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Abstract: Dysregulated epidermal growth factor receptor (EGFR) expression is frequently observed
in non-small cell lung cancer (NSCLC) growth and metastasis. Despite recent successes in the
development of tyrosine kinase inhibitors (TKIs), inevitable resistance to TKIs has led to urgent calls
for novel EGFR inhibitors. Herein, we report a rational workflow used to identify novel EGFR-TKIs
by combining hybrid ligand- and structure-based pharmacophore models. Three types of models
were developed in this workflow, including 3D QSAR-, common feature-, and structure-based EGFR-
TK domain-containing pharmacophores. A National Cancer Institute (NCI) compound dataset was
adopted for multiple-stage pharmacophore-based virtual screening (PBVS) of various pharmacophore
models. The six top-scoring compounds were identified through the PBVS pipeline coupled with
molecular docking. Among these compounds, NSC609077 exerted a significant inhibitory effect on
EGFR activity in gefitinib-resistant H1975 cells, as determined by an enzyme-linked immunosorbent
assay (ELISA). Further investigations showed that NSC609077 inhibited the anchorage-dependent
growth and migration of lung cancer cells. Furthermore, NSC609077 exerted a suppressive effect
on the EGFR/PI3K/AKT pathway in H1975 cells. In conclusion, these findings suggest that hybrid
virtual screening may accelerate the development of targeted drugs for lung cancer treatment.

Keywords: lung cancer; EGFR inhibitor; pharmacophore model; virtual screening; molecular docking

1. Introduction

Receptor tyrosine kinases (RTKs) play pivotal roles in the regulation of developmen-
tally relevant signal transduction events [1,2]. Abnormal RTK activity is one of the leading
factors correlated with the carcinogenesis of different cancer types and therefore, has be-
come an attractive therapeutic focus of targeted cancer therapy [3,4]. The epidermal growth
factor receptor (EGFR) family is one of the most studied TK targets because it plays vital
roles in mediating cell growth, differentiation, and survival signaling [5,6]. The EGFR
family consists of four distinct receptors: EGFR (also known as HER1 or ErbB1), HER2
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(ErbB2), HER3 (ErbB3), and HER4 (ErbB4) [5,7,8]. EGFR is a 170-kDa plasma membrane
glycoprotein with a cytoplasmic TK domain, a single hydrophobic transmembrane segment,
and an extracellular ligand-binding domain, which is similar to other receptors in the ErbB
family [5,8]. Several ligands, such as EGF and transforming growth factor (TGF), regulate
ligand interactions with the extracellular domain of EGFR, leading to receptor dimeriza-
tion and stabilization. The TK domain in EGFR catalyzes the transfer of a γ-phosphate
bound to ATP to tyrosine residues at intracellular autophosphorylation sites in the carboxy-
terminal tail, which ultimately leads to the activation of numerous downstream signaling
pathways [9,10].

Aberrant EGFR activation frequently occurs in diverse malignancies, including lung
cancer [11–13], and triggers a series of tumorigenic events, such as cell proliferation, cell
invasion, and metastasis and angiogenesis [14–16]. Lung cancer is the leading cause of
cancer-related mortality worldwide [17]. Non-small cell lung cancer (NSCLC) accounts for
approximately 80% of lung cancers, and it has an overall 5-year survival rate of 15% [18].
One of the clinical strategies for targeting EGFR activation in advanced NSCLC is small-
molecule inhibition of the catalytic kinase domain. To date, two 4-anilinoquinazoline deriva-
tives (gefitinib [19] and erlotinib [20]), which are reversible ATP competitive inhibitors that
prevent the autophosphorylation of EGFR TK, have been clinically approved. In addition,
a 4-anilinoquinazoline derivative (afatinib [21,22]) and a mono-anilino-pyrimidine com-
pound (osimertinib [23]) lead to noncompetitive and irreversible inhibition via covalent
bond formation with the ATP-binding site in the EGFR-TK domain.

Previous studies have shown that the first-generation EGFR-TKIs gefitinib and er-
lotinib lead to better outcomes in approximately 5–15% of NSCLC patients with sensitizing
EGFR mutations (exon 19 deletions and exon 21 L858R substitution) than in those with
wild-type EGFR [24–26]. However, approximately 50% of patients have been found to
have EGFR exon 20 T790M mutations at the time of acquired resistance to first-generation
TKI therapy [27]. Second- and third-generation TKIs (i.e., afatinib and osimertinib) are
currently approved for use in metastatic EGFR T790M mutant-positive NSCLC [28,29];
however, these two medicines unavoidably cause severe on-target side effects [30] and
acquired resistance mutations in EGFR exon 20 C797S [31] and G796D [32]. Resistance to
EGFR-TKIs is a major hindrance to NSCLC treatment success; therefore, novel therapeutic
agent development is an urgent goal.

Given the reversible and irreversible molecules targeting the EGFR-TK domain, de-
veloping predictive models describing the crucial chemical features of these molecules is
clearly needed. In this study, qualitative and quantitative pharmacophore models were
developed based on the pharmacophore features of EGFR inhibitors. Structure-based phar-
macophore features were also determined on the basis of the drug-binding pocket in the
mutant EGFR-TK domain. Subsequently, sequential screening was performed to identify
the novel EGFR inhibitor candidates through pharmacophore models and biological assays.

2. Results
2.1. Workflow

Accelrys Discovery Studio 3.5 (DS) (Accelrys Inc., San Diego, CA, USA) software was
used to perform all the calculations in this study. A CHARMM force field [33] was utilized
for energy minimization during the calculation processes. A set of 67 chemical compounds
and their half maximum inhibitory concentration (IC50) values determined through a
kinase inhibition assay were obtained from the BindingDB database [34] and rationally
categorized into training and test sets of 33 and 34 compounds, respectively. The 3D quan-
titative structure-activity relationship (QSAR) pharmacophore was modeled using these
compounds and was prioritized as the 3D structure query in the National Cancer Institute
(NCI) chemical database [35]. Subsequently, one common feature pharmacophore (CFP)
from among the clinical EGFR inhibitors, and two structure-based pharmacophores (SBPs)
dependent on mutant EGFR structures were constructed through qualitative methods and
adopted in further multiple-stage pharmacophore-based virtual screenings (PBVS). Fur-
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thermore, molecular docking was performed to refine the retrieved hits. The six top-scoring
hits were chosen as candidate compounds. Biological validation with ELISA was then
performed to evaluate the efficacy of EGFR activity suppression of the final hits identified
through this pipeline. Finally, we determined that NSC609077 is a candidate inhibitor that
exerted a significant effect on EGFR inhibition. Moreover, we investigated the functional
roles and associated signaling pathways underlying the ability of NSC609077 to suppress
lung cancer progression in vitro. The complete workflow is summarized in Figure 1.
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2.2. 3D QSAR Pharmacophore Generation and Validation

The 3D QSAR pharmacophore model was constructed on the basis of 33 structurally
diverse training set compounds with IC50 values spanning five orders of magnitude
(Appendix A; Figure A1), which constitute a requirement for large-scale virtual screening.
The dataset activity (based on the IC50) was roughly classified into three groups: highly
active (IC50 < 100 nM), moderately active (100 nM ≤ IC50 < 1000 nM), and nominally active
(IC50 ≥ 1000 nM). Four types of crucial features, namely, hydrogen bond acceptors (HBAs),
hydrogen bond donors (HBDs), hydrophobic regions (HYs), and aromatic rings (ARs),
were investigated among the training set compounds, and the hypothetical pharmacophore
was modeled. The 10 highest-ranked hypothetical pharmacophores with the corresponding
statistical parameters were constructed to illustrate different constituents contributing to
the pharmacophoric features and to reflect the significance of each model; these results
are shown in Table 1. The top-ranked hypothetical structure (i.e., Hypo1) was chosen as
the best model because of its parameters: the highest correlation coefficient (0.92), the
lowest root mean square deviation (RMS; 0.88), the lowest total cost (136.11), the most
reliable configuration cost (10.43), and the highest cost difference (60.98). Moreover, the
null cost and the fixed cost were 197.09 and 122.56, respectively. Hypo1 was composed of
HBAs, HBDs, and HYs, as shown in Figure 2A. The distance between every two chemical
features ranged from approximately 5.7 to 10.4 Å. The most active compound, BDBM3297
(IC50, 0.1 nM), showed a higher fit value of 6.79 when mapped to Hypo1, while the least
active compound, BDBM3269 (IC50, 5500 nM), displayed a low fit value, 2.84, as shown
in Figure 2B.

Table 1. The ten best 3D QSAR hypothetical pharmacophores constructed using a training set against
EGFR inhibitors.

