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This study examines the atrophy patterns in the entorhinal and transentorhinal cortices

of subjects that converted from normal cognition to mild cognitive impairment. The

regions were manually segmented from 3T MRI, then corrected for variability in boundary

definition over time using an automated approach called longitudinal diffeomorphometry.

Cortical thickness was calculated by deforming the gray matter-white matter boundary

surface to the pial surface using an approach called normal geodesic flow. The surface

was parcellated based on four atlases using large deformation diffeomorphic metric

mapping. Average cortical thickness was calculated for (1) manually-defined entorhinal

cortex, and (2) manually-defined transentorhinal cortex. Group-wise difference analysis

was applied to determine where atrophy occurred, and change point analysis was

applied to determine when atrophy started to occur. The results showed that by the

time a diagnosis of mild cognitive impairment is made, the transentorhinal cortex and

entorhinal cortex was up to 0.6 mm thinner than a control with normal cognition. A

change point in atrophy rate was detected in the transentorhinal cortex 9–14 years prior

to a diagnosis of mild cognitive impairment, and in the entorhinal cortex 8–11 years prior.

The findings are consistent with autopsy findings that demonstrate neuronal changes in

the transentorhinal cortex before the entorhinal cortex.
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1. BACKGROUND

Evidence suggests that neuropathological changes of Alzheimer’s disease (AD) begin years before
the onset of clinical symptoms (Sperling et al., 2011). Accumulation of these neuropathological
changes is associated with neuronal injury, which can bemeasured indirectly by structural magnetic
resonance imaging (MRI) (Atiya et al., 2003; Kantarci and Jack, 2004). A number of MRI studies
have detected atrophy in the entorhinal cortex (ERC), hippocampus and amygdala associated with
clinical disease severity (Devanand et al., 2007; La Joie et al., 2012; Miller et al., 2015b) and years
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to AD dementia conversion (Atiya et al., 2003; Kantarci and
Jack, 2003). More recent MRI studies have focused on evidence
of atrophy that precede clinical symptoms (Jack et al., 2004;
Csernansky et al., 2005; den Heijer et al., 2006; Apostolova et al.,
2010; Dickerson et al., 2011; Miller et al., 2013; Soldan et al., 2015;
Pettigrew et al., 2016), often detecting these smaller changes using
time-series data analysis (Durrleman et al., 2012) and survival
analysis. These MRI biomarkers of AD-related atrophy prior to
manifestation of clinical symptoms are of interest because (1)
they may aid in assessing efficacy of therapeutic interventions
and (2) they may aid in the identification of populations that can
benefit from therapeutic intervention prior to clinical symptoms.

Braak’s staging of AD suggests that cortical accumulation
of neurofibrillary tangles starts in the transentorhinal cortex
(TEC), spreads medially to the ERC, and then involves the
hippocampus and amygdala (Braak and Braak, 1991; Braak et al.,
2006). Accumulation of tau pathology has been correlated with
changes in cognitive status in the presence of β-amyloid plaques
(Nelson et al., 2012), as well as with TEC atrophy as detected
in MRI (Xie et al., 2018). While relatively few MRI studies exist
on AD-related TEC changes (Tward et al., 2017b; Wolk et al.,
2017), our recent work demonstrated that subjects with mild
cognitive impairment (MCI) have increased baseline atrophy
and increased rate of atrophy compared to cognitively normal
controls, and that changes in the TEC had greater magnitude
than changes in the ERC, hippocampus, and amygdala (Kulason
et al., 2019). In addition, our group’s work on change point
analysis has demonstrated MRI-based shape metrics can detect
atrophy in the ERC earlier than hippocampal and amygdalar
atrophy (Younes et al., 2014). These changes precede clinical
symptoms by up to 10 years.

The evidence of MRI biomarkers that precede clinical
symptoms taken together with evidence of cortical AD-related
changes selectively occurring first in the TEC motivate a close
look at TEC atrophy over the preclinical stage of AD progression.
In this study, we aim to localize, both spatially and temporally,
MRI-based atrophy detection within the TEC and ERC by
examining subjects from two diagnostic groups: stable normal
cognition (NC), and NC to MCI converters.

