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Abstract: It is known that “quantum non locality”, leading to the violation of Bell’s inequality and
more generally of classical local realism, can be attributed to the conjunction of two properties, which
we call here elementary locality and predictive completeness. Taking this point of view, we show
again that quantum mechanics violates predictive completeness, allowing the making of contextual
inferences, which can, in turn, explain why quantum non locality does not contradict relativistic causality.
An important question remains: if the usual quantum state ψ is predictively incomplete, how do we
complete it? We give here a set of new arguments to show that ψ should be completed indeed, not by
looking for any “hidden variables”, but rather by specifying the measurement context, which is required
to define actual probabilities over a set of mutually exclusive physical events.

Keywords: quantum mechanics; contextuality; inferences; nonlocality

1. Introduction

After many years of theoretical and experimental research, it can be now said that the
door has been closed on the historical Einstein and Bohr’s quantum debate [1–3]. On the
way, this research opened the door to many new ideas and experiments, leading ultimately
to the development of quantum technologies. As a reflection on these evolutions, our point
view here is to go back to the Einstein–Bohr debate and to propose answers to the initial
questions: Is the “wave function” a complete description of physical reality? What is the
role of locality? What about relativistic causality?

We will see that, contrary to what is often said, Einstein, Podolsky, and Rosen were
perhaps not so wrong, and Bohr not so right—and that some lessons may be learned
regarding what quantum mechanics is telling us about physical reality.

Our reasoning uses the idea of contextuality, which is currently an extremely ac-
tive field of research, connected with many foundational issues [4–11]. However, rather
than pursuing these interesting lines of research, we step back to discussions from the
1980s [12–14], which were perhaps too quickly dismissed. This is because fully exploiting
them amounts to admitting that the usual |ψ〉 is incomplete, which is a shocking statement
that was rejected by Bohr himself in 1935 [3].

However, many things have happened since then, especially with regards to contex-
tuality and nonlocality. Thus, we propose a “not so shocking” way to complete |ψ〉: very
schematically, it tells that a usual state vector is incomplete as long as a complete set of
commuting operators admitting this vector as an eigenstate has not been specified. More
details are given below as well as how to use this idea for our purpose.

2. Probabilistic Framework

We use a general framework for conditional probabilities as presented, for instance,
by E.T. Jaynes in [12], and also related to the analysis in [13,14]. We emphasize that these
calculations are quite general and do not imply any commitment to a specific view on
probabilities—Bayesian or otherwise. The equations we write apply both to usual quantum
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mechanics and to local hidden variable theories (LHVT), and the main interest of this
calculation is to show explicitly where these two descriptions split, and why. We will also
indicate when some (reasonable but not mandatory) hypotheses will be made.

We consider the well-known EPR–Bohm–Bell scheme [1,15], where polarization mea-
surements are carried out on entangled photon pairs, described by some quantity λ in
a variable space Λ. Alice and Bob carry out measurements defined by the respective
polarizers’ orientations x and y and obtain binary results a = ±1 and b = ±1.

According to the usual rules of probabilities, and with some care but without loss of
generality [12], one can write the following relation between conditional probabilities, by
conditioning on λ in some a priori unknown hidden variable space Λ

P(ab|xy) = ∑
λ∈Λ

P(ab|xyλ)P(λ|xy) (1)

In addition to this purely probabilistic relation, we introduce some requirements about
the physics we want to describe, and we do it in the most general way: we assume that
usual Quantum Mechanics (QM) and special relativity in the form of Relativistic Causality
(RC) are true. We note that being true does not necessarily mean being complete [15–17],
and we will come back to that issue later on. It should also be clear that theories where a
and b are deterministic functions of λ, x, y do fit in this probabilistic framework as special
cases; however, determinism has important consequences to be discussed below.

