxinst.com/open/view/

surface-surface-contact-area

Organelle topology MATLAB code MATLAB https://github.com/ramonbossardi/

GithubCode_03162023

MATLAB R2021a Mathworks https://www.mathworks.com/products/

new_products/release2021a.html

KFDA and DNN code Matlab, BBBackProp https://github.com/ramonbossardi/

GithubCode_03162023
RESOURCE AVAILABILITY

Lead contact

Margarida Barroso, barrosm@amc.edu.

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Margarida Barroso, barrosm@amc.edu.

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data: all the data reported in this study will be shared by the lead contact upon request.

Software: The codes used in this iScience manuscript have been uploaded into the GitHub public platform

and can be accessed at this web address: https://github.com/ramonbossardi/GithubCode_03162023.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture

Cell lines were obtained from ATCC (Manassas, VA, USA) and cultured following ATCC requirement. Cells

were seeded on a glass bottom culture dish (35 mm diameter, poly-D-lysine coated; MatTek Corporation)

and grown overnight at 37�C in a 5% CO2 incubator. MCF10A cells were cultured in DMEM (Thermo Fisher

Scientific, catalog 11320) with 5% horse serum (Thermo Fisher Scientific, catalog 16050), 20 ng/mL EGF,

0.5 mg/mL hydrocortisone, 100 ng/mL Cholera toxin, 10 mg/mL bovine insulin with penicillin/ streptomycin.
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T47D and MDA231 cells were cultured in DMEM (Thermo Fisher Scientific, catalog 11965-092) with 10%

fetal bovine serum (FBS) (ATCC, catalog 30-2020), 4 mM L-glutamine and 10 mM HEPES, pH 7.4.

METHODS DETAILS

2D and 3D culture

In 2D culture system, cells were cultured in the media described above. In 3D environment, liquid overlay

technique was used to generate the spheroids.64,65 Cells were cultured in the media with 5% Matrigel�
Basement Membrane Matrix (Corning, Catalog 356237) for 4 days.

Uptake assays

For uptake assays,25 cells were incubated with iron-bound Tf conjugated with Alexa Fluor (Tf-AF555) at

25 mg/ml in phenol-red free DMEM for 10 min at 37�C.

Live cell imaging

For live cell imaging, cells were seeded in Nº 1.5 coverslips-bottom 35-mm Petri dishes coated with poly-D-

lysine (MatTek Corporation). Imaging medium comprised phenol red–free DMEM supplemented with

4 mM L-glutamine. Live mitochondrial (Mito) and early endosomes (EEC) staining was achieved with

100 nM MitoTracker Red (Molecular Probes) and a 2-min pulse of 50 mg/ml Tf AF488 (Thermo Fisher Scien-

tific), respectively. Before imaging, the cells were briefly washed and chased with imaging media for

another 2 min. Starting at time point 5–6 min after Tf pulse, time-lapse videos (4 frames per second; 5

z-stack series) of 45-s duration were acquired. The assay was performed under CO2 and temperature con-

trol within the live-cell incubation chamber of the Thunder Leica DMi8 inverted microscope.

Immunofluorescence

Cells were fixed for 15 min with 4% paraformaldehyde (PFA) at 37�C, permeabilized with 0.2% TritonX-100

in PBS for 15 min at room temperature, blocked for 90 min on a gentle rocker-shaker in blocking buffer

[0.5% fish skin gelatin (FSG)/1x PBS/1% bovine serum albumin (BSA), 0.2% Triton X-100).14,15,25,66 Cells

were immunostained with a monoclonal primary antibody anti-Tom20 (Santa Cruz Biotechnology, Inc sc-

11415) and anti-EEA1 (BD Biosciences, 610456), then incubated with Alexa Fluor secondary antibodies

for 1 h, post-fixed with 4% PFA for 10 min, and stained with DAPI for 15 min. All solutions were 0.45 mm sy-

ringe filtered.

Airyscan microscopy

Images were collected using a 63x Plan Apochromat (NA 1.4) objective in a Zeiss LSM880 Airyscan confocal

microscope (Zeiss, Oberkochen, Germany). Laser excitation lines at 405 nm (DAPI), 488 nm, 555 nm and

647 nm were used. Z-stack images were acquired at a pixel resolution of 0.04 mm in XY and 0.2 mm interval

in Z step using the piezo drive. Images were subjected to Airyscan processing (pixel reassignment) in Zen

Black (Zeiss software) and the Airyscan filtering was set to 6.0. High-resolution imaging provides lateral res-

olution to 120 nm for 2D and 3D data sets (Z-stacks) and 350-nm axial resolution for z-stacks.32 Z-stack im-

ages were collected spanning each cell’s overall height for whole-cell quantitative analysis. Due to the lim-

itation of the microscopy, the edge of spheroids was imaged to obtain same resolution images as 2D

cultured cells.

