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Pharmacogenetic analysis has generated translational data that could be applied to guide
treatments according to individual genetic variations. However, pharmacogenetic
counseling in some mestizo (admixed) populations may require tailoring to different
patterns of admixture. The identification and clustering of individuals with related
admixture patterns in such populations could help to refine the practice of
pharmacogenetic counseling. This study identifies related groups in a highly admixed
population-based sample from Mexico, and analyzes the differential distribution of
actionable pharmacogenetic variants. A subsample of 1728 individuals from the
Mexican Genomic Database for Addiction Research (MxGDAR/Encodat) was analyzed.
Genotyping was performed with the commercial PsychArray BeadChip, genome-wide
ancestry was estimated using EIGENSOFT, and model-based clustering was applied to
defined admixture groups. Actionable pharmacogenetic variants were identified with a
query to the Pharmacogenomics Knowledge Base (PharmGKB) database, and functional
prediction using the Variant Effect Predictor (VEP). Allele frequencies were compared with
chi-square tests and differentiation was estimated by FST. Seven admixture groups were
identified in Mexico. Some, like Group 1, Group 4, and Group 5, were found exclusively in
certain geographic areas. More than 90% of the individuals, in some groups (Group 1,
Group 4 and Group 5) were found in the Central-East and Southeast region of the country.
MTRR p.I49M, ABCG2 p.Q141K, CHRNA5 p.D398N, SLCO2B1 rs2851069 show a low
degree of differentiation between admixture groups. ANKK1 p.G318R and p.H90R, had
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the lowest allele frequency of Group 1. The reduction in these alleles reduces the risk of
toxicity from anticancer and antihypercholesterolemic drugs. Our analysis identified
different admixture patterns and described how they could be used to refine the
practice of pharmacogenetic counseling for this admixed population.
Keywords: Mexican population-based sample, MxGDAR/Encodat, pharmacogenetics, genomics, admixture
INTRODUCTION

In recent years, pharmacogenetic (PGx) studies have generated
substantial information that is useful in clinical settings (Relling
and Evans, 2015; Van Der Wouden et al., 2016; Verbelen et al.,
2017). PGx variation influences the efficacy and toxicity of drugs
through the alteration of pharmacodynamic or pharmacokinetic
processes. Pharmacogenetic studies have uncovered many
relationships between drugs and specific genes, but not all of
this information can be used to implement PGx-based treatment
guidelines. Various initiatives have attempted to compile
information and develop PGx evidence-based drug dosing
guidelines, like the Pharmacogenomics Knowledge Base
(PharmGKB; (Thorn et al., 2013)). The PharmGKB classifies
pharmacogenes into four different evidence levels (Barbarino
et al., 2018), where pharmacogenes at higher levels are termed
“actionable”–that is, they can be used in treatment guidelines for
PGx-based counseling.

Most pharmacogenetic studies have been carried out on
individuals with a low degree of admixture. Actionable allele
frequencies are dependent on ancestry, and such differences
must be taken into account in clinical counseling (Abdul Jalil
et al., 2015; Mizzi et al., 2016; Goh et al., 2017). A recent analysis
of PGx variation across 26 global populations using data from
Phase 3 of the 1000 Genomes Project identified clusters of
individuals by continent, with high degrees of differentiation
even among continental populations (Wright et al., 2018).
Researchers have expressed concerns about the assignment of
ancestry in PGx analysis, principally because of its potential
impact on the differentiation of genetic variants among
continental populations (Zhang and Finkelstein, 2019).