2. METHODS

2.1. Data Collection
Subjects were selected from the ADNI database
(adni.loni.usc.edu). The criteria for stable NC included the
absence of a diagnosis of MCI or AD on all baseline and
follow-up visits, a CDR score of 0 on all baseline and follow-up
visits, evidence of performance within the normal range on
the Logical Memory Subtest of the Wechsler Memory Scale on
all baseline and follow-up visits (based on education adjusted
norms), and negative results for elevated amyloid β levels on the
baseline visit (greater than a cut off of 192 pg/mL from CSF as
established by the ADNI Biospecimen Core).

The criteria for NC to MCI converters included evidence of
performance within the normal range on the Logical Memory
Subtest of the Wechsler Memory Scale at baseline (based on
education adjusted norms), a CDR score of 0 on the baseline

TABLE 1 | Demographics (mean ± standard deviation where applicable).

Diagnostic group Stable NC NC to MCI

Sample size (n) 33 17

Baseline age (years) 72.3± 5.5 74.9± 5.3

Sex (% Female) 45.5 70.6

# of scans (years) 4.5± 0.6 4.6± 1.1

Scan period (years) 3.4± 1.1 2.9± 1.0

Clinical evaluation period (years) 5.3± 2.4 6.4± 3.7

exam, a diagnosis of NC at baseline, and a diagnosis of MCI or
dementia at a subsequent follow-up visit. Estimated MCI age-of-
onset was established based on annual assessment of diagnosis.
Note that subjects missing a diagnostic evaluation more than a
year prior to MCI diagnosis were excluded, and one subject with
an MCI diagnosis was also excluded due to a stable, high score
on the Logical Memory Subtest of the Weschler Memory Scale 5
years after diagnosis.

In addition, subjects had to have a minimum of three 3T MRI
scans over 2 or more years. Out of the 30 subjects that met all
criteria for NC toMCI converters, all subjects were examined and
17 had a continuous collateral sulcus (CoS) and were included in
this study (see section 2.2 for detailed explanation).We examined
a subset of available stable NC subjects to reach a total sample
size of 50. Out of the 84 subjects that met all criteria for stable
NC, 68 were examined and 33 had a continuous collateral sulcus
and were included in this study. The demographics of subjects
included in this study are summarized in Table 1. Two-sample
t-tests showed no significant diagnostic group differences by
age, number of scans, scan period, or clinical evaluation period.
Pearson chi-squared test showed no significant diagnostic group
difference by sex. Note that the clinical evaluation period is longer
than the scan period because the scan protocol was updated
in the ADNI 3 cohort to an accelerated scan sequence. These
accelerated scans were not included in this analysis.

2.2. Manual Segmentation and
Surface-Based Morphometry
As in previous projects (Tward et al., 2017b; Kulason et al.,
2019), we restricted the analysis to the left hemisphere and
excluded subjects with a discontinuous CoS in the defined region
of interest. There are several variants of the CoS to consider,
illustrated in Figure 1. The first variant is a deep, continuous
sulcus where the rhinal sulcus shares a sulcal bed with the
collateral sulcus proper. This variant has been referred to as
Type I CoS (Ding and Van Hoesen, 2010) and Type II/Type
III rhinal sulcus (Huntgeburth and Petrides, 2012). The second
variant is a discontinuous CoS where the collateral sulcus proper
begins posterior to the GI. This variant has been referred to
as a Type IIa CoS (Ding and Van Hoesen, 2010) and Type I
rhinal sulcus (Huntgeburth and Petrides, 2012). Finally, there is
a variant with a discontinuous CoS where the collateral sulcus
proper begins anterior to the GI, and therefore is excluded for
this study. This variant has been referred to as a Type IIb CoS
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FIGURE 1 | A coronal MRI section and corresponding surface of each CoS variant Type I (left), Type IIa (middle), and Type IIb (right). In Type IIb, the segmentation

was extended to the second CoS, also known as the collateral sulcus proper. The orientation of surfaces is as follows: anterior (top), posterior (bottom), medial (left),

lateral (right).

TABLE 2 | Distribution of collateral sulcus variants.