Pharmacophore
Hypothesis Total Cost Cost Dif-

ference RMS Correlation Features

Hypo1 136.11 60.98 0.88 0.92 HBA, HBD, HY
Hypo2 136.27 60.82 0.90 0.91 HBA, HBD, HY
Hypo3 144.36 52.73 1.14 0.87 HBA, HBD, HY
Hypo4 146.30 50.79 1.19 0.85 HBA, HBD, HY
Hypo5 147.97 49.12 1.21 0.85 HBD, HY, RA
Hypo6 150.20 46.89 1.28 0.83 HBA, HBD, HY
Hypo7 150.36 46.73 1.25 0.84 HBD, HY, RA
Hypo8 150.65 46.44 1.30 0.82 HBA, HBD, HY
Hypo9 150.97 46.12 1.30 0.82 HBD, HY, RA
Hypo10 151.64 45.45 1.27 0.84 HBD, HY, RA

Cost difference: The difference between the null and total costs. The null cost, the fixed cost, and the configuration
cost are 197.09, 122.56, and 10.43, respectively. All costs are reported as bit units. RMS: root mean square
deviation. Features—HBA, hydrogen bond acceptor; HBD, hydrogen bond donor; HY, hydrophobic region; RA,
ring aromatic.
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mapped to the Hypo1 model. BDBM number: the general identifier of compound in the BindingDB 
database. (C,D) Validation of the statistical significance of the 3D QSAR Hypo1 model. Fischer’s 
randomization test was used to examine significant differences in total costs between the Hypo1 
model and random pharmacophore models at a 95% confidence level (C) and 99% confidence level 
(D). (E,F) Evaluation of the predictive efficacy of the 3D QSAR Hypo1 model. Correlation plot be-
tween the experimental activity and the predicted activity of the 3D QSAR training set compounds 
(E; r = 0.92, p < 0.001) and test set compounds (F; r = 0.71, p < 0.001) when mapped to the Hypo1 
model. The pIC50 values of training set compounds and test set compounds were shown with the 
black square and the black triangle, respectively. pIC50: the negative logarithm value of the IC50 value 
when converted to millimolar. 

Figure 2. The 3D QSAR Hypo1 pharmacophore model of EGFR inhibitors. (A) Pharmacophore
features of the Hypo1 model: hydrogen bond acceptor (HBA, green), hydrogen bond donor (HBD,
purple), and hydrophobic region (HY, blue). The distance (Å) between every two features is shown.
(B) The most active compound BDBM3297 (half maximum inhibitory concentration, IC50 = 0.1 nM;
fit value = 6.79) and the most inactive compound BDBM3269 (IC50 = 5500 nM; fit value = 2.84) were
mapped to the Hypo1 model. BDBM number: the general identifier of compound in the BindingDB
database. (C,D) Validation of the statistical significance of the 3D QSAR Hypo1 model. Fischer’s
randomization test was used to examine significant differences in total costs between the Hypo1
model and random pharmacophore models at a 95% confidence level (C) and 99% confidence level
(D). (E,F) Evaluation of the predictive efficacy of the 3D QSAR Hypo1 model. Correlation plot
between the experimental activity and the predicted activity of the 3D QSAR training set compounds
(E; r = 0.92, p < 0.001) and test set compounds (F; r = 0.71, p < 0.001) when mapped to the Hypo1
model. The pIC50 values of training set compounds and test set compounds were shown with the
black square and the black triangle, respectively. pIC50: the negative logarithm value of the IC50

value when converted to millimolar.
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To validate the statistical significance of the Hyop1 model, Fischer’s randomization test
was performed through the CatScramble method to shuffle the IC50 values of the training set
compounds and construct a randomly generated hypothetical pharmacophore. A total of
19 and 99 random hypothetical models were generated at the 95 and 99% confidence levels,
respectively. The total costs of the randomly generated hypothetical pharmacophores were
much higher than those of the original Hypo1 hypothetical model at these two confidence
levels (Figure 2C,D). The results of the randomization test indicated that Hypo1 was not
generated on the basis of the random correlations.

To validate the predictive efficacy of the Hypo1 model, the correlation between the
experimental and estimated IC50 values of the training set molecules indicated good
predictability, as shown in Figure 2E (r = 0.92, p < 0.001). Furthermore, 20 of 22 highly active,
4 of 10 moderately active, and 1 nominally active training set compounds were estimated
in the same order of magnitude (Table 2). In addition, the 34 tested set compounds with
IC50 values spanning five orders of magnitude were tested for their predictability potential
(Appendix A; Figure A2). The test set evaluation with the hypothetical Hypo1 model
showed low but significant predictive ability with a correlation coefficient value of 0.71
(p < 0.001) (Figure 2F). Collectively, these data showed a suitable correlation between the
experimental and estimated activities of the Hypo1 training and test set molecules. All the
validation approaches demonstrated that the Hypo1 model has appropriate discriminatory
power and can be adopted as the best 3D QSAR model for virtual screening.

Table 2. The experimental and predicted activities of 33 training set compounds calculated on the
basis of the 3D QSAR-derived Hypo1 model.

BindingDB
Code

Experimental
IC50 nM

Predicted
IC50 nM Error Experimental

Scale ‡
Predicted

Scale ‡
3D-QSAR
Fit Value

BDBM3297 0.1 0.4 4.00 +++ +++ 6.79
BDBM3520 0.3 0.4 1.33 +++ +++ 6.77
BDBM3522 0.4 0.4 1.00 +++ +++ 6.80
BDBM3583 0.4 0.7 1.75 +++ +++ 6.58
BDBM3294 0.8 2.2 2.75 +++ +++ 6.07
BDBM3519 2.0 9.3 4.65 +++ +++ 5.45
BDBM3780 2.7 3.5 1.30 +++ +++ 5.87
BDBM3546 3.8 2.4 −1.58 +++ +++ 6.04
BDBM3535 4.0 2.0 −2.00 +++ +++ 6.12
BDBM3538 4.7 0.4 −11.75 +++ +++ 6.79
BDBM3767 9.4 20.4 2.17 +++ +++ 5.11
BDBM3781 20.0 66.0 3.30 +++ +++ 4.60
BDBM3263 23.0 75.1 3.27 +++ +++ 4.54
BDBM3264 27.0 72.8 2.70 +++ +++ 4.55
BDBM3753 31.0 55.5 1.79 +++ +++ 4.67
BDBM3508 55.0 73.2 1.33 +++ +++ 4.55
BDBM3503 56.0 164.8 2.94 +++ ++ 4.20
BDBM3283 58.0 81.6 1.41 +++ +++ 4.50
BDBM3763 58.0 209.8 3.62 +++ ++ 4.09
BDBM3744 72.0 63.6 −1.13 +++ +++ 4.61
BDBM3265 80.0 72.0 −1.11 +++ +++ 4.56
BDBM3536 84.0 70.5 −1.19 +++ +++ 4.57
BDBM3518 100.0 16.8 −5.95 ++ +++ 5.19
BDBM3516 120.0 79.8 −1.50 ++ +++ 4.51
BDBM3745 132.0 85.6 −1.54 ++ +++ 4.48
BDBM3292 139.0 90.7 −1.53 ++ +++ 4.46
BDBM3757 147.0 57.4 −2.56 ++ +++ 4.66
BDBM3752 264.0 188.8 −1.40 ++ ++ 4.14
BDBM3256 320.0 106.8 −3.00 ++ ++ 4.39
BDBM3259 344.0 202.1 −1.70 ++ ++ 4.11
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Table 2. Cont.

BindingDB
Code

Experimental
IC50 nM

Predicted
IC50 nM Error Experimental

Scale ‡
Predicted

Scale ‡
3D-QSAR
Fit Value

BDBM3295 348.0 69.2 −5.03 ++ +++ 4.58
BDBM3510 770.0 228.5 −3.37 ++ ++ 4.06
BDBM3269 5500.0 3769.7 −1.46 + + 2.84

Error: The difference between true and estimated activity. A predicted half maximum inhibitory concentration
IC50 that is higher than the experimental IC50 is indicated by the “+” sign; in contrast, a predicted IC50 that is
lower than the experimental IC50 is indicated by the “−” sign. A value of 1 indicates that the predicted IC50
is equal to the experimental IC50. ‡ Activity scale: +++, highly active (IC50 < 100 nM); ++, moderately active
(100 nM ≤ IC50 < 1000 nM); +, nominally active or inactive (IC50 ≥ 1000 nM). 3D-QSAR fit value: The fit value
indicates the extent to which the features of the 3D QSAR Hypo1 model overlap the chemical features of the
training set molecule.