3. Enforcing Relativistic Causality

A first consequence of RC, sometimes called “freedom of choice”, consists in requiring
that λ does not depend on the variables (x, y) representing Alice and Bob’s choices of
measurement settings. In other words, the choices of measurements (x, y) should not act
on the way photons are emitted (λ), since these events are space-like separated. This boils
down to the independence condition P(λ|xy) = P(λ), or equivalently P(xy|λ) = P(xy),
which is fulfilled by all the theories we are interested in. We note that one may reject
freedom of choice by arguing that the random events λ, x and y are correlated from
their distant past, see e.g., [18]. However such “superdeterministic” theories are highly
speculative and here we do choose to keep free will. We have thus

P(ab|xy) = ∑
λ∈Λ

P(ab|xyλ)P(λ) (2)

For a given initial state λ of the pair, a relevant theory should provide P(ab|xyλ), and
thus we now focus on this conditional probability. For the sake of clarity, λ is a generic
notation to specify whatever may be specified about the emission of the photon pair, in a
given shot. This may include variables that fluctuate from shot to shot and other variables
that do not. On the other hand, x, y and λ are not causally related as written above.

We note that Equation (2) is true also for QM, where the variable space Λ contains
only one λ corresponding to the initial state of the entangled pair (e.g., a singlet state). It is
standard in recent demonstrations of Bell’s inequalities [19,20] to assume that P(ab|xyλ) is
a probability for a given λ, and thus there is no restriction of generality here.

Now, without any further assumptions, one can write from basic rules of inference

P(ab|xyλ) = P(a|xyλ)P(b|xyλa)

= P(a|xyλb)P(b|xyλ) (3)

where the two decompositions refer, respectively, to Alice and Bob, and where on Alice’s
side

• P(a|xyλ) = probability of Alice obtaining result a for input x, and
• P(b|xyλa) = probability of Bob obtaining result b for input y, calculated by Alice who

knows x and a;
whereas, on Bob’s side,
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• P(b|xyλ) = probability of Bob obtaining result b for input y, and
• P(a|xyλb) = probability of Alice obtaining result a for input x, calculated by Bob who

knows y and b.

Clearly, a meaningful requirement in Equation (3), again related to RC, is that the
choice of measurement by Alice (resp. Bob) should not have an influence on the result by
Bob (resp. Alice). This implies that P(a|xyλ) = P(a|xλ) and P(b|xyλ) = P(b|yλ), and we
call this condition “elementary locality” (EL), meaning that it is fulfilled for each given λ.
As a consequence, one has

P(ab|xyλ) = P(a|xλ)P(b|yλ, xa)

= P(a|xλ, yb)P(b|yλ) (4)

where, in general, one cannot remove xa from P(b|yλ, xa), nor yb from P(a|xλ, yb).
Let us emphasize that, so far, we have respected QM and RC at each step, and

it can easily be checked that Bell’s inequalities cannot be obtained from Equation (4).
Correspondingly, if interpreted “à la Bell”, keeping xa and yb in Equation (4) looks like
an influence of one measurement on the other side. Yet, this conclusion is not warranted
since Alice calculates a probability for Bob’s result by using only what is locally available
to her (resp. him by switching Alice and Bob); this does not influence in any way what is
happening on the other side.

4. Contextual Inferences vs. Bell’s Hypotheses

We conclude that, given Equation (4), there is still a missing step to reach Bell’s
theorem. In order to identify it, let us recall that locality “à la Bell” can be seen as a
conjunction of two conditions :

- The first condition is “elementary locality” (EL), already spelled out above:
(EL) P(a|xyλ) = P(a|xλ) and P(b|xyλ) = P(b|yλ), taken as true as explained before.

- A second condition—let us call it “predictive completeness” [14]—is given by:
(PC) P(a|bxyλ) = P(a|xyλ) and P(b|axyλ) = P(b|xyλ), and this is interpreted phys-
ically below. Taken together, the conditions (EL) and (PC) entail the factorization
condition P(ab|xyλ) = P(a|xλ)P(b|yλ) and, therefore, lead to Bell’s inequalities
[19,20].

