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Abstract: Type 2 diabetes mellitus (T2DM) and osteoarthritis (OA) are common chronic diseases
that frequently co-exist. The link between OA and T2DM is attributed to common risk factors,
including age and obesity. Several reports suggest that hyperglycemia and accumulated advanced
glycosylation end-products might regulate cartilage homeostasis and contribute to the development
and progression of OA. Metformin is used widely as the first-line treatment for T2DM. The drug acts
by regulating glucose levels and improving insulin sensitivity. The anti-diabetic effects of metformin
are mediated mainly via activation of adenosine monophosphate (AMP)-activated protein kinase
(AMPK), which is an energy sensing enzyme activated directly by an increase in the AMP/ATP
ratio under conditions of metabolic stress. Dysregulation of AMPK is strongly associated with
development of T2DM and metabolic syndrome. In this review, we discuss common risk factors,
the association between OA and T2DM, and the role of AMPK. We also address the adaptive use of
metformin, a known AMPK activator, as a new drug for treatment of patients with OA and T2DM.

Keywords: osteoarthritis; type 2 diabetes mellitus; metformin; AMP-activated protein kinase

1. Introduction

Osteoarthritis (OA) and type 2 diabetes mellitus (T2DM) are common chronic diseases
worldwide. About 237 million people, or 3.3% of the world’s population, suffer from OA,
a condition that is much more common in older individuals [1,2]. About 10% of males
and 18% of females over 60 years-of-age are affected. The main symptoms are joint pain
and stiffness, caused mainly by cartilage degradation [3]. Rates of T2DM have increased
markedly since 1960; indeed, 12% of adults aged 20 years and above, and 26% of those
over 65, are affected [4]. T2DM is associated with long-term complications such as heart
disease, stroke, blindness, and kidney failure, all of which can reduce life-expectancy by
up to 10 years [1,5]. Co-existence of OA and T2DM in aging people is common, and those
with T2DM seem to be more susceptible to developing OA. Piva, S.R. et al., 2015 study
in adults aged 18–64 years showed that the prevalence of arthritis in those with T2DM
was 52%, whereas as that in those without T2DM was 27% [6]. Although the molecular
mechanism(s) underlying the high prevalence of OA in those with T2DM is not clear,
OA and T2DM share risk factors such as aging and obesity. Metformin is the first-line
mediation treatment for T2DM. The anti-diabetic effects of this drug are mediated via
activation of AMP-activated protein kinase (AMPK) due to blockade of the mitochondria
respiratory chain, resulting in an increased AMP/ATP ratio [7,8]. Since the incidence of
OA in patients with T2DM increases with age, development of the effective medications
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for the prevention and treatment of the two diseases is necessary. In this review, we discuss
common risk factors for OA and T2DM, along with the molecular mechanism(s). We also
discuss preclinical/clinical application of metformin in those with OA.

2. OA

OA is the most common degenerative joint disease, affecting an estimated 12%–15%
of the global population aged 25–74 years [9]. Over 70% of the population aged over 65
show radiographic evidence of OA [6]. Progressive degeneration of articular cartilage,
synovitis, subchondral bone sclerosis, and osteophyte formation are the hallmarks of os-
teoarthritis. Degradation of type II collagen is the key event that determines the irreversible
progression of OA [10,11]. Under normal conditions, articular chondrocytes maintain a
dynamic equilibrium between synthesis and degradation of extracellular matrix (ECM)
components, which include collagen type II and aggrecan (ACAN), the most abundant
proteoglycan (PG) in articular cartilage [12]. As OA progresses, catabolic processes are
up-regulated and anabolic processes are down-regulated, leading to severe disruption of
ECM equilibrium and subsequent cartilage degradation [9]. Clinically, degradation of the
ECM results in gradual impairment of articular cartilage function, usually accompanied by
pain and physical disability [13]. In OA, chondrocytes become activated due to exposure to
an abnormal environment, which includes high-magnitude mechanical stress, high levels of
inflammatory cytokines, and increased levels of breakdown products, which can exacerbate
inflammatory responses [14]. Activation of oxidative stress or inflammation-induced sig-
naling pathways may cause phenotypic shifts in cell populations, apoptosis, and aberrant
expression of inflammation-related genes such as those encoding nitric oxide synthase
(NOS)-2, cyclooxygenase (COX)-2, and several matrix metalloproteinases (MMPs) (e.g.,
MMP-13 and ADAMTS-4 and 5) [15]. Furthermore, pro-inflammatory cytokines and matrix-
degrading enzymes, along with mechanical stress, may be responsible (at least in part) for
the catabolic events and downregulation of anabolic signals in osteoarthritic cartilage [16,17].