2.3. Identification of Common Feature Pharmacophores

To understand the crucial pharmacophore features of the reversible and irreversible
EGFR inhibitors, four clinically approved small-molecule drugs (Figure 3A) were used to
identify the common chemical features among them. Through the modeling processes,
the 10 highest-ranked hypothetical pharmacophores were produced, as shown in Table 3.
To identify the optimal model from among the ten hypothetical models, the following
four parameters were the criteria: (1) a high rank value indicated greater validity of the
produced model; (2) a perfect direct hit indicated complete matching of the produced model
to a training set compound; (3) a partial hit indicated incomplete matching of the model to
a training molecule(s); and (4) a max hit value represented the number of mapped chemical
features. According to these criteria, the Pharm2 model, shown in Table 3, was chosen as
the optimal model on the basis of the following parameters: (i) the second-highest rank
value of 53.04; (ii) a perfect hit of the four tested EGFR inhibitors; (iii) no partial hits among
the four tested inhibitors; and (iv) the highest max hit value. The Pharm2 hypothetical
model was composed of three HYs, one HBD, and two HBAs, as shown in Figure 3B. As
illustrated in Figure 3C, the four EGFR inhibitors were mapped to the Pharm2 model with
the following derived pharmacophoric fit values: gefitinib (fit value, 3.28), erlotinib (fit
value, 1.89), afatinib (fit value, 2.90), and osimertinib (fit value, 6.00).

Table 3. The ten best common feature-derived hypothetical pharmacophores constructed on the basis
of four clinically approved EGFR inhibitors.

Pharmacophore
Hypothesis Rank Direct Hit Partial Hit Max Hit Features

Pharm1 54.25 1101 0010 6 RRHHAA
Pharm2 53.04 1111 0000 6 HHHDAA
Pharm3 52.64 1101 0010 6 RRHHAA
Pharm4 52.48 1111 0000 5 RRHAA
Pharm5 52.32 1101 0010 6 RRHHAA
Pharm6 52.32 1101 0010 6 RRHHAA
Pharm7 52.25 1101 0010 6 RRHHAA
Pharm8 52.25 1101 0010 6 RRHHAA
Pharm9 52.20 1111 0000 5 RRHAA
Pharm10 52.20 1111 0000 5 RRHAA

Features: A, hydrogen bond acceptor; D, hydrogen bond donor; H, hydrophobic area; and R, ring aromatic.
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Figure 3. The common feature pharmacophore model of clinical EGFR inhibitors. (A) Structures of
four clinically approved EGFR inhibitors. Gefitinib, erlotinib, and afatinib are 4-anilinoquinazoline
derivatives. Osimertinib is a mono-anilino-pyrimidine derivative. (B) Pharmacophore features of the
Pharm2 model: hydrogen bond acceptor (HBA, green), hydrogen bond donor (HBD, purple), and
hydrophobic region (HY, blue). (C) Mapping of gefitinib (fit value = 3.28), erlotinib (fit value = 1.89),
afatinib (fit value = 2.90), and osimertinib (fit value = 6.00) in the Pharm2 model.

2.4. Generation of Structure-Based Pharmacophores

To investigate the most comprehensive pharmacophoric features, EGFR L858R and
T790M mutants were adopted, and the key chemical features were discerned by examining
the residues in the ATP-competitive pocket of the kinase domain. A total of 246 HBAs,
230 HBDs, and 88 HYs were identified in the EGFR L858R mutant. After a cluster analysis of
these features was performed, the optimal SBP was generated; the set of features included
8 HBAs, 8 HBDs, and 12 HYs (Figure 4A). In addition, a total of 73 HBAs, 264 HBDs,
and 102 HYs were identified in the EGFR T790M mutant. Through clustering, the crucial
features of the 5 HBAs, 8 HBDs, and 10 HYs were found to be retained in the optimal
SBP model corresponding to the T790M mutant (Figure 4B). Subsequently, these two
SBP models, the Hypo1 3D QSAR model and the Pharm2 CFP model, were utilized for
multiple-stage PBVS.

2.5. Identification of Candidate Compounds through Multiple-Stage PBVS

To identify potential EGFR inhibitors, 46,872 NCI compounds were screened by
multiple-stage PBVS coupled with molecular docking. Initially, drug-like properties char-
acterized through criteria such as Lipinski’s rule of five [36] and Veber’s rules [37] were
preferentially assessed to explore the druggability of the candidate molecules. By discerning
the druggable properties in this manner, 38,546 compounds with good drug likeness were
chosen. To identify the most potent inhibitors against the EGFR-TK domain, first-, second-,
and third-generation EGFR inhibitors were adopted as positive controls in the calculation
of the pharmacophore fit values corresponding to three types of pharmacophore models;
the results are shown in Table A1 (Appendix A). Among the four clinically approved
medicines, erlotinib presented the lowest degree of overlap with each pharmacophore
model. To prevent the loss of additional candidates, we selected three types of fit values
derived from the erlotinib molecule as criteria for screening. Then, the selected drug-like
compounds were mapped to the Hypo1 model, which was based on the 3D QSAR pharma-
cophore, to calculate the fit values, and 16,666 hit compounds had fit values larger than the
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control value (the fit value for the 3D QSAR pharmacophore model was 3.17). Then, the
16,666 hit compounds were subsequently mapped to the Pharm2 model on the basis of the
CFP to calculate fit values, and 2682 hits were identified based on the fit values derived
by mapping erlotinib to the Pharm2 CFP model (the fit value was 1.89). The retained hit
compounds were mapped to the two individual SBP models, and the fit values of eight hit
compounds exceeded the control values (the fit value of the SBP derived from the EGFR
L858R mutant was 1.50, and the fit value of the SBP derived from the EGFR T790M mutant
was 1.15).
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Figure 4. The structure-based pharmacophoric features involving the ATP-bound pocket of the
EGFR L858R and T790M structures. Pharmacophore features were identified on the basis of the
ATP-binding site in the EGFR kinase domain: hydrogen bond acceptor (HBA, green), hydrogen bond
donor (HBD, purple), and hydrophobic region (HY, blue). (A) A total of 8 HBAs, 8 HBDs, and 12 HYs
were identified based on the crystal structure of the EGFR L858R mutant. (B) A total of 5, 8, and
10 features were identified based on the crystal structure of the EGFR T790M mutant and classified
into three types of features: HBAs, HBDs, and HYs. Abbreviations- PDB: Protein Data Bank.

Although the retained hit compounds were considered to represent the crucial phar-
macophore features derived from the EGFR L858R and T790M mutant structures, molecular
docking analysis was still performed to understand the binding modes and select six mod-
els that had a LibDock score higher than the control score (the LibDock score for the EGFR
L858R mutant was 111.59, and the LibDock score of the EGFR T790M mutant was 106.28,
respectively). Among the six hit compounds, four compounds obtained through the NCI
open chemicals repository were employed to demonstrate the validity of multiple-stage
PBVS. Therefore, their inhibitory effects on EGFR activity were evaluated by performing an
ELISA to measure the phosphorylation level of the autophosphorylation site (i.e., the EGFR
Y1068 residue) in gefitinib-resistant H1975 lung cancer cells. The ELISA results showed that
at a 1 µM concentration, each compound had a maximum inhibitory rate on EGFR activity
greater than 50%, except for NSC7521. Among these compounds, NSC609077 showed the
most significant inhibition (an inhibitory rate of 79%) compared to the vehicle control. The
detailed pharmacophore fit values, LibDock scores, and inhibitory rate on EGFR activity of
the candidate compounds are shown in Table 4.

2.6. NSC609077 Inhibits the Anchorage-Dependent Growth and Motility of Lung Cancer Cells

As a demonstration of the validity of multiple-stage PBVS, NSC609077 was chosen to
examine its efficacy as a functional antitumor drug. To determine the IC50 of NSC609077
before performing other experiments, we conducted a cytotoxicity assay after treating
H1975 and A549 lung cancer cells with various concentrations of NSC609077 for 48 h. The
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analysis showed that the survival rates of both cell lines were significantly decreased in an
appropriate dose-dependent manner (Figure 5A). The IC20 and IC50 values of NSC609077
in H1975 cells were calculated with CalcuSyn software to be 1.13 µM and 5.01 µM after 48 h
of treatment, respectively. In addition, the IC20 and IC50 values of NSC609077 in A549 cells
were 1.31 and 5.9 µM. Our results indicated that NSC609077 exhibited a better inhibitory
effect on gefitinib-resistant H1975 cells harboring the EGFR T790M mutation than on A549
cells harboring wild-type EGFR. To investigate the antitumor effect of NSC609077, colony
formation assays and scratch-wound assays were carried out in this study. The colony
formation ability of both lung cancer cell lines was significantly inhibited by 48-h treatment
with IC20 and IC50 concentrations of NSC609077 in a dose-dependent manner (Figure 5B).
Because the formation of most of colonies in both cell lines was inhibited at the IC50 dosage
of NSC609077, to enable the observation of the motility of both cell types, for the wound
healing experiment, lower doses (IC10 and IC20) of NSC609077 were used at the indicated
time points (4–16 h). Herein, NSC609077 significantly inhibited the migration of both lung
cancer cell lines, especially at the IC20 does (Figure 5C). Taken together, our results showed
that NSC609077 significantly inhibited the growth and migration of gefitinib-resistant or
gefitinib-insensitive lung cancer cells.