These two conditions have been given various names, e.g., parameter independence
for (EL) and outcome independence for (PC), see [21]; here, we stay closer to Jarrett’s
definitions [13,14], though some of our conclusions are different. We note also that (EL)
is not accepted by Bohmian mechanics (BM), which agrees with relativistic causality only
after averaging on λ. Thus our initial requirement of fulfilling RC at every step is not
compatible with BM; see also the Conclusion section.

In order to justify the hypothesis (PC) and the wording “predictive completeness”, one
must emphasize that Bell’s factorization condition P(ab|xyλ) = P(a|xλ)P(b|yλ) relies on
the idea that λ specifies everything that can be known about the pair of particles; given this
assumption, condition (PC) should be obvious, because knowing xa cannot bring anything
more to Alice’s probability calculation; hence, the name of predictive completeness. For
instance, theories where a and b are deterministic functions of λ, x, y must satisfy (PC).

On the other hand, (λxa) occurring in the probability P(b|yλ, xa) = P(b|y, λxa) is not
a property carried by Bob’s particle, but it involves both the properties of Bob’s particle
(included in λ) and the result of Alice’s measurement (described by xa). In other words,
(λxa) refers to a property of Bob’s particle, not in and by itself, but within a context defined
by Alice’s result. In the CSM language [22–28], (λxa) defines a modality for Bob’s particle,
in Alice’s context. The correspondance between the respective modalities (λxa) and (λyb)
can only be probabilistic, with probability 1 if a = b [24]. Alice’s context and result cannot
have any influence on Bob’s particle, and they do not, since (λxa) is only used locally by
Alice according, again, to Equation (4).
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Given this situation, we take a major new step beyond the previous discussions by
admitting that the description given by λ (or ψ in the quantum case) is incomplete indeed,
and that knowing (xa) does bring something new to Alice. Then, condition (PC) can be
violated, by Alice making a “contextual inference” about Bob’s result. In order to make
sense of this idea, it is essential to realize that (i) contextual inference is a non-classical
phenomenon, and (ii) it agrees with relativistic causality, as we explain now.

(i) In classical physics, condition (PC) as defined above is verified, and Bell’s factor-
ization condition follows. However, in quantum physics, knowing Alice’s measurement
and result allows her to predict more, without invoking any action at a distance. This is
because λ ≡ ψ does not tell which measurements will be actually carried out by Alice and
Bob—in other words, λ ≡ ψ is predictively incomplete [13,17].

Adding this information where and when it is locally available improves Alice’s
prediction about Bob’s result, and Bob’s about Alice’s, in agreement with Equation (4),
showing the suitability of the concept of contextual inference. This effect does not show
up in classical physics, because a classical λ is complete; however, it does show up in QM
because a quantum ψ is (predictively) incomplete, as long as a measurement context has
not been specified (for more details, see [17] and the last sections below).

(ii) Since contextual inference only applies to probabilities appearing in Equation (4), it
does not involve any physical interaction outside light cones; therefore it obeys relativistic
causality. A typical wrong line of thinking would be to say: if Alice can predict with
certainty some results by Bob (perfect correlations, obtained when a = b), then either Bob’s
result is predetermined, or there are instantaneous actions at a distance. However, this
dilemma only applies in a classical framework, where particles’ properties are defined
in an absolute way, and Bell’s inequalities do apply. In a quantum framework, Alice can
make local inferences by using additional information that is available to her, e.g., (λxa) in
the above example; and these predictions can only be checked by accessing Bob’s results
afterwards, in a local and ordinary causal way.

5. Discussion

It is also interesting to draw a standard light-cone picture (see Figure 1), in order to
show explicitly how contextual inference may be used when the relevant information is
locally available. More precisely, this diagram allows us to separate on the one hand the
localized events in space time (first the production of λ, x and y, and then the separated
read-out of a by Alice, and b by Bob), and on the other hand the corresponding predictions,
that are inferences, not influences, and thus no “action at a distance” is involved.