3. T2DM

T2DM is a form of diabetes characterized by high blood sugar, insulin resistance,
and a relative lack (although not complete absence) of insulin. Hyperglycemia leads
to development of a metabolic syndrome (MetS) that initiates chronic inflammation in
patients [18–20]. T2DM is caused mainly by lifestyle factors such as obesity, lack of
physical activity, an unbalanced diet, stress, and genetics [21]. Between 2001 and 2009, the
prevalence increased markedly worldwide, in parallel with obesity. Although it begins
in middle or older age, the rates in children and adolescents in five areas of the USA
were around 21% [22–24]. T2DM is defined as low insulin production by pancreatic β-
cells, coupled with peripheral insulin resistance [25]. Insulin resistance increases levels of
fatty acids in the plasma, resulting in decreased glucose transport into muscle cells and
increased fat breakdown; ultimately, this causes hepatic glucose production to increase.
Insulin resistance and pancreatic β-cell dysfunction must occur simultaneously for T2DM
to develop [26]. Oxidative stress and mitochondrial dysfunction are considered to be
causal factors of T2DM. Consequently, increased glucose levels increase production of
mitochondrial reactive oxygen species (ROS), thereby triggering inducing oxidative stress,
lipid peroxidation, and impaired tissue function. Furthermore, increased ROS production
is associated with hyperglycemia and development of microvascular pathologies such as
neuropathy, retinopathy, and nephropathy [27]. In addition, mitochondrial dysfunction is
related to insulin resistance (reduced uptake and sensitivity of tissues to glucose) [28].

4. Common Risk Factors for OA and T2DM

Co-existence of OA and T2DM in older adults is common. Although the reason for
increased prevalence of arthritis in patients with T2DM is not clear, shared risk factors such
as aging, obesity, and chronic inflammation may be one explanation (Figure 1).
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4.1. Aging

Aging is one of the most common and dominant risk factors for development of OA
and T2DM. In both diseases, cell function declines with age [29]. In OA, the activity of
senescent chondrocytes in aging cartilage is impaired, leading to secretion of inflammatory
mediators involved in cartilage degradation [30,31]. Increased accumulation of advanced
glycation end-products (AGEs) and increased expression of receptor for AGE (RAGE)
by aging chondrocytes alters synthetic activity and increases sensitivity to cytokines and
chemokines, which trigger expression of MMPs and other inflammatory mediators [32].
Aging-related loss of autophagy (a mechanism that protects normal chondrocytes during
stress responses) is associated with cell death and development of OA. In T2DM, pancreatic
beta-cell activity decreases with age, as does mitochondrial health; these changes increase
cartilage degradation and susceptibility to diabetes. Decreasing physical activity and
nutritional deficiencies, both of which are associated with age, may also affect general
health and increase the chances of developing OA and/or T2DM [33].

4.2. Obesity

Obesity is a well-known risk factor for initiation and progression of knee OA and
T2DM [34,35]. Up to two-thirds of the elderly obese population are affected by knee OA,
and over 50% of knee OA patients are obese [36,37]. For obese women, the risk of knee OA
is nearly four times that of non-obese women, whereas the risk for obese men is nearly
five times that for non-obese men [38]. Joints, particularly cartilage and subchondral bone
tissues, are continuously exposed to mechanical stresses, an essential component of obesity-
associated OA of weight-bearing joints. Increased body weight imposes greater loads on
weight-bearing joints; over time this can induce wear and tear of the cartilage surface.
Excess body weight is also associated with misalignment of the knee joint, which increases
joint stress and promotes cartilage degradation and OA [39,40]. Excess weight can cause
misalignment and increase pain in weight-bearing joints; these symptoms are strongly
related to functional disability in obese people [41]. Moreover, obesity is linked to reduced
strength in muscles necessary for joint stabilization; loss of muscle strength increases the
load on the joint (weak muscles cannot support the joint effectively), leading to prolonged
mechanical stress [42,43]. Although the detailed mechanism linking obesity to OA remains
somewhat unclear, many studies indicate that mechanical and metabolic factors are the
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main contributors. It is estimated that about 60%–90% of all the patients with type 2
diabetes are obese (BMI ≥ 30 kg/m2) or overweight (30 kg/m2 ≥ BMI ≥ 25 kg/m2) [44].
Excess fat in obese people releases high amounts of fatty acids, which in turn increases
insulin resistance and hyperglycemia [45,46]. Most obese individuals have elevated plasma
levels of free fatty acids (FFA), which cause peripheral (muscle) insulin resistance by
inhibiting insulin-stimulated glucose uptake and glycogen synthesis. FFAs also cause
hepatic insulin resistance by inhibiting insulin-mediated suppression of glycogenolysis [47].
Insulin resistance and/or hypersecretion of insulin caused by obesity are thought to be
important causes of T2DM.