Image analysis

Images were analyzed at the single-cell level to evaluate cellular and organelle heterogeneity. Z-stack im-

ages were three-dimensional (3D)-rendered and analyzed using Imaris software (Bitplane, Inc, Switzerland,

version 9.6). The surface of mitochondria was determined according to the anti-Tom20 (Mitochondria,

Mito) immunostaining, while endosomal structures were visualized anti-EEA1 immunostaining (early endo-

somal compartment, EEC); the surface of the nuclei was selected according to the DAPI fluorescence

(405 nm laser excitation). Cellular shape and morphology were extracted using Tf uptake to label plasma

membrane as well as cytoplasmic endosomal vesicles, as described previously.14,15,25,66 We used the ‘‘sur-

face’’ module that is part of the Imaris 9.6 software (Andor Inc.) to carry out the 3D rendering of endocytic

structures labeled with anti-EEA1, anti-Tom20, Tf AF488 or Mitotracker red as complex 3D objects. In addi-

tion to that, the smoothing and background subtraction was held constant within a given set of experi-

ments, while the 3D rendering settings for segmentation were adjusted to provide improved 3D rendering

upon visual inspection, as described previously.15 For measurements between organelle markers (INT), the
24 iScience 26, 107229, July 21, 2023
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XTension ‘‘Surface Contact Area’’ IMARIS plugin (https://imaris.oxinst.com/open/view/surface-surface-

contact-area) was used. The morphological and topological features of cells, nuclei and organelles

including mitochondria, endosomal and endosome-mitochondria inter-organelle contact structures

weremeasured using Imaris surfacemodule. The Imaris reference frame tool was applied to set up the geo-

metric center of nuclear as the origin reference frame (Figure S4).
Data analysis

From cell and nucleus datasets, 23 parameters were extracted directly from Imaris software, and 3 param-

eters were extracted upon further calculation using MATLAB (R2021b). Organelle datasets include 18 pa-

rameters that were extracted directly from Imaris software, and 16 parameters were extracted upon further

calculation using MATLAB (Table S3). Statistical analysis was performed in MATLAB and visualized in

Graphpad (Prism 9) and Origin (2018b). All data are reported as mean G 95% CI. Statistical analysis of

the parameters to identify possible differences between difference cell lines was performed by a t-test

for p < 0.05 was considered statistically significant.
Classification using AI methods

Examining how well the cell lines in different classes (2D cultured four-class, 3D cultured four-class and

2D&3D eight-class) can be separated from each other is a classification problem. Combining the recorded

values for each object of the 34 parameters as a data vector, each class contains several object data points

and the aim of solving a classification problem is to separate the data points for each class as accurately as

possible. In addition to determining how accurately the data points of the 4 or 8 classes can be separated, it

is important to visualize with the relatively large number of 16 or 18 variables. For the classification task, we

used Random Forest (RF), kernel Fisher Discriminant Analysis (kFDA) and Deep Learning Neural Network

(DL). To assess the generalizability of the AI trained models, object datasets (cells or organelles, see below)

were randomly divided into a training and a validation set. The models were trained based on the training

set, containing 85% of randomly selected data points for each class. The classification accuracy, i.e., the

number of correctly assigning data points to the classes they belong to over the total number of data

points, was then evaluated based on the remaining 15% of data points. For the training, validation, and pre-

dictor analysis, the MATLAB R2021a and BackProp Neural Net package72 were utilized for RF, kFDA and

DL, respectively. For training the neural networks, we utilized a Bengio initialization83 by drawing the initial

set of weights from a uniform distribution such that the absolute values do not exceed 0.1. In addition to

that, the adaptive momentum solver (ADAM)71 was used to train each network using backpropagation for

up to 1000 epochs.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed in MATLAB and visualized in Graphpad (Prism 9) and Origin (2018b). All

data are reported as mean G 95% CI. Statistical analysis of the parameters to identify possible differences

between difference cell lines was performed by a t-test and P values were calculated using Tukey’s multiple

comparisons test, p value > 0.05 (ns), < 0.01 (**), < 0.001 (***) or < 0.0001 (****).
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