λ	x	 y	

a	 b	

P(ab	|	λxy),	P(a	|	λx),	P(b	|	λy)	

P(b	|	λy,	xa)	 P(a	|	λx,	yb)	

V	

-me	
space	

Figure 1. Light-cone picture of the EPR–Bohm–Bell scheme. The photon pair is generated at the
bottom of the middle cone, and is described by λ. The measurement settings x and y are chosen
by Alice and Bob in separated light cones. The earliest time for generating the results a|x and b|y
are at the intersections of the light cones, and this is also when Alice’s probability P(b|yλ, xa) about
Bob’s result, and Bob’s probability P(a|xλ, yb) about Alice’s result become available (dashed arrows).
These probabilities result from a contextual inference, which respects relativistic causality and does
not entail any action or influence between Alice and Bob. The resulting predictions can be effectively
checked in the verification zone V in the common future of all light cones.
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Another remark may be useful: as suggested by the light cones pictures in Figure 1, one
may consider that x and y are also issued from independent random processes in variable
spaces X and Y, as it is done in loophole-free Bell tests [1]. Then, the global probability writes

P(xa, yb) = ∑
λ∈Λ,x∈X,y∈Y

P(ab|xyλ)P(λ)P(x)P(y) (5)

where P(ab|xyλ) is given by Equation (4) as before. Taking Λ = {λ}, X = {x1, x2} with
P(x1) = P(x2) = 1/2, Y = {y1, y2} with P(y1) = P(y2) = 1/2 as in a usual Bell test, one
finds P(xa, yb) = P(ab|xyλ)/4.

Correspondingly, the random variable (xa, yb) may take 16 mutually exclusive val-
ues, not 4, and Bell’s inequalities cannot be written anymore. Bell’s reasoning requires
calculating the correlation functions E(x, y) = 〈ab〉x,y by using P(ab|xy), not P(xa, yb),
and thus the four different measurements apply to the same sample space Λ. This means
implicitly that λ completely carries the pairs’ properties (and the measurement results can
be predicted from the knowledge of λ alone), as it would be the case in classical physics.

However, this is counterfactual [15,16] with respect to the quantum approach, where
{λ ≡ ψ, x1, y1}, {λ ≡ ψ, x1, y2}, {λ ≡ ψ, x2, y1}, {λ ≡ ψ, x2, y2} are four different situa-
tions that should not be merged within a single S value, contrary to Bell’s reasoning [19,20].
This is another way to tell that ψ is not complete, and requires a context specification to be
turned into an actual probability distribution.

Completing ψ?— A second major new step is to answer the question: If ψ is not com-
plete, does it tell anything concrete by itself? It does, because it indicates a set of contexts,
corresponding to all the observables, including ψ as an eigenvector, where the associated
measurement result (eigenvalue) is predictable with certainty. In recent papers [23–27], we
introduced a framework that makes a careful distinction between the usual ψ without a
context and the physical state within a context—called a modality (see also Appendix A).

In this language, ψ is associated with an equivalence class of modalities, called an
extravalence class [25]; whereas the modalities are complete because they are properties of
a system within a context; ψ is not, because the context is missing by construction. This
gives a nice outcome to the Einstein–Bohr debate, by confirming the incompleteness of
ψ [2], and by telling also how to complete it: one should add the context—this actually fits
with the “very conditions” required by Bohr’s answer [3,15,28].

6. Conclusions

In summary, the violation of Bell’s inequalities by quantum theory and experiments [1]
can be explained if one takes into consideration contextual inferences, and these, in turn,
are ultimately allowed by the predictive incompleteness of the quantum state: finding
actual probabilities for measurement results requires specifying a measurement context.
In practice, contextual inferences correspond to what is usually called “quantum non
locality”; however, they are not related to locality in a relativistic sense, but rather to the
specifically quantum condition that requires attributing physical properties to systems
within contexts. The implications on the (in)completeness of QM are discussed in more
detail in [17]; however, a few comments are in order:

• In the above, we argue that ψ is predictively incomplete, but not that QM is incomplete
in the sense of being erroneous. There are many practical ways to complete it, by
reintroducing the context either “by hand” (like in usual textbook QM) or in a more
formal way using algebraic methods [17].