Table 4. The pharmacophore-derived fit values, docking scores, and the suppression effects of the
candidate compounds on EGFR phosphorylation at Y1068.

NSC
Number

3D-QSAR
Fit Value

CFP Fit
Value SBP Fit Value LibDock Score Phosphorylation

Level (%)
Inhibitory
Rate (%)

EGFR
p.L858R

(PDB: 2ITV)

EGFR
p.T790M

(PDB: 2JIT)

EGFR
p.L858R

(PDB: 2ITV)

EGFR
p.T790M

(PDB: 2JIT)

NSC7521 6.00 3.18 2.89 2.57 124.05 122.70 75 ± 15 25 ± 15
NSC342715 6.47 3.26 2.98 2.65 123.30 119.98 37 ± 6 * 63 ± 6 *
NSC622394 6.05 3.37 1.97 2.54 148.73 123.90 32 ± 8 * 68 ± 8 *
NSC609077 6.22 2.79 2.77 1.68 145.57 152.88 21 ± 6 * 79 ± 6 *
NSC622442 6.68 3.73 3.12 2.49 129.85 124.22 NA NA
NSC623897 6.03 3.77 2.48 3.33 117.06 116.17 NA NA

* p < 0.05 indicates statistical significance compared with the vehicle control. NA, not available (the corresponding
compound was not in the NCI open chemicals repository). NSC Number: National service center number.
Abbreviations- 3D-QSAR: 3D quantitative structure-activity relationship, CFP: Common feature pharmacophore,
SBP: Structure-based pharmacophore, EGFR: Epidermal growth factor receptor, PDB: Protein data bank.

2.7. Effects of NSC609077 on an EGFR-Associated Signaling Pathway

Previous studies have reported that the resistance of first-generation EGFR-TKIs
in NSCLC cells can be overcome by suppressing the EGFR/PI3K/AKT signaling path-
way [38–40]. To further confirm the inhibitory effect of NSC609077 on the expression of the
EGFR/PI3K/AKT axis, H1975 and A549 lung cancer cells were treated with the respective
IC20 dose of NSC609077 for 48 h; Western blot analysis was then performed. As shown in
Figure 6A, significant inhibitory effects of the IC20 dose of NSC609077 on the phosphory-
lation of EGFR, PI3K, and AKT were detected in the H1975 cells. Furthermore, the total
protein expression levels of the axis components, except for the EGFR level, were slightly
reduced. In contrast, no significant inhibition of the levels of total or phosphorylated
proteins in this axis was found in NSC609077-treated A549 cells exposed to EGF stimu-
lation; however, EGFR phosphorylation was reduced. Given this evidence, NSC609077
may not inhibit the growth or migration of gefitinib-insensitive A549 lung cancer cells by
attenuating EGFR/PI3K/AKT signaling pathway activation. Because of crosstalk between
Src and EGFR, it has been hypothesized that the suppression of Src and its downstream
signaling partners may induce apoptosis [41] and overcome gefitinib resistance [38] in lung
cancer cells. Therefore, the effects of NSC609077 on the expression of Src, STAT3, and ERK
in both cell lines were further investigated. As shown in Figure 6B, NSC609077 exhibited
weak or nonsignificant inhibitory effects on the total and phosphorylated expression of Src
and STAT3 in H1975 cells and A549 cells exposed to EGF. Although the total ERK protein
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expression of these two cell lines was not inhibited by treatment with NSC609077, the level
of phosphorylated ERK was significantly reduced in both cell lines, especially in A549 cells,
exposed to EGF. Our results suggested that NSC609077 separately inhibits the expression
or activation of the EGFR/PI3K/AKT axis, and ERK to suppress the growth and motility
of H1975 cells and A549 cells.
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Figure 5. The impact of NSC609077 on lung cancer cell viability, clonogenicity, and motility. (A) The
cytotoxicity of NSC609077 was evaluated in H1975 and A549 lung cancer cells with a cell viability
assay. The results are shown as the percentages with respect to the control response (0 µM). (B) H1975
and A549 cells grown under anchorage-dependent conditions were treated with IC20 and IC50 of
NSC609077 for 48 h and then evaluated through clonogenic assays. Quantification of the percentage
of the colony-covered area of each treatment group, as assessed with ImageJ software. Representative
images are shown. (C) The effect of IC10 (H1975, 0.47 µM; A549, 0.55 µM) and IC20 (H1975, 1.13 µM;
A549, 1.31 µM) of NSC609077 treatment for 16 h on H1975 and A549 cell migration was assessed by
scratch-wound assay. The percentage of the cell coverage areas was measured. * p < 0.05 compared
with the vehicle-treated control.
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Figure 6. The effect of NSC609077 on an EGFR-associated signaling pathway in H1975 and A549 
lung cancer cells. (A) Western blot showing EGFR, PI3K, and AKT in H1975 and A549 cells treated 
with the IC20 (H1975, 1.13 µM; A549, 1.31 µM) of NSC609077 for 48 h. (B) Western blot showing Src, 
STAT3, and ERK in H1975 and A549 cells treated with the IC20 of NSC609077 for 48 h. A549 cells 
with or without EGF stimulation. GAPDH served as the loading control. Protein expression was 
quantified with ImageJ software, and these data are shown below the gel graph. Abbreviations of 
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Figure 6. The effect of NSC609077 on an EGFR-associated signaling pathway in H1975 and A549
lung cancer cells. (A) Western blot showing EGFR, PI3K, and AKT in H1975 and A549 cells treated
with the IC20 (H1975, 1.13 µM; A549, 1.31 µM) of NSC609077 for 48 h. (B) Western blot showing
Src, STAT3, and ERK in H1975 and A549 cells treated with the IC20 of NSC609077 for 48 h. A549
cells with or without EGF stimulation. GAPDH served as the loading control. Protein expression
was quantified with ImageJ software, and these data are shown below the gel graph. Abbreviations
of genes/aliases- EGFR: Epidermal growth factor receptor, pEGFR: Phosphorylation of epidermal
growth factor receptor, PI3K: Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta,
pPI3K: Phosphorylation of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta,
AKT: AKT serine/threonine kinase 1, pAKT: Phosphorylation of AKT serine/threonine kinase 1, SRC:
SRC proto-oncogene, pSRC: Phosphorylation of SRC proto-oncogene, Stat3: Signal transducer and
activator of transcription 3, pStat3: Phosphorylation of signal transducer and activator of transcription
3, ERK: Mitogen-activated protein kinase 1, pERK: Phosphorylation of mitogen-activated protein
kinase 1, GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.
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3. Discussion

NSCLC is the most common malignant tumor worldwide, and it exhibits a high mor-
tality rate [17]. Despite recent successes in the development of small-molecule inhibitors of
EGFR kinase activity, this therapeutic strategy inevitably promotes the development of side
effects [30] and drug-resistant mutants [27,31,32]. Therefore, the development of new ther-
apeutic drugs is an urgent goal. In view of the mechanisms of action of various EGFR-TKIs,
the construction of predictive models describing crucial pharmacophore characteristics of
molecule candidates may improve the development and design of novel EGFR inhibitors.

In this study, we report a workflow of a multiple-stage virtual screening process
that was used in conjunction with molecular docking to discover potential EGFR-targeted
inhibitors for the suppression of EGFR activity. Initially, we developed quantitative (3D
QSAR-based) and qualitative (common feature-based) pharmacophore models to identify
pivotal chemical features of known EGFR inhibitors. Then, structure-based pharmacophore
features were generated on the basis of ATP competitive sites in the EGFR L858R and T790M
mutant structures. Then, a sequential virtual screening workflow used with three kinds of
pharmacophores was performed to identify candidate compounds with the aforementioned
crucial pharmacophore features.

For construction of the 3D QSAR pharmacophore model, 33 training set compounds
were obtained from the BindingDB database, representing a wide range of IC50 values,
across five orders of magnitude (0.1–5500 nM). The training set compounds that fit the
following specific criteria were used to construct good hypothetical pharmacophores:
(a) activity values ranged through at least four orders of magnitude; (b) the same targets
were bound through a similar mechanism; and (c) activity values were measured with
homogeneous procedures [42,43]. The ten best hypothetical models were constructed
on the basis of the training set molecules. The top-ranked hypothetical model (Hypo1)
was selected based on the following necessary rules: (i) the highest correlation coefficient,
(ii) the lowest RMS value, (iii) the lowest total cost, (iv) a fixed cost similar to the total cost,
(v) a high cost-difference, and (vi) a configuration cost value less than 17 [42,43]. Finally,
one HBA, one HBD, and one HY chemical feature comprised the Hypo1 hypothetical
model, as validated by Fischer’s randomization and test set methods.