4.3. Cytokines

Whereas excess weight might explain the increased risk of OA in weightbearing joints
such as the knee and hip, it is difficult to explain onset of OA in non-weight-bearing joints
such as those in the hand [18]. Furthermore, a reduction in body fat is more likely to have
beneficial effects on symptoms in patients with knee OA than loss of body weight [48]. This
suggests that development of OA might be more complex than thought and involve both
physical joint stress and systemic/non-mechanical factors. Interestingly, several reports
show a link between mechanical stress and inflammation in OA; indeed, chondrocytes
express mechanoreceptors at the cell surface [49,50]. Mechanical stress inhibits cartilage
matrix synthesis and induces expression of pro-inflammatory factors such as interleukin
(IL)-1, IL-6, tumor necrosis factor-α (TNF-α), cyclooxygenase 2 (COX-2), nitric oxide (NO),
and prostaglandin E2 (PGE2) [51–53]. Osteoblasts in sclerotic areas of subchondral bone in
OA patients show an altered phenotype, with higher expression of inflammatory mediators
than osteoblasts from non-sclerotic areas.

OA and T2DM are recognized as low grade inflammatory conditions, and the pathogenic
roles for inflammatory mediators have been elucidated. IL-1, a well-studied cytokine in the
context of OA, plays a prominent role in inducing expression of MMPs and other catabolic
genes [51,54]. IL-1 demonstrates potent bioactivity: It suppresses synthesis of essential
ECM components such as ACAN and collagen type II (COL2A1) by chondrocytes, and
it promotes cartilage breakdown by inducing production of proteolytic enzymes such as
MMP-1, MMP-13, and ADAMTS-4 by both chondrocytes and synovial fibroblasts [55,56].

IL-1β induces production of IL-6, IL-8, and leukemia-inducing factor, all of which have
additive or synergistic effects on the chondrocyte catabolic cascade [57]. Consequently,
pathogenic mediators such as IL-6, IL-17, TNF-α, and PGE2 stimulate production of
cartilage-degrading proteases to induce ECM degradation, as well as contributing to OA-
associated pain pathways [58,59]. Inhibiting synthesis of ECM components induced by
inflammatory cytokines leads to release of MMPs into the joint cavity and, eventually, to
cartilage degradation.

Oncostatin M acts synergistically with IL-1, IL-1β, and TNF-α to suppress expression
of a number of genes associated with differentiated chondrocyte phenotypes; such genes
include those encoding ACAN and COL2A1. ADAMTS-5, an aggrecanase belonging
to the ADAMTS family (disintegrins and metalloproteinases with a thrombospondin-1
domain) of extracellular proteinases, is considered to be the major aggrecan-degrading
enzyme involved in cartilage degradation in OA. Several studies show marked regulation
of ADAMTS-4 and ADAMTS-5 after stimulation with TNF-α and oncostatin M, as well as
IL-1-induced expression of ADANTS-4, by both human and mouse chondrocytes [60,61].

Both mechanical stress and inflammatory mediators induce NF-κB (p65/p50)- and ac-
tivate mitogen-induced protein kinase (MAPK)-mediated downstream signaling pathways,
which are abnormally activated in osteoarthritic chondrocytes [62]. The canonical NF-κB
pathway is a central regulator of the inflammatory cytokine-induced catabolic actions of
MMPs, NOS2, COX-2, and IL-1 in chondrocytes. Subsequently, released ECM compo-
nents trigger inflammatory responses and induce cartilage breakdown. NF-κB signaling-
mediated expression of HIF-2α up-regulates cytokine-induced expression of MMP-13 and
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ADAMTS-4, and RUNX2-mediated signaling regulates expression of ADAMTS-4 and
ADAMTS-5 [63,64].