• The predictive incompleteness of ψ is general, and not limited to entangled states.
This is because the measurement context is required to find actual probabilities, or said
otherwise, one cannot define a full consistent set of classical probabilities applicable
to any result in any context. In the language of [29], ψ provides mathematical q-
probabilities without interpretation, whereas ψ completed by the specification of the
measurement context provides true probabilities for mutually exclusive events.
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• In this article, we enforced (EL) at the beginning and explained how (PC) can be
violated by a non-deterministic theory, without any conflict with RC. On the other
hand, deterministic theories must agree with (PC), and therefore have to violate (EL)
to be compatible with the observed violation of Bell’s inequalities; an example of such
a theory is Bohmian mechanics. Generally speaking, if (EL) is rejected, more care must
be taken in order to avoid an explicit violation of special relativity [30].

• Here, we considered the standard version of Bell’s theorem, but many other inequal-
ities may be obtained in the general framework of “local realism”. It would be
interesting to look whether the violation of such inequalities is generally due to a vio-
lation of (PC); this may be the topic for further work (see Appendix B for three-particle
entanglement).

Finally, it is interesting to note that, in [12], Jaynes did not spell out either the “nonlocal”
or the “incompleteness” option, though he did all the calculations above. In our opinion,
this is because he could not give up the classical idea that particles should be described
independently of their contexts. In order to admit the idea of contextual inference, an
intellectual quantum jump is required to accept that, in quantum mechanics, one has to
take into consideration both the systems and the contexts in which they evolve. A simple
way not to forget this requirement is to postulate that the “object” carrying well-defined
properties is a composite: a (quantum) system within a (classical) context [17,22–28,31].

Funding: This research received no external funding.

Acknowledgments: The author deeply thanks Franck Laloë, Roger Balian and Nayla Farouki for
many useful discussions, without indicating that they endorse all what is written above.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Summary of the Main Arguments

In this Appendix A, we summarize our main arguments, in either the standard QM or
the CSM point of view, and in Appendix B, we discuss three-particle entanglement with
respect to Predictive Incompleteness.

In the text above, we presented a general probabilistic framework inspired from [12–14],
and we saw that, assuming the causal independence of the pair emission and measurements,
the hypothesis of Bell’s theorem can be split in two different sub-hypotheses:

Elementary Locality (EL): At the most elementary level, “λ” allowed by the theory under
consideration, the probability distribution of the result a of a measurement x by Alice
cannot depend on the choice of a measurement y done by Bob in a remote place (the same
with Bob’s result b): P(a|xyλ) = P(a|xλ) and P(b|xyλ) = P(b|yλ).

Predictive Completeness (PC): Again, at the “λ” level, Alice knowing the result a of her
measurement x cannot help her to obtain a better inference about Bob’s result b (and same
thing by exchanging Alice and Bob): P(a|xyλb) = P(a|xyλ) and P(b|xyλa) = P(b|xyλ).

Taken together, the conditions (EL) and (PC) entail the factorization P(ab|xyλ) =
P(a|xλ)P(b|yλ), and therefore lead to Bell’s inequalities [19,20]. As a consequence, a
theoretical framework violating Bell’s inequalities must reject at least one of the two
hypotheses. For instance, quantum mechanics (QM) agrees with (EL), which can be seen
as a consequence of relativistic causality but rejects (PC). This means that the description
given by λ (or ψ in the quantum case) is not complete, and that knowing (xa) does bring
something new to Alice: then, condition (PC) can be violated, and Alice can make a
“contextual inference” about Bob’s result.

The predictive incompleteness of ψ is actually not a big surprise, and it appears implic-
itly or explicitly in many presentations of QM, either based on the standard formalism [29],
or using other approaches [31]. The respective lines of arguments are :

Arguments based on the QM formalism [29].
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• QM is a fundamentally probabilistic theory: this is a consequence of the non-commutation
of observables.

• The “quantum state” (pure state ψ or mixture ρ) is predictively incomplete, because by
itself it does not provide a normalized probability distribution over a set of mutually
exclusive events.