Type I Type IIa Type IIb

(continuous CoS) (discontinuous (discontinuous

posterior CoS) anterior CoS)

NC (n = 68) 21 (31%) 12 (18%) 35 (51%)

NC to MCI (n = 30) 13 (43%) 4 (13%) 13 (43%)

Total (n = 98) 34 (35%) 16 (16%) 48 (49%)

Type IIb CoS were excluded from this analysis.

(Ding and Van Hoesen, 2010) and also falls into the category for
Type I rhinal sulcus (Huntgeburth and Petrides, 2012). Table 2
categorizes the proportion of CoS variants prior to exclusion
of Type IIb. Previous work has shown there is a relationship
between CoS depth and the boundaries of the ERC and TEC with
respect to anatomical markers (Insausti et al., 1998). Briefly, in
a shallow CoS (< 1cm) the ERC extends to the deepest extent
of the CoS. In a regular CoS (between 1 and 1.5 cm), the ERC
extends to the midpoint of the medial bank of the CoS. In a deep
CoS (> 1.5cm) the ERC extends up to the CoS. In this subject set
we found that excluded Type IIb CoS subjects most often had a
shallow CoS, while the Type I and Type IIa variants included in
this study were of a regular to deep CoS type.

226 3T T1 MRI scans were used in this study. ERC and
TEC were segmented manually using Seg3D software (Center
for Integrative Biomedical Computing, 2016). We followed an
established procedure for segmentation and delineation of the
ERC and TEC (Tward et al., 2017b) that was based on anatomical
landmarks described near cytoarchitectonically-defined ERC
boundaries (Insausti et al., 1998; Ding and Van Hoesen, 2010).

The anterior boundary of the ERC and TEC were defined 4mm
anterior to the hippocampal head. Delineation of the ERC and
TEC anterior to this boundary is more complex and excluded
from this study. Earlier works suggest that the area anterior
to this region is a mix of ERC and perirhinal cortex (Insausti
et al., 1998), or olfactory cortex (Krimer et al., 1997), whereas
a more recent work suggests that this area is, in fact, part of
the ERC (Ding and Van Hoesen, 2010). The posterior boundary
for ERC and TEC was defined 2 mm posterior to the gyrus
intralimbicus (GI) (Insausti et al., 1998). The medial extent of the
ERC was defined as far as the gray/white boundary was visible.
This delineation excludes a small dorsal medial aspect of the ERC
that rests against the amygdala, and is similar to how other T1
MRI protocols delineate the ERC (Desikan et al., 2006; Maass
et al., 2015). The lateral extent of the ERC and medial extent of
the TEC was defined at the medial extent of the collateral sulcus
(CoS), as is found in a deep CoS (Insausti et al., 1998). The lateral
extent of the TEC was defined as being at the deepest extent of
the CoS, as is also found in a deep CoS (Ding and Van Hoesen,
2010).

Figure 2 shows a sample of ERC plus TEC surfaces generated
from manual segmentations. A population template for the ERC
plus TEC surface was calculated from these surfaces by taking
the average (Fréchet mean) diffeomorphism in a Bayesian setting
(Ma et al., 2008). Then, the segmentations were adjusted for
variability in boundaries over time by mapping the population
template simultaneously onto each scan of a time series (Tward
et al., 2017a). The result is a set of surfaces of the ERC plus TEC.

2.3. Surface Parcellation
Studies of this region have tended to use inconsistent
nomenclature. We mapped four atlases with commonly used
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FIGURE 2 | Sample of ERC plus TEC surfaces generated from manual segmentations (left) and the resultant population template (right). The orientation is as

follows: anterior (top), posterior (bottom), medial (left), lateral (right).

sub-regional labels onto our ERC plus TEC population template:
(1) manual labels of ERC and TEC based on cortical folding
seen in structural MRI (Tward et al., 2017b), (2) automated
labels of ERC and parahippocampal gyrus (PHG) based on
cortical folding seen in structural MRI (Desikan et al., 2006),
(3) labels of posterior medial ERC (pmERC), anterior lateral
ERC (alERC), and perirhinal cortex (PRC) based on connectivity
patterns seen in functional MRI after manual segmentation of
ERC in structural 7TMRI (Maass et al., 2015), and (4) histological
labels of intermediate superior ERC, intermediate rostral ERC,
intermediate caudal ERC, prorhinal ERC, medial rostral ERC,
medial caudal ERC, lateral ERC, sulcal ERC and TEC as identified
in an 11T ex vivoMRI (Krimer et al., 1997; Miller et al., 2015a).