Mexico has a differential pattern of ancestry, made up
primarily of three populations: Native American, European,
and African (Wang et al., 2008; Moreno-Estrada et al., 2014).
Its genomic ancestry has been divided into Native American
(NA) and Mexican Mestizo (MM) classifications (Silva-Zolezzi
et al., 2009). Differences have been reported between these two
groups in actionable PGx variants, including greater allele
frequency of VKORC1 (rs8050894), CYP2B6 (rs2279343), and
CYP3A5 (rs776746) in the NA population, and of CYP2C19
(rs4244285), CYP2C9 (rs1799853, rs1057910), NAT2 (rs179930),
SLCO1B1 (rs4149015), and APOE (rs7412) in the MM
population (Gonzalez-Covarrubias et al., 2019). The MM
population is the largest in Mexico, and the prevalence of
admixture patterns in this population is high. Grouping all
MM individuals together could thus hide differences in allele
frequencies. These differences have not been estimated for the
MM population based on the degree of admixture or the
in.org 2
distribution of the genome-wide global ancestry. However, an
analysis of the admixture patterns and clustering of individuals
with similarities could improve pharmacogenetic counseling for
individuals in this population. The aim of the present study is
thus to analyze global admixture patterns in a population-based
Mexican sample in order to assess their impact on actionable
pharmacogenetic variants.
METHODS

Participants
This study analyzed a subsample of the Mexican Genomic
Database for Addiction Research (MxGDAR/Encodat), derived
from the Mexican National Survey of Tobacco, Alcohol, and
Drug use (Villatoro-Velázquez et al., 2017). All of the geographic
regions where more than half of the population speaks a Native
American (NA) language were excluded (Villarreal, 2014). The
survey was carried out in two phases, with the sampling
performed in the second phase. There were questionnaires in
each phase: the first focused on sociodemographic, social, and
interpersonal information, with a section on patterns of alcohol,
tobacco, and drug use (Reséndiz-Escobar et al., 2018), and the
second on screening for psychiatric symptomatology (Pato et al.,
2013). In the second phase, a sample of buccal epithelial cells was
also collected (Figure 1). All of the protocols in this study were
approved by the Research Ethics Committees of the Instituto
Nacional de Psiquiatría Ramón de la Fuente Muñiz (Approval
No. CEI/C/083/2015) and the Instituto Nacional de Medicina
Genómica (Approval No. 01/2017/I). The aims of the study were
explained to each participant, and each was informed that they
could end their participation at any time. All participants
provided written informed consent; assent for a minor
participant was obtained both from the participant and from a
parent or legal guardian.

DNA Extraction, Microarray Genotyping,
and Quality Control
DNA was extracted using a commercial modified salting-out
procedure (Qiagen, USA), according to the manufacturer’s
instructions. DNA extraction quality and integrity were
evaluated by analysis with a NanoDrop spectrophotometer
(Thermofisher, USA) and 2% agarose gel. The MxGDAR/
Encodat database included 7171 of the 13,228 buccal epithelial
samples collected (54.21%) that met the following quality
criteria: i) 230/260 and 260/230 ratios > 1.8, ii) concentration >
50 ng/µL, and iii) no signs of DNA degradation. The DNA
extraction was divided evenly between the Laboratorio de
April 2020 | Volume 11 | Article 324
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Genómica de Enfermedades Psiquiátricas y Neurodegenerativas
of the Instituto Nacional de Medicina Genómica and the
Departamento de Farmacogenómica of the Instituto Nacional
de Psiquiatría Ramón de la Fuente Muñiz. We found no
difference in the quality of microarray samples between the
laboratories; the insufficient quality of half of the samples
could have been an effect of problems in sample collection
procedures. In a household survey like the Encodat 2016,
collecting biological samples is problematic because it cannot
be done under the controlled conditions of a clinical
environment (Gudiseva et al., 2016).