During virtual screening, a CFP model was employed to account for key pharma-
cophore features of clinically approved EGFR-TKIs. The CFP model was generated on
the basis of the common features among four clinical EGFR-TKIs: gefitinib, erlotinib, afa-
tinib, and osimertinib. The four EGFR inhibitors exerted either reversible or irreversible
inhibition to prevent the phosphorylation of EGFR-TKs, implying that the key chemical
features significantly differ between the four inhibitors. For this reason, we adopted the
CFP model as the structural query to perform virtual screening. This screening strategy
is similar to that of previously published studies in which potential lead compounds that
target EGFR were identified [44,45]. In addition, two SBP models derived on the basis of
the ATP-bound pocket on the TK domain in the EGFR L858R and T790M mutants were
also adopted in the screening processes to provide more comprehensive information on
the crucial pharmacophore features. Because the ligand–receptor interaction depends on
polar regions and hydrophobic regions, typical chemical features considered in designing
a pharmacophore are a hydrogen bond acceptor, a hydrogen bond donor, a hydrophobic
moiety, an aromatic ring moiety, and cation or anion moieties [46]. Therefore, a well-defined
pharmacophore model was mainly comprised of hydrophobic volumes and hydrogen bond
vectors. In this study, three types of chemical features, HBAs, HBDs, and HYs, were widely
identified in the ligand- and structure-based pharmacophores and applied in the further
virtual screening.

By combining the three types of pharmacophore models with molecular docking, we
were able to perform a multiple-stage virtual screening on a dataset of NCI chemicals to
identify potential EGFR inhibitors. As a result of the virtual screening, six novel EGFR
inhibitors with desirably druggable properties, physicochemical properties, and good
binding affinity for EGFR were identified; hence, these inhibitors were used in further
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in vitro experiments. To demonstrate the feasibility and validity of the multiple-stage
PBVS, ELISAs were performed to validate the suppressive effect of the four available
candidate compounds on EGFR activity in H1975 cells. Among these compounds, three
compounds, NSC342715, NSC622394, and NSC609077, inhibited the phosphorylation of
EGFR by 50% in the gefitinib-resistant H1975 lung cancer cell line (Table 4). Despite the
fact that NSC7521 only inhibited close to 25% of EGFR activation in our results, a prior
study has revealed that it can effectively suppress the EGFR phosphorylation in H1975 cells
by using in vitro and in vivo experiments [47]. This result shows that the proposed PBVS
workflow can be effectively used to identify the key pharmacophore characteristics of EGFR
inhibitors. In addition, NSC609077 showed the highest inhibitory rate, suppressing EGFR
phosphorylation by approximately 80%. NSC609077 inhibited EGFR phosphorylation
in gefitinib-resistant H1975 cells and gefitinib-insensitive, but EGF-stimulated A549 cells
(Figure 6A). Thus, NSC609077 was identified as a promising EGFR-targeted inhibitor
candidate, and its functionality as an antitumor drug is considered worthy of investigation.
To the best of our knowledge, no previous studies have reported the molecular mechanism
and/or anticancer effect of NSC609077. Our results indicated that NSC609077 exerted a
significant cytotoxic effect at the micromolar scale in H1975 cells and A549 cells. Moreover,
the low dose of NSC609077, at a concentration of approximately 1 µM, also demonstrated a
significant inhibitory effect on the colony formation and migration of these two types of
lung cancer cells.

Previous studies have reported increased activation of the EGFR/PI3K/AKT signal
transduction pathway in EGFR-TKI-resistant NSCLC cells, and this activation promotes
cell proliferation and suppresses the apoptosis of cancer cells [39,40,48,49]. Hence, a few
studies have attempted to overcome the resistance of gefitinib in NSCLC cells through the
suppression of PI3K/AKT-related signaling by treatment with synergistic drugs [38,50] or
a single drug [51]. Our results showed that NSC609077 can inhibit the phosphorylation
of the EGFR/PI3K/AKT signaling pathway in H1975 cells, but it had no effect in A549
cells. In contrast, NSC609077 exerted a suppressive effect on the phosphorylation of ERK
in both lung cancer cell lines, especially in A549 cells. A previous study found that the
proliferation-suppressive effect was increased on A549 cells harboring wild-type EGFR
when the MEK/ERK pathway was blocked [38]. Overall, we speculated that NSC609077
shows the potential to be an EGFR-targeted drug that may be used to overcome EGFR-TKI
resistance in NSCLC by simultaneously blocking PI3K/AKT and MEK/ERK pathways,
a concept that has also been previously proposed [52]. Importantly, further exploration
into the mechanisms of NSC609077 action might contribute to the development of novel
EGFR-targeted inhibitors for NSCLC treatment.

In conclusion, we constructed a rational workflow for multiple-stage PBVS and per-
formed the ELISA experiments to identify important features of EGFR kinase inhibitors
and to discover four potential EGFR-targeted inhibitors. Among the four compounds,
NSC609077 showed a significant inhibitory effect on the EGFR activity and inhibited lung
cancer cell viability, proliferation, and migration by suppressing EGFR-related signaling
pathways. The results showed that the application of different pharmacophore models
derived from various EGFR inhibitors or protein structures may be useful in facilitating the
discovery of novel EGFR-targeted drugs in the future.

4. Materials and Methods
4.1. 3D QSAR Pharmacophore Generation and Evaluation

Training and test sets comprising 33 and 34 compounds, respectively, were collected
and employed to construct the 3D QSAR pharmacophore model. Four types of chemical
features (HBAs, HBDs, HYs, ARs) were identified from among the training set molecules
to generate a hypothetical pharmacophore. The 3D QSAR pharmacophore generation
protocol in DS3.5 (the HypoGen algorithm) was adopted to produce a series of hypothetical
pharmacophores based on crucial chemical features and activity values of the training set
molecules. HypoGen generates hypothetical models based on commonalities among the
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active molecules, excluding similarities with inactive molecules, and optimizes the solution
by simulated annealing [42]. The 10 most relevant hypothetical structures and significant
statistical parameters were generated. The top-ranked model was selected as the optimal
model and then evaluated using two methods: test set validation for the evaluation of
predictive power and Fischer’s randomization test for judging the significance of the model.

4.2. Common Feature Pharmacophore Modeling

The common feature pharmacophore generation protocol (the HipHop algorithm) [53]
was employed to identify the vital chemical features of clinical EGFR-TKIs, such as gefitinib,
erlotinib, afatinib, and osimertinib. The HipHop approach was used to detect common
features in these four compounds for the generation of a CFP model comprising key
features, including HBAs, HBDs, HYs, and ARs. The 10 highest-ranked hypothetical
models based on the corresponding parameters were generated. The best model was
chosen based on the higher score and most significant parameters.

4.3. Structure-Based Pharmacophore Modeling

Crystal structures of the EGFR-TK domain with the exon 21 L858R mutation (Protein
Data Bank (PDB) ID: 2ITV) [54] and exon 20 T790M mutation (PDB ID: 2JIT) [55] were
downloaded from the PDB database. Water molecules were removed from the protein
structure, and hydrogen atoms and charge potential information were added. The ligand-
bound pocket in the TK domain was predefined as an active pocket. The interaction
generation protocol [56,57] was applied to characterize the chemical features in the active
pocket of two individual protein structures. The density parameters of the polar sites and
lipophilic sites were both set to 25 for identification of the hydrophilic and hydrophobic
features, respectively. The estimated features were then clustered and optimized on the
basis of their interaction patterns.

4.4. Pharmacophore-Based Virtual Screening (PBVS)

After construction and evaluation, three pharmacophore models were applied to per-
form multiple-stage PBVS with the NCI chemical database. The compounds were prepared
by using the prepare ligand protocol. The conformations of each compound were gener-
ated using the best conformer generation method. The ligand pharmacophore mapping
protocol in DS3.5 was employed with the rigid-body fitting method to screen for 3D QSAR
pharmacophores and CFPs. In addition, the screening library protocol was utilized for
pharmacophore mapping of the SBP to retained hits that had been properly mapped to
ligand-based pharmacophores. The fit values were calculated on the basis of different types
of pharmacophore models and adopted as the criteria to select hit compounds. A high fit
value indicated a greater overlap between the compound and the pharmacophore features
and vice versa.