In addition to NF-κB pathways, mechanical and inflammatory stimuli in articular
chondrocytes MAPK pathways through the ERK, c-Jun N-terminal kinase (JNK), and
p38 kinase cascades. Activated transcription factors, including those of the ETS, AP-1,
and C/EBP families, regulate expression of genes related to catabolic and inflammatory
responses. JNK-driven activation of AP-1, MEK/ERK-induced phosphorylation of ETS
factors, and p38-mediated activation of C/EBPβ and RUNX2 participate in induction of
MMPs and in regulation of catabolic and inflammatory responses [65,66].

Under obese conditions, pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β
activate the JNK and IKKβ/NF-κB pathways in adipocytes, hepatocytes, and associated
macrophages; moreover, MCP-1 and other chemokines play essential roles in recruiting
macrophages to adipose tissue [67]. Obesity-induced activation of IKKβ leads to transloca-
tion of NF-κB to cell nuclei and to increased expression of potential inflammatory mediators
that promote insulin resistance and T2DM. In addition, obesity-induced activation of JNK,
mediated mainly by ER stress, promotes phosphorylation of insulin receptor substrate
1 (IRS-1) at serine sites that negatively regulate normal signaling through the insulin
receptor/IRS-1 axis [67,68]. In addition, JNK and IKKβ/NF-κB are activated by pattern
recognition receptors such as TLRs and RAGE. Furthermore, prolonged hyperglycemia
and accumulation of AGEs activates NF-κB [69]. In addition to pro-inflammatory cy-
tokines and AGEs, cellular stressors such as ROS and ER stress activate the JNK and
NF-κB pathways [70].

4.4. Adipokines

As obesity progresses, adipocytes release adipokines such as leptin, adiponectin,
resistin, and visfatin from adipose tissue, which is considered to be a metabolic endocrine
organ [71]. These adipokines contribute to the low grade inflammatory status of obese
patients and affect cartilage homeostasis by inducing cartilage degradation or inflammatory
responses [72,73]. The most well-known adipokine, leptin (encoded by the obese (ob) gene),
was identified in 1994 as a metabolic link between obesity and OA [74].

Leptin levels in OA cartilage are higher than those in normal articular cartilage, and
expression levels of adipokines increase upon inflammatory stimulation [75]. In addition,
stimulation of articular chondrocytes with leptin, adiponectin, or resistin plus other in-
flammatory cytokines leads to marked induction of a diverse array of pro-inflammatory
factors such as COX-2, PGE2, NOS2, IGF1, and TGFβ, as well as degenerative enzymes
MMP9 and MMP13, via activation of leptin receptors and NF-κB mediated pathways [76].
In leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice, impaired leptin
signaling cannot trigger systemic inflammation and knee OA, suggesting that leptin is
essential for cartilage degradation [77]. In addition, leptin regulates cartilage homeostasis
by influencing osteoblast proliferation and differentiation, as well as by suppressing bone
formation through a hypothalamic relay.

Another adipokine expressed in adipose tissue, adiponectin, plays a role in cartilage
hemostasis by increasing expression of tissue inhibitor of metalloprotease-2 (TIMP-2), and
by decreasing IL-1β-induced expression of MMP-3, in chondrocytes [78]. In addition,
adiponectin up-regulates IL-10 secretion by human macrophages to increase TIMP-1 levels
and prevent ECM degradation [79]. The adiponectin/leptin ratio in the synovial fluid
of patients with severe knee OA is associated with reduced knee pain, indicating that
adiponectin may have beneficial effects on OA [80]. However, several reports suggest that
the distinct role of adiponectin is associated with radiographic severity of OA, and that
it induces production of pro-inflammatory cytokines by chondrocytes [81]. The different
isoforms of adiponectin may mean that research results are inconsistent; therefore, further
studies are needed to identify the role of adiponectin in progression of OA.

Elevated leptin levels are associated with insulin resistance and with development of
T2DM, obesity, and hypertension. MetS is more common in T2DM patients with increased
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leptin levels [82–85]. Imbalanced production of adipokines by adipose tissue and other
sources can aggravate insulin resistance and result in metabolic abnormalities that cause
MetS. In particular, leptin plays a crucial role in the link between MetS and OA. Typical
factors associated with central obesity and MetS induce pro-inflammatory macrophage
polarization and activity within synovial and adipose tissue; these phenomena occur via
alterations in AMPK and mTORC1 expression, as well as changes in adipokine levels.
These harmful metabolic processes also affect cartilage degradation by chondrocytes.