Manual segmentation of ERC and TEC was performed on an
scan with a Type IIa CoS variant of regular depth (1.30 cm). To
generate labels from the Desikan-Killiany atlas, FreeSurfer 6.0
was run on the same scan. The functional MRI atlas was provided
on a subject with Type IIa CoS variant of regular depth (1.20
cm) (Maass et al., 2015). The ex vivo MRI atlas was provided
on a subject with a Type IIb CoS variant of shallow depth (0.75

cm). For each atlas, we manually segmented the ERC plus TEC
from the structural MRI following the same protocol as for our
subjects. In the ex vivo case, since the CoS was shallow, the TEC
was extended to the lateral bank of the CoS, as seen in histology
(Insausti et al., 1998; Ding and Van Hoesen, 2010). We then
mapped the atlas labels to the manually-defined ERC plus TEC
surface by linear interpolation. Finally, we mapped these surfaces
and their labels to the population template surface following the
LDDMM framework (Beg et al., 2005). The result was four sets
of labels, one from each atlas, on each vertex of the population
template surface.

The Desikan-Killiany atlas defined the anterior boundary of
ERC at the rostral end of the CoS; this was approximately 6 mm
anterior to the boundary defined in our protocol. The functional
MRI atlas defined the anterior boundary at the rostral end of the
amygdala, which coincided with our protocol’s boundary. The
anterior boundary on the ex vivoMRI atlas was 0.5 mm posterior
to our protocol’s boundary.

The Desikan-Killiany atlas defined the posterior boundary at
the caudal end of the amygdala. This excludes a posterior portion
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of the ERC that runs lateral to the hippocampal formation
(Krimer et al., 1997; Insausti et al., 1998; Ding and Van Hoesen,
2010). The functional MRI atlas defined the posterior boundary
as extending to the caudal end of the CoS. Since this atlas was a
Type IIa CoS variant, the caudal extent of the CoS coincided with
1.2 mm posterior to the GI, or one 0.6 mm slice anterior to our
protocol’s boundary. The posterior boundary of the ex vivo atlas
was 1.0 mm anterior to our protocol’s boundary.

The Desikan-Killiany atlas, functional MRI atlas, and our
protocol defined themedial boundary at the furthest extent where
gray/white boundary was visible. The ex vivo atlas included the
dorsal medial aspect of the ERC that borders the amygdala, a
border that is not always visible on 3T T1 MRI. An overlay of
the ex vivo atlas ERC partition and our protocol’s ERC plus TEC
partition highlights this difference as shown in Figure 3.

Finally, the Desikan-Killiany atlas defined the lateral extent
of entorhinal cortex as the most lateral extent of the CoS. This
boundary definition most closely followed that of a shallow CoS
variant (Insausti et al., 1998), often seen in Type IIb CoS that were
excluded from this study. The functional MRI atlas delineated the
ERC ending at the shoulder of the CoS, a definition that most
closely followed the boundary of a deep CoS variant (Insausti
et al., 1998). Our protocol also followed the delineation that
matches a deep CoS variant. Since the subjects included in this
study range from regular CoS depth (1.0–1.5 cm) to deep CoS
depth (> 1.5 cm), it is likely that our protocol may include a small
portion of the ERC within the TEC label.

2.4. Cortical Thickness
To calculate vertex-wise cortical thickness, we followed an
established procedure based on LDDMM (Ratnanather et al.,
2019). The ERC plus TEC surface was cut into two surfaces: the
pial surface and the gray matter-white matter boundary surface.
The gray matter-white matter boundary surface was deformed
to the pial surface within the LDDMM framework, with an
additional imposed constraint that the surface must flow in the
direction normal to its evolving surface. Cortical thickness was
then estimated as the distance along these trajectories. Average
ERC thickness and average TEC thickness were calculated as the
mean thickness across vertex labeled ERC and TEC, respected, as
mapped from the manual structural MRI atlas.