• From a physical point of view, ψ or ρ can be completed by specifying a measurement
context, i.e. a macroscopic apparatus, in order to define a set of mutually exclusive
events given by the apparatus outcomes.

• Once a context is given, ψ or ρ provides the relevant set of probabilities; this applies
in any possible context, but only one at a time (predictive incompleteness).

Arguments based on the CSM formalism [31].

• QM is a fundamentally probabilistic theory: this is a consequence of contextual
quantization [23,27].

• Nevertheless, QM allows measurements results to be predicted with certainty, either
by repeating them in the same measurement context (this defines a modality), or by ob-
serving fully connected results betwen different contexts (this defines an equivalence
classe of modalities, called an extravalence class).

• Associating ψ (a mathematical object) to an extravalence class yields Born’s law from
Gleason’s theorem.

• By construction, ψ is predictively incomplete because it is associated with an extrava-
lence class and not with a modality, and thus the context is missing.

Then, the violation of Bell’s inequalities and all similar effects (resulting from “local
realism”) appear as a consequence of the predictive incompleteness of ψ and have no
conflict whatsoever with relativistic causality. There is no influence at a distance, but only
inference at a distance, within a non-classical framework that is fundamentally probabilistic
(this is the starting point of both lines of arguments above).

In the CSM point of view, QM relies on a non-classical ontology where physical
properties are attributed to physical objects consisting of a system within a context, i.e.,
an idealized measurement apparatus. Such physical properties are called modalities, and
a modality belongs to a specified system within a specified context, which is described
classically.

Loosely speaking, the mathematical description of a modality includes both a usual
state vector |ψ〉 and a complete set of commuting operators admitting this vector as an
eigenstate. Though it may appear heavier at first sight, this point of view eliminates a great
deal of troubles about QM, and (in some sense) it can be seen as a reconciliation between
Bohr and Einstein in their famous 1935 debate [28].

Appendix B. Discussion of Three-Particle Entanglement

In the main text, the argument was based on Bell’s theorem, but it is also interesting to
consider three-particle entangled states, where the conflict between QM and local realism
is even more straightforward, as we will see now. The basic argument was introduced by
Greenberger, Horne and Zeilinger [32] and has been developed by many authors, both
theoretically and experimentally [33,34]; here, we follow mostly Mermin’s presentation
in [35,36].

Thus, let us consider measurements carried out on three spin 1/2 particles, each one
with a spin operator ~S = h̄

2~σ, where the three Pauli matrices (σx, σy, σz) are denoted as
(X, Y, Z) for simplicity. The 2× 2 unitary matrix is denoted as I, and ordered products
such as XYZ mean the measurements of σx, σy, σz on the first, second, and third particle,
respectively given to Alice, Bob, and Charlie.

A basic feature is that the operators XYY, YXY, YYX all commute together, and
have eight distinct eigenvalues (±1,±1,±1). Therefore, they define a complete set of
commuting operators (CSCO), where the eight orthogonal eigenvectors are defined by
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the eight eigenvalues. Another feature is that XXX also commute with the three previous
operators, and one has the algebraic relation XXX = −(XYY).(YXY).(YYX).

Correspondingly, the eigenvalue of XXX is (−1) for the (+1,+1,+1) eigenvector in
the previous basis, which we take as the initial state and denote as ψin, the usual GHZ state
defined as ψin = (|+++〉 − | − −−〉)/

√
2, where |±〉 are the eigenstates of σz [32].

On the other hand, denoting x = ±1 (resp. y = ±1) the result of measuring X (resp.
Y), on each spin, one has xyy = yxy = yyx = +1 in state ψin, and since y2 = 1 the
product xxx is +1 also. However, assuming (EL) and (PC), the value of each x should not
depend on the other measurements being X or Y, and one finds a full contradiction for ψin,
between measuring XXX (and thus obtaining −1) and deducing xxx from the separate
measurements of XYY, YXY and YYX (and thus obtaining +1).