5. Links between OA and T2DM

T2DM and OA are linked by the chronic systemic inflammation related to MetS [86,87].
Under hyperglycemic conditions, chondrocytes of OA patients are unable to down-regulate
glucose transport into chondrocytes. Additionally, exposure to high levels of glucose
induces production of ROS in OA cartilage [88]. Since the catabolic activity of ROS produces
inflammatory mediators such as IL-1β and NF-κB, which promote chondrocyte degradation
and apoptosis, increased ROS mediated by high glucose levels damages chondrocytes [89].
Moreover, OA chondrocytes exposed to hyperglycemic medium express higher levels of
MMPs than normal chondrocytes [90]. An in vivo cohort study found that higher levels of
fasting serum glucose levels are associated with greater cartilage disruption, mediated by
bone marrow lesions and loss of tibial cartilage volume, in post-menopausal women than
in men [91]. This sex difference might be due to reduced levels of estrogen, which plays a
protective role in cartilage, after menopause. All of the findings presented in these studies
demonstrate the harmful effects of hyperglycemia on articular cartilage, and suggest that
altered glucose metabolism could be a direct link between OA and T2DM.

Another pathogenic role of hyperglycemia is induction of AGEs; age-related accumu-
lation of AGEs in articular cartilage results in a pathogenic environment and, ultimately,
induces symptoms of OA such as stiffness and cartilage degradation [92,93]. High glucose
concentrations in those with diabetes lead to increased formation of AGEs. AGEs and
RAGE trigger the inflammatory cascade, mainly via production of pro-inflammatory TNF-
α and activation of the transcription factor NF-κB [27]. These signals induce inflammation
and oxidative stress, both of which promote degradation of cartilage.

Human chondrocytes express functional insulin receptors that respond to physiologic
insulin concentrations. Expression and activity of insulin receptors in OA chondrocytes is
lower than that in normal chondrocytes [94]. Treatment with insulin increases expression of
MMP-13 and IL-1β, and downregulates autophagy, an essential homeostatic mechanism, in
chondrocytes by reducing expression of LC3 II and increasing phosphorylation of Akt and
rpS6. This suggests that excess insulin, as seen in T2DM patients, may damage cartilage
and cause OA [95]. Insulin is a critical negative regulator of synovial inflammation and
catabolism; thus, development of insulin resistance in an obese population would diminish
the ability of insulin to suppress production of inflammatory and catabolic mediators that
promote OA [96].

In conclusion, low grade inflammation, oxidative stress, and dysregulation of cell
function mediated by aging, obesity, and hyperglycemia are common risk factors for OA
and T2DM, suggesting a strong relationship between the two diseases [97,98].

6. Management of OA and T2DM

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

Recent studies demonstrate that the risk for OA in obese patients with MetS is higher
than that for obese patients without MetS [99]. In addition, studies show that systemic
metabolic alterations associated with T2DM occur in those with OA, suggesting that T2DM
is an independent risk factor for OA development and/or severity. Understanding common
risk factors for development and progression of OA and T2DM is necessary for effective
diagnosis, prognosis, treatment, and prevention of these co-existing conditions.
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Drug repositioning is a promising field that identifies new therapeutic opportuni-
ties for existing drugs [100]. Drug repositioning is an attractive proposition because it
involves the use of de-risked compounds. Since the pharmacokinetic profiles and safety
of these drugs are already established, overall development costs and timelines can be
reduced markedly [101].

The link between OA and T2DM means drug repositioning can be used to identify
new interventions. In terms of drug repositioning, well-known oral anti-diabetic drugs
such as thiazolidinedione and lipid-lowering medications such as statins have been in-
vestigated as supplements to symptomalleviating treatments for OA in OA patients with
T2DM [102,103]. From this point of view, well-designed trials to test novel applications for
conventional medications are forthcoming; such trials intend to confirm results from animal
studies [104,105]. Progression of OA depends mainly on chronic low grade inflammation,
particularly involving articular chondrocytes. AMPK plays a major role in regulating
inflammatory processes; indeed, the anti-inflammatory effects of AMPK provide a strong
rationale for re-examination of AMPK activators (which are already available clinically) as
new mediations for OA.