2.5. Group Difference Analysis
We tested where there were differences in shape measures by
diagnostic group. The log-linear mixed effects model under the
null hypothesis can be written as Equation (1) given a subject i,
scan j, and vertex k.

log(thickness)i,j,k = ak + bk agei,j + ck sexi + ei,k + ǫi,j,k (1)

The constants a, b, c, and the variance of 0-mean Gaussians e and
ǫ are estimated by maximum likelihood. e is the subject-specific
random effect, while age and sex (a binary indicator variable) are
fixed effects.

The log-linear mixed effects model under the alternative
hypothesis can be written as Equation (2).

log(thickness)i,j,k =ak + bkagei,j

+

(

a′k + b′k(agei,j − age_MCIonseti)
)

isMCIi

+ c sexi + ei,k + ǫi,j,k

(2)

isMCI is a binary indicator variable for whether a subject belongs
to the group that converted from NC to MCI, and age_MCIonset
is the age of MCI diagnosis. a′ is the mean difference in log
thickness at the time of MCI diagnosis for subjects that converted
from NC to MCI. b′ corresponds to the disease-related rate of
change in this group.

We tested whether the model under the alternative hypothesis
significantly fit the data better than the model under the null
hypothesis by using the likelihood ratio as a test statistic and
bootstrap resampling 10,000 samples. The bootstrapped samples
were constructed by sampling from whitened residuals under
the null hypothesis. We compared the likelihood ratio to the
distribution of likelihood ratios of the bootstrapped samples.
We corrected for multiple comparisons over the vertices by
using the maximum test statistic over all vertices for each set of
bootstrapped samples (Nichols and Hayasaka, 2003).We rejected
the null hypothesis when the true likelihood ratio was greater
than 95% of the bootstrapped likelihood ratios.

2.6. Change Point Analysis
We tested when a change in atrophy rate occurred with respect to
MCI diagnosis. Details for constructing and testing this change
point model are described in another work (Tang et al., 2017).
Here we provide a brief summary of the approach.

The log-linear mixed effects model under the null hypothesis
can be written as Equation (3) given a subject i, scan j, and
location k.

log(thickness)i,j,k = ak + bk agei,j + ck sexi

+dk age_MCIonseti + ei,k + ǫi,j,k (3)

The constants a, b, c, d, and the variance of 0-mean Gaussians
e and ǫ are estimated by maximum likelihood. e is the subject-
specific random effect, while age and sex (a binary indicator
variable) are fixed effects. Unlike in the group-wise difference
analysis, this model has only two locations in order to reduce
computational complexity: one for average ERC thickness, and
the other for average TEC thickness.

The model under the alternative hypothesis can be written as
Equation (4).

log(thickness)i,j,k =ak + bkagei,j

+ b′k(agei,j − (age_MCIonseti + 1))+

+ cksexi + dkage_MCIonseti + ei,k + ǫi,j,k

(4)

1 is the number of years from a diagnosis of MCI to the
change point in atrophy rate, and (age_MCIonseti + 1)+ =
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FIGURE 3 | Krimer subregions of ERC labeled on 11T ex vivo MRI (left). ERC plus TEC labeled on same MRI following protocol described in section 4.2 (right).

Overlay of segmentations (middle). The orientation is as follows: anterior (top), posterior (bottom), medial (left), lateral (right).

max(age_MCIonseti + 1, 0) is the number of years past the
change point. The constants a, b, c, d, and the variance of 0-mean
Gaussians e and ǫ are estimated by maximum likelihood over a
fixed 1 with yearly increments of 1 between −50 and 50 years.
The best candidate 1 is calculated from the posterior mean.

For stable NC subjects, we estimated MCI diagnosis from a
conditional probability distribution where the age of onset was
constrained to be after the last diagnostic evaluation, and drawn
from a Gaussian distribution with mean age ofµ1 = 93 years and
standard deviation of σ1 = 14.5 years. This distribution of MCI
diagnosis was estimated (Tang et al., 2017) using a set of 1, 000
subjects enrolled with normal cognition and a family history of
Alzheimer’s disease.