XYY    YXY 
 +1     +1 

   
XXX    YYX 
  - 1     +1 

     

XII  IYI  IIY 
+1  +1  +1 
+1  - 1  - 1 
- 1  +1  - 1 
- 1  - 1  +1  

YII   IXI  IIY 
+1  +1  +1 
+1  - 1  - 1 
- 1  +1  - 1 
- 1  - 1  +1  

YII  IYI  IIX 
+1  +1  +1 
+1  - 1  - 1 
- 1  +1  - 1 
- 1  - 1  +1 

XII   IXI  IIX 
- 1  - 1  - 1 
+1  +1  - 1 
+1  - 1  +1 
- 1  +1  +1  

Figure A1. Illustration of the complete set of commuting observables considered here. The operators
X, Y, Z correspond to the Pauli matrices σx, σy, σz, and I to the identity. Three operators in a set are
enough, but a fourth commuting one is added in each group. The possible results are indicated
for the initial state ψin (GHZ state), which is an eigenstate of the CSCO at the center. Note that the
missing operators XXY, XYX, YYX, and YYY all give random results in the state ψin.

For a better understanding, Figure A1 displays the relevant CSCO for the consid-
ered situation. The previous operators are at the center, whereas XYY, for instance, is
commuting with the CSCO (XII, IYI, I IY), which is incompatible with (YII, IXI, I IY)
and (YII, IYI, I IX). In this situation, (PC) requires that, given the previous initial joint
eigenvector ψin ≡ (+1,+1,+1), no further measurements by Alice, Bob or Charlie can
improve the inferences they can make about the results to be obtained by others. However,
this is clearly not the case in QM, since for instance Alice and Bob can predict Charlie’s
result with certainty by sharing their measurement results.

This issue can be further illustrated by deriving inequalities in a local realistic frame-
work, as it was done in [36]. The hypothesis needed from local realism is

P(abc|uvwλ) = P(a|uλ)P(b|vλ)P(c|wλ) (A1)

whereas the rules of inference together with elementary locality (EL) for three particles
provide

P(abc|uvwλ) = P(a|uλ)P(b|uvλa)P(c|uvwλab) = P(a|uλ)P(b|uvwλac)P(c|uwλa)

= P(a|uvwλbc)P(b|vλ)P(c|vwλb) = P(a|uvλb)P(b|vλ)P(c|uvwλab)

= P(a|uvwλbc)P(b|vwλc)P(c|wλ) = P(a|uwλc)P(b|uvwλac)P(c|wλ)

These relations are fulfilled by QM, and each pair of equations applies respectively to Alice,
Bob, and Charlie. More precisely, with a, b, c = ±1 and u, v, w = 0 for X and π/2 for Y,
one has

P(abc|uvwλ) = (1 + abc cos(u + v + w))/8
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and all other probabilities are 1/2 except P(a|uvwλbc) = P(b|uvwλac) = P(c|uvwλab) =
(1 + abc cos(u + v + w))/2. This means that, if u + v + w = 0 or π, given their results, two
partners can predict with certainty the result of the third one as can be expected from the
definition of ψin.

On the other hand, in order to obtain Equation (A1) one needs to add Predictive
Completeness (PC), which reads by assuming (EL) is fulfilled:

P(a|uλ) = P(a|uvλb) = P(a|uwλc) = P(a|uvwλbc)

P(b|vλ) = P(b|uvλa) = P(b|vwλc) = P(b|uvwλac)

P(c|wλ) = P(c|uwλa) = P(c|vwλb) = P(c|uvwλab)

For instance, the first line refers to predicting Alice’s result, from the initial state, then by
Bob, then by Charlie, and then jointly by Bob and Charlie. According to (PC), all these pre-
dictions should be the same, whereas this is clearly not the case for QM, because λ ≡ ψin is
predictively incomplete: a new measurement in a new context provides a better contextual
inference. Again, this does not imply any influence at a distance, because (EL) is always
fulfilled, but only an inference at a distance, in a non-classical probabilistic framework.
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