6.1. AMPK

AMPK plays an important role in insulin signaling, whole-body energy balance,
and metabolism of glucose and fats [8]. It is a key regulator of metabolism because it
senses increases in the intracellular ratio of AMP and/or ADP to ATP following cellular
stress, which then triggers a metabolic switch from ATP consumption to ATP generation
to maintain energy balance [106–108]. Decreased phosphorylation of AMPKα, along with
pro-catabolic responses to pro-inflammatory cytokines IL-1β and TNF-α by chondrocytes,
was observed in mouse OA models and in knee cartilage from humans with OA [109,110].
These results suggest that inflammation-induced cartilage degradation could be protected
by maintaining the AMPK activity [110]. In addition, AMPKα1α2 conditional double
knockout (AMPKα cDKO) mice showed severe and spontaneous age-associated OA symp-
toms and an enhanced IL-1β-stimulated catabolic response, suggesting that AMPK activity
in chondrocytes is important for maintenance of joint homeostasis [111]. Activation of
AMPK by A-769662, a specific AMPK agonist, suppressed inflammatory arthritis in mouse
models of antigen-induced arthritis and passive K/BxN serum-induced arthritis. Moreover,
AMPK activation alleviates ER stress induced apoptosis of chondrocytes and cartilage
degradation [112]. These findings suggest that specific targeting of AMPK activation may
be an effective therapeutic strategy for OA [113].

Mechanistically, AMPK activation is associated with inhibition of TNF-α-mediated
NF-κB signaling pathways, which are critical for pro-inflammatory effects. AMPK also
downregulates the JAK/STAT signaling pathway, a crucial driver of cytokine signaling, cell
growth, and apoptosis [114–116]. Another downstream molecule of AMPK is mammalian
target of rapamycin (mTOR), which plays a major role in regulating both glucose and
lipid metabolism, as well as cell growth, proliferation, and survival. In particular, mTOR
inhibition by rapamycin or AMPK suppresses inflammatory diseases and osteoarthritis by
regulating T-cell differentiation [117].

6.2. Metformin

Since diabetic patients are at higher risk of bone degradation, anti-diabetic mediations
may have beneficial effects against bone disorders [7,118,119]. Metformin (Figure 2), an
oral anti-hyperglycemic drug, is the first-line medication for T2DM. Metformin acts mostly
by inhibiting hepatic gluconeogenesis. The main target of metformin is mitochondria,
which synthesize ATP via oxidative phosphorylation, resulting in energy production [120].
ROS produced during this process can cause oxidative stress and mitochondrial dys-
function, both of which are related to insulin resistance in skeletal muscle, liver, fat, and
pancreas [121,122]. Most of the metabolic effects of metformin are exerted via direct inhibi-
tion of the mitochondrial respiratory chain (complex 1), which results in ATP depletion
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and increased production of cytosolic AMP. Thus, activation of AMPK via phosphorylation
of Thr-172 in the alpha subunit of AMPK is induced indirectly, which decreases gluconeo-
genesis in the liver [123]. Increased AMP levels also inhibit of adenylate cyclase, resulting
in reduced production of cAMP. As a result, the activity of protein kinase A and its target,
cyclic AMP response element binding protein, are inhibited; consequently, fasting glucose
levels are reduced [124–126]. In addition to suppressing hepatic glucose production, met-
formin increases insulin sensitivity by inhibiting lipogenesis, increases peripheral glucose
uptake by inducing phosphorylation of GLUT4 enhancer factor, and decreases insulin-
induced suppression of fatty acid oxidation [127–129]. Moreover, metformin alleviates
chronic inflammation via its anti-inflammatory activity, as well as inducing autophagy by
inhibiting mTOR phosphorylation via activation of AMPK [125,130,131].
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T2DM patients are more likely to have hand or knee OA than non-diabetic subjects.
Conversely, subjects with OA have an higher risk of developing T2DM than age- and
sex-matched non-OA counterparts.