Since the subjects in this study were selected to meet
diagnostic group criteria and do not represent a random
sample over the progression of the disease, we re-weighted
the likelihood function by the distribution of stable NC
and NC to MCI converters expected if the subjects were
selected blind to diagnostic group. The subjects in the
ADNI database were enrolled to meet a set number of
subjects per diagnostic group, and as such, cannot be
used to estimate this distribution. Instead, we examined
the BIOCARD database, where subjects were enrolled
cognitively normal and followed for up to 22 years at time
we examined this database (biocard-se.org). This distribution
was calculated from a subset of subjects over 65 years of
age at their most recent follow-up visit. Specifically, the
proportion was 184/260 stable NC and 44/260 NC to
MCI converters.

We tested whether the model under the alternative hypothesis
significantly fit the data better than the model under the null
hypothesis using the likelihood ratio as a test statistic and
bootstrap resampling 1,000 samples. The bootstrapped samples
are constructed by sampling from whitened residuals under the
null hypothesis, with imputed values for age_MCIonset for stable
NC subjects.We compared the likelihood ratio to the distribution
of likelihood ratios of the bootstrapped samples and rejected the
null hypothesis when the likelihood ratio was greater than 95%
of the bootstrapped likelihood ratios. We used the maximum

test statistic over pairs of ERC and TEC statistics to control
family-wise error rate (Nichols and Hayasaka, 2003).

In the case where the null hypothesis was rejected, we
then determined the confidence interval for 1, b and b′ by
bootstrap resampling under the alternative hypothesis 1,000
times. The bootstrapped samples were constructed by sampling
from whitened residuals under the alternative hypothesis, with
imputed values for age_MCIonset for NC subjects. In the case
where the null hypothesis was rejected for both ERC and TEC
measures, we then calculated the probability that the change
point for TEC occurred before the change point for ERC based on
the change point 1 of each pair of bootstrapped samples under
the alternative hypothesis. This one-sided test was selected based
on histological evidence that changes occurred in the TEC before
the ERC (Braak et al., 2006).

3. RESULTS

3.1. Surface Parcellation
The results of the four atlas mappings onto the population
template surface are shown in Figure 4. Comparison of
the atlases highlight inconsistencies introduced by varying
nomenclature and CoS variant. The automated labels based
on cortical folding used by Desikan-Killany defined the ERC
extending into the CoS, a definition that matches a shallow CoS
variant. The atlas also excluded the posterior extent of the ERC.
In contrast, the functional MRI atlas defined the perirhinal cortex
(PRC), an area that includes the TEC, and separated this structure
from the ERC using a definition that matches a deep CoS variant.
Histologically-defined subregions of the ERC show yet another
popular parcellation of this region on a regular depth (1–1.5 cm)
CoS variant. Note how in this definition, the sulcal ERC extends
into the shoulder of the CoS. In this study, average ERC and
average TEC metrics were calculated based on the labels shown
in the manual structural labels (top left).

3.2. Cortical Thickness
Average cortical thickness of TEC and average cortical thickness
of ERC are plotted in Figure 5. The TEC is slightly thicker than
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FIGURE 4 | Manual structural labels (top left), automated structural labels (top right), functional labels (bottom left), histological labels (bottom right) mapped

onto the population template.

the ERC, which is in agreement with previous work (Kulason
et al., 2019). In both regions, organization by MCI diagnosis date
show cortical thickness measures decrease with progression of
the disease, and that the rate of cortical thinning is noticeably
steeper in NC to MCI converters than in stable NC subjects.

3.3. Diagnostic Group Difference Analysis
We rejected the null hypothesis with global p < 0.0001
and concluded that there was a difference in cortical thickness
between diagnostic groups. Figure 6 shows the difference in
atrophy and atrophy rate across all vertices. A summary of
average andmaximum atrophy/atrophy rates is shown inTable 3.
As the data demonstrates, at the time of MCI diagnosis,
individuals who had progressed to a diagnosis of MCI were as
much as 0.58 mm thinner in the ERC and 0.60 mm thinner in
the TEC. The additional atrophy rate in the participants who
progressed from NC to MCI was 2.96% per year in the ERC

on average and 2.43% per year in the TEC on average. This
is a notable increase from age-related atrophy which was, on
average, 0.68% per year in the TEC and 0.66% per year in the
ERC. In other words, the average total atrophy rate in NC to
MCI converters was 5.35 times greater in the ERC and 4.68 times
greater in the TEC compared to stable NC subjects.