4.5. Molecular Docking Studies

A molecular docking analysis was performed to refine the list of hit compounds
obtained from multiple-stage PBVS. The LibDock docking algorithm [58] in DS3.5 was
applied to simulate the docking poses of each compound. The conformations of each
compound were aligned to polar and nonpolar interaction sites on the predefined active
pocket within the EGFR-TK domain structure; the docking scores were then calculated.
The best docking conformation for each compound, which was determined based on the
highest docking score value and the best orientation in the binding pocket, was saved. The
docking score for each compound was adopted as the criterion to include a candidate in
further in vitro biological assays.

4.6. Cell Culture and Drug Treatment

The H1975 (ATCC CRL-5908) and A549 (ATCC CCL-185) human lung cancer cell
lines were purchased from the American Type Culture Collection (ATCC, Manassas, VA,
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USA). H1975 cells harbor both the L858R in exon 21 and T790M in exon 20 mutations in the
EGFR gene, and A549 cells carry wild-type EGFR. The cells were maintained at 37 ◦C in a
humidified atmosphere with 5% CO2 and cultured in RPMI-1640 medium (Gibco, Carlsbad,
CA, USA) supplemented with 10% fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA)
and 1% penicillin/streptomycin (Gibco, Carlsbad, CA, USA). The candidate compounds
were acquired from the NCI (Bethesda, MD, USA) and prepared in dimethyl sulfoxide
(DMSO) stock solution. The vehicle control was treated with 0.1% DMSO.

4.7. Enzyme-Linked Immunosorbent Assay (ELISA)

DuoSet Human Phospho-EGFR (Y1068) ELISA reagent (R&D Systems, Minneapolis,
MN, USA) was used according to the manufacturer’s instructions to detect the EGFR
phosphorylation level. Lysate of H1975 cells treated with compound or vehicle for 24 h was
added to a 96-well plate precoated with a capture antibody to bind phosphorylated EGFR
(phospho-EGFR) and unphosphorylated EGFR. Then, the levels of phospho-EGFRY1068

were assessed using an immobilized antibody reacted with a horseradish peroxidase (HRP)-
conjugated antibody. The antibody reaction was developed by adding NeA-Blue tetram-
ethylbenzidine substrate (Clinical Science Products, Bristol County, MA, USA) and stopped
with 2 N H2SO4. The absorbance was measured at 450 nm against a reference wavelength
of 570 nm with a Victor3 spectrophotometer (PerkinElmer, Santa Clara, CA, USA).

4.8. Cell Viability Assay

PrestoBlue cell viability reagent (Invitrogen, Carlsbad, CA, USA) was used to assess
the cytotoxic effect of candidate compounds. A549 and H1975 human lung cancer cells
were treated with the compounds at different concentrations for 48 h. Then, PrestoBlue
reagent was added to the cells, and the absorbance at 570/600 nm was measured with
a Victor3 spectrophotometer (PerkinElmer, Santa Clara, CA, USA). The 10, 20, and half-
maximum inhibitory concentrations, that is, the IC10, IC20, and IC50 values, respectively,
were calculated with CalcuSyn software (Version 2.1; Biosoft, Cambridge, UK).

4.9. Clonogenicity Assay

An anchorage-dependent growth assay was performed to observe the suppression
efficacy of candidate compounds on lung cancer cell colony formation. A total of 500 cells
were seeded in each six-well plate containing culture medium and a drug solution for
7–10 days. Then, the cells were washed with 1× PBS and fixed with 4% paraformaldehyde.
The cells were subsequently stained with 0.05% crystal violet. A picture of each well was
taken with an inverted microscope. The mean value of each colony-covered area was
determined with ImageJ software (National Institutes of Health, Bethesda, MD, USA). Each
treatment effect was determined by the percentage of the covered area.

4.10. Scratch-Wound Assay

A wound-healing assay was performed to assess the effects of candidate compounds
on lung cancer cell migration, as previously described [59]. Cells were seeded into six-well
plates containing culture medium and drug solution for 48 h. Subsequently, the attached
cell monolayer was scratched with a 20 µL pipette tip. The images of the wound healing
were captured with an inverted microscope every 4 h for 16 h and analyzed with ImageJ
software. The percentage of the cell coverage area was measured and compared with the
value calculated at 0 h. An increase in the percentage of cell coverage area indicated the
degree of migrated cells.

4.11. Western Blot Analysis

Western blotting was performed to determine the expression of EGFR signaling
pathway-related proteins in lung cancer cells treated with candidate compounds, as de-
scribed previously [60]. H1975 cells were seeded in culture medium and drug solution
for 48 h. A549 cells were pretreated with candidate compounds at desired concentrations
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for 48 h before exposure or non-exposure to 20 ng/mL EGF for 30 min. The cells were
then lysed in buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, and
1% NP-40. The cell lysates were subjected to Western blotting. Recombinant human EGF
was purchased from Cascade Biologics (Portland, OR, USA). Antibodies against phospho-
EGFR (Tyr1068), phospho-PI3K (Tyr199/Tyr458), phospho-STAT3 (Tyr705), phospho-STAT3
(Ser727), and AKT were purchased from Cell Signaling Technology (Beverly, MA, USA).
Antibodies against EGFR, PI3K, STAT3, ERK, GAPDH, and phospho-ERK (Tyr204) were
purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Antibodies against phospho-
AKT (Ser473) were purchased from Millipore (Billerica, MA, USA). Antibodies against
Src were produced in our laboratory (ATCC CRL-2651). Antibodies against phospho-Src
(Tyr418) were purchased from Invitrogen (Carlsbad, CA, USA). GAPDH was used as the
loading control. Protein expression was quantified with ImageJ software.

4.12. Statistical Analysis

All experiments were performed in at least duplicate or triplicate, and statistical anal-
ysis was carried out on the results via a Student’s t-test or ANOVA (Excel 2016; Microsoft,
Redmond, Washington, USA). A p value < 0.05 indicates statistical significance compared
with the control.
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Table A1. The pharmacophore-derived fit values and docking scores of clinically approved EGFR inhibitors.

EGFR-TKI 3D-QSAR Fit
Value CFP Fit Value SBP Fit Value LibDock Score

EGFR p.L858R
(PDB: 2ITV)

EGFR p.T790M
(PDB: 2JIT)

EGFR p.L858R
(PDB: 2ITV)

EGFR p.T790M
(PDB: 2JIT)

Erlotinib 3.17 1.89 1.50 1.15 116.60 110.71
Gefitinib 3.92 3.28 2.49 2.29 113.73 106.28
Afatinib 5.89 2.90 2.32 2.49 111.59 107.47

Osimertinib 4.86 6.00 2.99 3.34 115.66 115.27

Note: Bold indicates values used as criteria during the multiple-stage pharmacophore-based virtual screening
coupled with molecular docking. Abbreviations- EGFR: Epidermal growth factor receptor, EGFR-TKI: Epider-
mal growth factor receptor tyrosine kinase inhibitor, 3D-QSAR: 3D quantitative structure-activity relationship,
CFP: Common feature pharmacophore, SBP: Structure-based pharmacophore, PDB: Protein data bank.

References
1. Hubbard, S.R.; Miller, W.T. Receptor tyrosine kinases: Mechanisms of activation and signaling. Curr. Opin. Cell Biol. 2007, 19,

117–123. [CrossRef] [PubMed]
2. Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [CrossRef] [PubMed]
3. Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase—Role and significance in Cancer. Int. J. Med. Sci. 2004, 1, 101–115. [CrossRef]

[PubMed]
4. Takeuchi, K.; Ito, F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol. Pharm. Bull. 2011, 34, 1774–1780. [CrossRef]
5. Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [CrossRef]
6. Lurje, G.; Lenz, H.J. EGFR signaling and drug discovery. Oncology 2009, 77, 400–410. [CrossRef]
7. Ferguson, K.M.; Berger, M.B.; Mendrola, J.M.; Cho, H.S.; Leahy, D.J.; Lemmon, M.A. EGF activates its receptor by removing

interactions that autoinhibit ectodomain dimerization. Mol. Cell 2003, 11, 507–517. [CrossRef]
8. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2000, 103, 211–225. [CrossRef]
9. Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell. Mol.