Based on the biological effects mediated by targeting the pathogenic mechanisms of
OA, metformin (in addition to weight loss) might be considered as a potential disease-
modifying agent for the obese phenotype of knee OA. A recent prospective cohort study
reported a relationship between metformin use and reduced progression of knee OA in
obese individuals; indeed, compared with non-users, those using metformin showed a
decreased rate of medial cartilage volume loss over 4 years, and a trend toward a decreased
risk of undergoing total knee replacement over 6 years [132]. Another nationwide, retro-
spective, matched-cohort study in Taiwan found that a combination COX-2 inhibitors and
metformin in OA patients with T2DM was associated with lower rates of joint replacement
surgery than treatment with COX-2 inhibitors alone [133]. Several animal models show the
potential therapeutic effects of metformin on OA via regulation of AMPK. As demonstrated
by a recent study in destabilization of the medial meniscus (DMM)-induced OA mice, both
intra-gastric and intra-articular metformin treatment attenuated degradation of articular
cartilage, delayed OA progression, and modulated pain-related behaviors via activation of
AMPK [134]. The beneficial effect of metformin was also confirmed in genetically-modified
mice. Treatment of AMPK α1 knockout (KO) and DMM-induced OA mice with metformin
had no effect, suggesting that the chondroprotective effect of metformin was mediated
mainly by up-regulation of AMPKα1 expression. Moreover, the study showed that oral
administration of metformin effectively alleviated cartilage degradation and aging by
regulating the AMPK/mTOR signaling pathway in a DMM-induced OA mouse model,
which suggests that metformin administration could be an effective therapy for OA [135].
Furthermore, metformin inhibited release of NO, MMP3, and MMP13 from murine femoral
head cartilage explants in response to IL-1β and TNF-α [110]. Mesenchymal stem cells
(MSCs) are multipotent stromal cells that can differentiate into a variety of cell types, in-
cluding osteoblasts, chondrocytes, and adipocytes; these cells can protect against cartilage
breakdown by exerting immunomodulatory functions. A recent study identified the bene-
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ficial effects of metformin-stimulated adipose tissue-derived human MSCs (Ad-hMSCs) in
a rat OA model. OA rats treated with metformin-stimulated Ad-hMSCs showed greater
antinociceptive activity and chondroprotective effects than rats treated with unstimulated
Ad-hMSCs. This suggests that the immunomodulatory effects of metformin may further
enhance the therapeutic effects of MSCs, raising the possibility of clinical application of Ad-
hMSCs as a cell-based therapy for OA [136]. A recent study demonstrated that metformin
suppresses IL-1β-induced oxidative and OA-like inflammatory changes by stimulating the
SIRT3/PINK1/Parkin signaling pathway, which is associated with mitophagy, a process
that clears dysfunctional mitochondria [137]. This research highlights a potential use of
metformin-mediated mitophagy for the prevention and treatment of OA [138]. Metformin
pharmacologic action is affected by organic cation transporters (OCTs) since metformin
is an organic cation at physiological pH levels. OCTs are known to mediate metformin
entry into target tissues [139,140]. Thus, oral bioavailability and therapeutic efficacy of met-
formin depend on the transporters [140–142]. Further, a diversity of approaches has been
proposed and studied to improve the delivery efficacy of metformin for musculoskeletal
treatments [143–145]. All of the preclinical and clinical data discussed above suggest that
metformin is a potential therapeutic strategy for management of OA.

7. Conclusions

In this review, we discussed common risk factors for OA and T2DM, which include ag-
ing, obesity, and cytokine- and adipokine-mediated inflammation. These shared pathogenic
factors link development of two chronic diseases: OA and T2DM. Accumulated evidence
suggests that T2DM could be an independent risk factor for OA development. These
findings raise the possibility that medications used to treat T2DM can also be used to treat
OA (Figure 3). Among the many different anti-diabetic drugs, we focused on metformin,
an activator of AMPK. This is because metformin is most widely used drug in clinical
practice, it has a proven and safe pharmacokinetic profile, and it is the mechanisms by
which it regulates T2DM are well-known. Currently, several reports demonstrate the
potential therapeutic effects of metformin for conditions other than diabetes (e.g., cancer
and aging). Although the precise mechanisms by which metformin regulates these other
diseases are unclear, the data support further exploration of novel applications. However,
further studies are required, and numerous mechanisms must be explained. Here, we
discussed the beneficial effects of metformin for the treatment of OA treatment based
on data from both preclinical and clinical studies. The data suggest that metformin can
be considered as a potential drug for OA. However, we need a better understanding of
whether metformin’s beneficial effects on diabetes are reproduced in the context of OA
development and progression.
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