3.4. Change Point Analysis
We rejected the null hypothesis and concluded that there was
a change point 9.02 years before MCI onset for the ERC (p <

0.001) and 10.69 years before MCI diagnosis for the TEC (p <

0.001). Prior to the change point, the atrophy rate was 0.35%/year
for the ERC and 0.34%/year for the TEC. After the change
point, the additional atrophy was 3.75%/year for the ERC and
2.58%/year for the TEC. The 95% confidence interval for the
parameters of interest are shown in Table 4. The ERC change
point in thickness occurred at or before the TEC change point
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FIGURE 5 | Average TEC thickness (top) and ERC thickness (bottom) plotted over age (left). Average TEC thickness (top) and ERC thickness (bottom) plotted

with respect to time from baseline scan for NC, and with respect to time from MCI onset for NC to MCI converters (right). Each line corresponds to a subject, the

color to a diagnostic group (stable NC, NC to MCI), and the marker border to sex (no border is male, bordered is female).

TABLE 3 | Summary of group-wise difference analysis by region.

ERC ERC TEC TEC

average max average max

Atrophy at

MCI diagnosis 0.25 mm

(8.46%)

0.58 mm

(16.54%)

0.23 mm

(7.63%)

0.60 mm

(17.34%)

MCI-related

Atrophy rate 2.96%/year 4.23%/year 2.43%/year 4.11%/year

age-related

Atrophy rate 0.68%/year 2.08%/year 0.66%/year 1.61%/year

in 3.75% of bootstrapped samples. We concluded that the TEC
change point preceded the ERC change point.

4. DISCUSSION

The first major finding of this study is that anterior regions of
the ERC and TEC were more than half a millimeter thinner (up
to 17% thinner) in NC to MCI converters at the time of MCI
diagnosis, and that disease-related atrophy was roughly 3% per
year. The evidence suggests that disease-related atrophy begins
prior to an MCI diagnosis in the anterior lateral region of ERC
and anterior region of TEC. This is in line with our previous study

TABLE 4 | 95% confidence interval (min, max).

Change point Age-related rate Disease-related rate

(years before MCI) (%/year atrophy) (%/year atrophy)

ERC thickness (7.63, 11.31) (0.07, 0.65) (3.03, 4.41)

TEC thickness (8.92, 13.80) (0.10, 0.56) (2.11, 3.08)

Change point, age-related rate, and disease-related rate correspond to the variables −1,

−b, and−b′, respectively. The disease-related rate is the additional rate seen post change

point.

that examined subjects after an MCI diagnosis, where we found
disease-related thickness atrophy was 5% atrophy per year in the
TEC and that MCI subjects were on average 23% thinner than
NC (Kulason et al., 2019). The 3% atrophy per year in NC toMCI
converters vs. 5% atrophy per year in subjects afterMCI diagnosis
may suggest that the atrophy rate increases with progression of
the disease from the preclinical to clinical stage.

The second major finding of this study is that there was a
change in the rate of ERC thickness atrophy 8–11 years prior
to MCI diagnosis, and a change in the rate of TEC thickness
atrophy 9–14 years before the diagnosis of MCI. The order of the
change points, TEC before ERC, is consistent with histological
report of neurofibrillary tau accumulation in this region (Braak
et al., 2006). The time of change point is consistent with a
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FIGURE 6 | Top left is the model of a 65-year-old, male, stable NC. Bottom left is the age-related atrophy rate. Top right is the difference in thickness at time of MCI

diagnosis in NC to MCI converters. Bottom right is the additional atrophy rate for NC to MCI converters.

previous study, which found changes in surface area of the
FreeSurfer-defined ERC 8–10 years prior to symptom onset
(Younes et al., 2014).