Life Sci. 2008, 65, 1566–1584. [CrossRef]
10. Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [CrossRef]
11. Sunpaweravong, P.; Sunpaweravong, S.; Puttawibul, P.; Mitarnun, W.; Zeng, C.; Baron, A.E.; Franklin, W.; Said, S.; Varella-Garcia,

M. Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell
carcinoma. J. Cancer Res. Clin. Oncol. 2005, 131, 111–119. [CrossRef] [PubMed]

12. Ohgaki, H.; Dessen, P.; Jourde, B.; Horstmann, S.; Nishikawa, T.; Di Patre, P.L.; Burkhard, C.; Schuler, D.; Probst-Hensch, N.M.;
Maiorka, P.C.; et al. Genetic pathways to glioblastoma: A population-based study. Cancer Res. 2004, 64, 6892–6899. [CrossRef]

13. Yoshida, T.; Zhang, G.; Haura, E.B. Targeting epidermal growth factor receptor: Central signaling kinase in lung cancer. Biochem.
Pharmacol. 2010, 80, 613–623. [CrossRef] [PubMed]

14. Minder, P.; Zajac, E.; Quigley, J.P.; Deryugina, E.I. EGFR regulates the development and microarchitecture of intratumoral
angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia 2015, 17, 634–649. [CrossRef] [PubMed]

15. Keller, S.; Schmidt, M.H.H. EGFR and EGFRvIII Promote Angiogenesis and Cell Invasion in Glioblastoma: Combination Therapies
for an Effective Treatment. Int. J. Mol. Sci. 2017, 18, 1295. [CrossRef] [PubMed]

16. Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon,
D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006, 366, 2–16. [CrossRef] [PubMed]

17. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [CrossRef]
18. Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and

survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [CrossRef]
19. Barker, A.J.; Gibson, K.H.; Grundy, W.; Godfrey, A.A.; Barlow, J.J.; Healy, M.P.; Woodburn, J.R.; Ashton, S.E.; Curry, B.J.; Scarlett,

L.; et al. Studies leading to the identification of ZD1839 (IRESSA): An orally active, selective epidermal growth factor receptor
tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett. 2001, 11, 1911–1914. [CrossRef]

20. Bonomi, P. Erlotinib: A new therapeutic approach for non-small cell lung cancer. Expert Opin. Investig. Drugs 2003, 12, 1395–1401.
[CrossRef]

21. Kumar, S.; Agrawal, R. Next generation tyrosine kinase inhibitor (TKI): Afatinib. Recent Pat. Anti-Cancer Drug Discov. 2014, 9,
382–393. [CrossRef] [PubMed]

22. Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach,
F.; et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008, 27,
4702–4711. [CrossRef] [PubMed]

23. Cross, D.A.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.; Ward, R.A.; Mellor,
M.J.; et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer
Discov. 2014, 4, 1046–1061. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ceb.2007.02.010
http://www.ncbi.nlm.nih.gov/pubmed/17306972
http://doi.org/10.1016/j.cell.2010.06.011
http://www.ncbi.nlm.nih.gov/pubmed/20602996
http://doi.org/10.7150/ijms.1.101
http://www.ncbi.nlm.nih.gov/pubmed/15912202
http://doi.org/10.1248/bpb.34.1774
http://doi.org/10.1038/35052073
http://doi.org/10.1159/000279388
http://doi.org/10.1016/S1097-2765(03)00047-9
http://doi.org/10.1016/S0092-8674(00)00114-8
http://doi.org/10.1007/s00018-008-7440-8
http://doi.org/10.3390/cancers9050052
http://doi.org/10.1007/s00432-004-0610-7
http://www.ncbi.nlm.nih.gov/pubmed/15672286
http://doi.org/10.1158/0008-5472.CAN-04-1337
http://doi.org/10.1016/j.bcp.2010.05.014
http://www.ncbi.nlm.nih.gov/pubmed/20519133
http://doi.org/10.1016/j.neo.2015.08.002
http://www.ncbi.nlm.nih.gov/pubmed/26408256
http://doi.org/10.3390/ijms18061295
http://www.ncbi.nlm.nih.gov/pubmed/28629170
http://doi.org/10.1016/j.gene.2005.10.018
http://www.ncbi.nlm.nih.gov/pubmed/16377102
http://doi.org/10.3322/caac.21551
http://doi.org/10.1016/S0025-6196(11)60735-0
http://doi.org/10.1016/S0960-894X(01)00344-4
http://doi.org/10.1517/13543784.12.8.1395
http://doi.org/10.2174/1574892809666140520114928
http://www.ncbi.nlm.nih.gov/pubmed/24844234
http://doi.org/10.1038/onc.2008.109
http://www.ncbi.nlm.nih.gov/pubmed/18408761
http://doi.org/10.1158/2159-8290.CD-14-0337
http://www.ncbi.nlm.nih.gov/pubmed/24893891


Int. J. Mol. Sci. 2022, 23, 3487 21 of 22

24. Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al.
EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [CrossRef]
[PubMed]

25. Pao, W.; Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011, 12, 175–180. [CrossRef]
26. Riely, G.J.; Pao, W.; Pham, D.; Li, A.R.; Rizvi, N.; Venkatraman, E.S.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M.; Miller, V.A. Clinical

course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated
with gefitinib or erlotinib. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 839–844. [CrossRef]

27. Gazdar, A.F. Activating and resistance mutations of EGFR in non-small-cell lung cancer: Role in clinical response to EGFR
tyrosine kinase inhibitors. Oncogene 2009, 28 (Suppl. S1), S24–S31. [CrossRef]

28. Park, K.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.; Lee, K.H.; Lu, S.; et al. Afatinib versus
gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B,
open-label, randomised controlled trial. Lancet Oncol. 2016, 17, 577–589. [CrossRef]

29. Ancevski Hunter, K.; Friedland, D.M.; Villaruz, L.C.; Burns, T.F. First-Line Osimertinib in Patients with Treatment-Naive Somatic
or Germline EGFR T790M-Mutant Metastatic NSCLC. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, e3–e5.
[CrossRef]

30. Van Der Steen, N.; Giovannetti, E.; Carbone, D.; Leonetti, A.; Rolfo, C.D.; Peters, G.J. Resistance to epidermal growth factor
receptor inhibition in non-small cell lung cancer. Cancer Drug Resist. 2018, 1, 230–249. [CrossRef]

31. Wang, S.; Tsui, S.T.; Liu, C.; Song, Y.; Liu, D. EGFR C797S mutation mediates resistance to third-generation inhibitors in
T790M-positive non-small cell lung cancer. J. Hematol. Oncol. 2016, 9, 59. [CrossRef] [PubMed]

32. Zheng, D.; Hu, M.; Bai, Y.; Zhu, X.; Lu, X.; Wu, C.; Wang, J.; Liu, L.; Wang, Z.; Ni, J.; et al. EGFR G796D mutation mediates
resistance to osimertinib. Oncotarget 2017, 8, 49671–49679. [CrossRef] [PubMed]

33. Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A program for macromolecular
energy, minimization, and dynamics calculations. J. Comput. Chem. 1983, 4, 187–217. [CrossRef]

34. Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry,
computational chemistry and systems pharmacology. Nucleic Acids Res. 2016, 44, D1045–D1053. [CrossRef]

35. National Cancer Institute. DTP Data—Chemical Data. Available online: https://wiki.nci.nih.gov/display/NCIDTPdata/
Chemical+Data (accessed on 1 September 2016).

36. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [CrossRef]

37. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [CrossRef]

38. Li, H.; Schmid-Bindert, G.; Wang, D.; Zhao, Y.; Yang, X.; Su, B.; Zhou, C. Blocking the PI3K/AKT and MEK/ERK signaling
pathways can overcome gefitinib-resistance in non-small cell lung cancer cell lines. Adv. Med. Sci. 2011, 56, 275–284. [CrossRef]

39. Wang, B.; Jiang, H.; Wang, L.; Chen, X.; Wu, K.; Zhang, S.; Ma, S.; Xia, B. Increased MIR31HG lncRNA expression increases
gefitinib resistance in non-small cell lung cancer cell lines through the EGFR/PI3K/AKT signaling pathway. Oncol. Lett. 2017, 13,
3494–3500. [CrossRef]

40. Deng, Q.F.; Fang, Q.Y.; Ji, X.X.; Zhou, S.W. Cyclooxygenase-2 mediates gefitinib resistance in non-small cell lung cancer through
the EGFR/PI3K/AKT axis. J. Cancer 2020, 11, 3667–3674. [CrossRef]

41. Song, L.; Morris, M.; Bagui, T.; Lee, F.Y.; Jove, R.; Haura, E.B. Dasatinib (BMS-354825) selectively induces apoptosis in lung cancer
cells dependent on epidermal growth factor receptor signaling for survival. Cancer Res. 2006, 66, 5542–5548. [CrossRef]

42. Li, H.; Sutter, J.; Hoffmann, R. HypoGen: An automated system for generating 3D predictive pharmacophore models. In
Pharmacophore Perception, Development and Use in Drug Design; Güner, O.F., Ed.; International University Line: La Jolla, CA, USA,
2000; pp. 171–189.

43. Sakkiah, S.; Arullaperumal, V.; Hwang, S.; Lee, K.W. Ligand-based pharmacophore modeling and Bayesian approaches to identify
c-Src inhibitors. J. Enzym. Inhib. Med. Chem. 2014, 29, 69–80. [CrossRef] [PubMed]

44. Bommu, U.D.; Konidala, K.K.; Pamanji, R.; Yeguvapalli, S. Computational screening, ensemble docking and pharmacophore
analysis of potential gefitinib analogues against epidermal growth factor receptor. J. Recept. Signal Transduct. Res. 2018, 38, 48–60.
[CrossRef] [PubMed]

45. Xiang, M.; Lei, K.; Fan, W.; Lin, Y.; He, G.; Yang, M.; Chen, L.; Mo, Y. In silico identification of EGFR-T790M inhibitors with novel
scaffolds: Start with extraction of common features. Drug Des. Dev. Ther. 2013, 7, 789–839. [CrossRef] [PubMed]

46. Scholz, S.W.; Mhyre, T.; Ressom, H.; Shah, S.; Federoff, H.J. Genomics and bioinformatics of Parkinson’s disease. Cold Spring Harb.
Perspect. Med. 2012, 2, a009449. [CrossRef] [PubMed]

47. Li, R.-Z.; Fan, X.-X.; Duan, F.-G.; Jiang, Z.-B.; Pan, H.-D.; Luo, L.-X.; Zhou, Y.-L.; Li, Y.; Yao, Y.-J.; Yao, X.-J.; et al. Proscillaridin A
induces apoptosis and suppresses non-small-cell lung cancer tumor growth via calcium-induced DR4 upregulation. Cell Death
Dis. 2018, 9, 696. [CrossRef]

48. Engelman, J.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat. Rev. Cancer 2009, 9, 550–562.
[CrossRef]

http://doi.org/10.1126/science.1099314
http://www.ncbi.nlm.nih.gov/pubmed/15118125
http://doi.org/10.1016/S1470-2045(10)70087-5
http://doi.org/10.1158/1078-0432.CCR-05-1846
http://doi.org/10.1038/onc.2009.198
http://doi.org/10.1016/S1470-2045(16)30033-X
http://doi.org/10.1016/j.jtho.2017.09.1963
http://doi.org/10.20517/cdr.2018.13
http://doi.org/10.1186/s13045-016-0290-1
http://www.ncbi.nlm.nih.gov/pubmed/27448564
http://doi.org/10.18632/oncotarget.17913
http://www.ncbi.nlm.nih.gov/pubmed/28572531
http://doi.org/10.1002/jcc.540040211
http://doi.org/10.1093/nar/gkv1072
https://wiki.nci.nih.gov/display/NCIDTPdata/Chemical+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/Chemical+Data
http://doi.org/10.1016/S0169-409X(00)00129-0
http://doi.org/10.1021/jm020017n
http://doi.org/10.2478/v10039-011-0043-x
http://doi.org/10.3892/ol.2017.5878
http://doi.org/10.7150/jca.42850
http://doi.org/10.1158/0008-5472.CAN-05-4620
http://doi.org/10.3109/14756366.2012.753881
http://www.ncbi.nlm.nih.gov/pubmed/23432516
http://doi.org/10.1080/10799893.2018.1426603
http://www.ncbi.nlm.nih.gov/pubmed/29369008
http://doi.org/10.2147/DDDT.S41305
http://www.ncbi.nlm.nih.gov/pubmed/23990708
http://doi.org/10.1101/cshperspect.a009449
http://www.ncbi.nlm.nih.gov/pubmed/22762024
http://doi.org/10.1038/s41419-018-0733-4
http://doi.org/10.1038/nrc2664


Int. J. Mol. Sci. 2022, 23, 3487 22 of 22

49. Ogino, A.; Kitao, H.; Hirano, S.; Uchida, A.; Ishiai, M.; Kozuki, T.; Takigawa, N.; Takata, M.; Kiura, K.; Tanimoto, M. Emergence of
epidermal growth factor receptor T790M mutation during chronic exposure to gefitinib in a non small cell lung cancer cell line.
Cancer Res. 2007, 67, 7807–7814. [CrossRef]

50. Wang, M.; Chang, A.Y.-C. Molecular mechanism of action and potential biomarkers of growth inhibition of synergistic combination
of afatinib and dasatinib against gefitinib-resistant non-small cell lung cancer cells. Oncotarget 2018, 9, 16533–16546. [CrossRef]

51. Sheng, Y.; Li, W.; Zhu, F.; Liu, K.; Chen, H.; Yao, K.; Reddy, K.; Lim, D.Y.; Oi, N.; Li, H.; et al. 3,6,2′,4′,5′-Pentahydroxyflavone, an
orally bioavailable multiple protein kinase inhibitor, overcomes gefitinib resistance in non-small cell lung cancer. J. Biol. Chem.
2014, 289, 28192–28201. [CrossRef]

52. Faber, A.C.; Li, D.; Song, Y.; Liang, M.C.; Yeap, B.Y.; Bronson, R.T.; Lifshits, E.; Chen, Z.; Maira, S.M.; Garcia-Echeverria, C.; et al.
Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc. Natl. Acad. Sci. USA
2009, 106, 19503–19508. [CrossRef]

53. Barnum, D.; Greene, J.; Smellie, A.; Sprague, P. Identification of common functional configurations among molecules. J. Chem. Inf.
Comput. Sci. 1996, 36, 563–571. [CrossRef] [PubMed]

54. Yun, C.H.; Boggon, T.J.; Li, Y.; Woo, M.S.; Greulich, H.; Meyerson, M.; Eck, M.J. Structures of lung cancer-derived EGFR mutants
and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 2007, 11, 217–227.
[CrossRef] [PubMed]

55. Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in
EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA 2008, 105, 2070–2075. [CrossRef]
[PubMed]

56. Bohm, H.J. The computer program LUDI: A new method for the de novo design of enzyme inhibitors. J. Comput.-Aided Mol. Des.
1992, 6, 61–78. [CrossRef]

57. Bohm, H.J. LUDI: Rule-based automatic design of new substituents for enzyme inhibitor leads. J. Computer-Aided Mol. Des. 1992,
6, 593–606. [CrossRef]

58. Rao, S.N.; Head, M.S.; Kulkarni, A.; LaLonde, J.M. Validation studies of the site-directed docking program LibDock. J. Chem. Inf.
Model. 2007, 47, 2159–2171. [CrossRef]

59. Rodriguez, L.G.; Wu, X.; Guan, J.L. Wound-healing assay. Methods Mol. Biol. 2005, 294, 23–29.
60. Weng, C.W.; Li, J.H.; Tsai, J.Y.; Lin, S.H.; Chang, G.C.; Liu, C.C.; Chen, J.J. Pharmacophore-based virtual screening for the

identification of the novel Src inhibitor SJG-136 against lung cancer cell growth and motility. Am. J. Cancer Res. 2020, 10,
1668–1690.

http://doi.org/10.1158/0008-5472.CAN-07-0681
http://doi.org/10.18632/oncotarget.24814
http://doi.org/10.1074/jbc.M114.593475
http://doi.org/10.1073/pnas.0905056106
http://doi.org/10.1021/ci950273r
http://www.ncbi.nlm.nih.gov/pubmed/8690757
http://doi.org/10.1016/j.ccr.2006.12.017
http://www.ncbi.nlm.nih.gov/pubmed/17349580
http://doi.org/10.1073/pnas.0709662105
http://www.ncbi.nlm.nih.gov/pubmed/18227510
http://doi.org/10.1007/BF00124387
http://doi.org/10.1007/BF00126217
http://doi.org/10.1021/ci6004299

	Introduction 
	Results 
	Workflow 
	3D QSAR Pharmacophore Generation and Validation 
	Identification of Common Feature Pharmacophores 
	Generation of Structure-Based Pharmacophores 
	Identification of Candidate Compounds through Multiple-Stage PBVS 
	NSC609077 Inhibits the Anchorage-Dependent Growth and Motility of Lung Cancer Cells 
	Effects of NSC609077 on an EGFR-Associated Signaling Pathway 

	Discussion 
	Materials and Methods 
	3D QSAR Pharmacophore Generation and Evaluation 
	Common Feature Pharmacophore Modeling 
	Structure-Based Pharmacophore Modeling 
	Pharmacophore-Based Virtual Screening (PBVS) 
	Molecular Docking Studies 
	Cell Culture and Drug Treatment 
	Enzyme-Linked Immunosorbent Assay (ELISA) 
	Cell Viability Assay 
	Clonogenicity Assay 
	Scratch-Wound Assay 
	Western Blot Analysis 
	Statistical Analysis 

	Appendix A
	References