These findings emphasize the discrepancies in nomenclature
pertaining to the TEC and ERC. We showed how the Desikan-
Killiany atlas defined ERC beginning anterior to our protocol and
ending anterior to our protocol. Our protocol closelymatched the
anterior and posterior boundaries defined in the function MRI
atlas and ex vivo atlases. The Desikan-Killiany ERC extended
laterally into the CoS, which is accurate for shallow CoS common
variant in Type IIb CoS, and not as accurate for the regular and
deep CoS variants that were included in this study. The ex vivo
atlas, a subject with Type IIa CoS variant of regular depth, marked
the sulcal ERC lateral boundary shortly past the shoulder of the
CoS, which is consistent with cytoarchitectonically-defined ERC
in previous studies (Krimer et al., 1997; Insausti et al., 1998;
Ding and Van Hoesen, 2010). The functional MRI atlas and
Desikan-Killiany atlas chose not to define the TEC separate from

perirhinal cortex and fusiform gyrus, respectively. The 4 surface
parcellationsmapped to the same coordinate system highlight the
need for a standardized nomenclature of this region, much like
the work being done to standardize sub-regional boundaries of
the hippocampus (Adler et al., 2018; Olsen et al., 2019).

There are a number of strengths to this study. The subjects
were carefully selected to (1) follow a strict set of inclusion
criteria for diagnostic grouping, and (2) exclude subjects with
a discontinuous CoS within the region of interest. This was
done to reduce confounding factors introduced by other medical
conditions and natural variability in cortical folding. In addition,
scans were manually segmented to avoid errors introduced
by automated segmentation methods. Finally, the results were
put in the context of several atlases for broader interpretation
of findings.

There are also a few limitations to this study, the first being
a relatively small sample size. Accurate segmentations, which
have been performed manually for this study, are extremely
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time consuming. The ERC is particularly difficult to segment
automatically due to its proximity with the meninges and
oculomotor nerve. These neighboring structures are a similar
intensity to gray matter voxels in T1 scans. Some recent work has
been done to address this issue using automatic parcellation (Xie
et al., 2017); a future direction is to determine whether this type
of automated approach to segmentation affects ERC and TEC
metrics produced in this analysis.

Another limitation of this study is that the distribution of
samples is biased by diagnostic grouping. It is difficult to estimate
the true distribution of diagnostic groups because the ADNI
protocol selected subjects based on diagnosis and the follow-up
time varies. This is mitigated by the use of distribution estimates
calculated from the BIOCARD database.

In the future, this study can be extended to include shallow,
discontinuous CoS variants for detecting Alzheimer’s-related
changes. It is of interest to develop metrics of disease progression
that are robust to this natural variation in folding. Autopsy
studies have shown that subjects with a shallow, discontinuous
CoS have a TEC that begins at the deepest extent of the CoS
and extends out laterally, whereas deep, continuous CoS have a
TEC that begins at the shoulder of the CoS and extends only
to the deepest extent of the CoS (Insausti et al., 1998; Ding and
Van Hoesen, 2010). Therefore, a multi-atlas approach with CoS
variant-specific atlases may be desirable to delineate the ERC and
TEC accurately for a full population of subjects.

Finally, given the localization of tau to CA1 after initial
deposits along the boundary of TEC and ERC (Braak and
Braak, 1991), it is of interest to extend thickness analysis to this
region. Unfortunately, the CA1 subfield cannot be segmented
separately from the hippocampal formation in 3T T1 MRI.
Previous volumetric analysis of the hippocampus has shown 9%
atrophy in MCI subjects, compared to 27% volumetric atrophy
of ERC plus TEC in MCI subjects (Kulason et al., 2019). Previous
change point analysis of surface expansion/contraction metrics
have shown a hippocampal change point 2–4 years prior to
symptom onset, compared to 8–10 years prior to symptom onset
for a Desikan-Killiany defined ERC (Younes et al., 2014). As
more high resolution T2 MRI data become available, such as
with data being collected in the more recent ADNI 3 protocol,
it will be of interest to extend this thickness analysis to the
CA1 subfield.

This study provides strong evidence that TEC and
ERC thickness is a sensitive measure to progression to
the symptomatic phase of Alzheimer’s disease and that
disease-related atrophy begins to occur at least 9 years prior to a
clinical diagnosis of MCI.
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