Genotyping was performed with the commercial microarray
PsychArray BeadChip (Illumina, USA), according to the
manufacturer’s instructions. In this preliminary analysis we
genotyped a total of 1728 samples, with a random sampling
that included at least 15 individuals from each of the 32 states in
Frontiers in Pharmacology | www.frontiersin.org 3
Mexico. The fluorescent intensities were read with the iScan
system (Illumina, USA) and converted to genotype calls with
Genome Studio software (Illumina, USA). Genotyping was
carried out at the Unidad de Alta Tecnología para Expresión y
Microarreglos of the Instituto Nacional de Medicina Genómica.
The quality control of the genotyped data was performed using
Plink (Purcell et al., 2007). Single nucleotide polymorphisms
(SNPs) were excluded if they did not meet the following criteria:
i) no-call rate > 5%, ii) minor allele frequency (MAF) < 5%, iii) p-
value < 1E-06 in a chi-square test for Hardy-Weinberg
equilibrium, or iv) they were duplicates. Individuals were
excluded if they had no call rate > 5%. To identify cryptic
familial relationships, we performed an identity-by-state (IBS):
all individuals with an IBS > 1.6 were marked and those with the
lower genotyping rate were excluded. This quality control left
1657 individuals for analysis.
FIGURE 1 | Sampling scheme for the Mexican Genomic Database for Addiction Research (MxGDAR/Encodat).
April 2020 | Volume 11 | Article 324
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Global Ancestry Estimations and Model-
Based Admixture Clustering
Global ancestry estimations were performed with a genome-wide
approach. For this purpose, the SNPs of the 1657 individuals that
remained after quality filters were then filtered for independence.
The linkage disequilibrium (LD) pruning algorithm was
implemented in Plink, with a window size of 50 kb, a step size
of 5, and a variance inflation factor (VIF) of 2. LD pruning left a
total of 104,726 SNPs for analysis. The database was then merged
with the SNPs of the Human Genome Diversity Project (HGDP;
(Cavalli-Sforza, 2005)), and the SNPs not present in either
database were excluded, leaving a total of 25,562 SNPs for
genome-wide global ancestry estimations. EIGENSOFT (Price
et al., 2006), was used to calculate ten global ancestry
components. In this estimation, 133 individuals with values
greater than three standard deviations were excluded, leaving
1524 individuals for analysis. The 133 excluded individuals had
admixture proportions of European ancestry greater than 96%,
as estimated through a model-based analysis with ADMIXTURE
software (Scheet and Stephens, 2006). We removed these
individuals, because we also filtered the communities with
higher NA ancestry during the sampling procedure, to not
deviate the calculation of admixture patterns to the founders’
populations. The sociodemographic characteristics of the sample
are shown in Table 1.

Next, a model-based clustering algorithm using mclust
software (Scrucca et al., 2016) carried out Gaussian mixture
modeling to identify admixture groups in the subsample of 1524
Frontiers in Pharmacology | www.frontiersin.org 4
individuals. A geographic distribution of the groups was then
determined for the following regions of Mexico: i) Northwest
(Baja California, Baja California Sur, Nayarit, Sinaloa, and
Sonora), ii) North (Coahuila, Chihuahua, Durango, Nuevo
León, San Luis Potosí, Tamaulipas, and Zacatecas), iii) Central-
West (Aguascalientes, Colima, Jalisco, and Michoacán),
iv) Central-East (Mexico City, Guerrero, Hidalgo, Estado de
México, Morelos, Puebla, Quéretaro, and Tlaxcala), and
v) Southeast (Campeche, Chiapas, Oaxaca, Quintana Roo,
Tabasco, Veracruz, and Yucatán) (Borges et al., 2018).

Annotation and Actionable
Pharmacogenetic Variant Analysis in
Admixture Subgroups
Variants in genes with actionable pharmacogenetic effects were
then identified using the hg19 coordinates for those genes. Genes
were included for evidence levels of 1 to 2, according to the
classification of the PharmGKB (Barbarino et al., 2018), a
searchable pharmacogenetic knowledge database that
categorizes genes according to levels of evidence for alterations
in their response to different drugs, and that provides
pharmacogenetic treatment guidance where those levels are
high. For genes with evidence levels of 1 or 2, PsychArray has
a total of 7955 single-nucleotide variants (65.83% of the total
reported in the 1000 Genomes Database), of which 5809 in our
population (73.02%) had an MAF < 0.05, 185 (23.33%) were
excluded for a low call rate, and 11 (0.14%) were excluded for
Hardy-Weinberger disequilibrium (Supplementary Table 1
contains the list of variants lost in these filtering steps). Some
important pharmacogenetic variation was lost during these
filtering processes, like those found in CYP2D6 (evidence level
1A). Of the twelve variants design on CYP2D6 that could be
found in the PsychArray, 10 were lost in the MAF, and 2 in the
call rate filtering.

We extracted the variants in the genes with actionable
pharmacogenetic effect with annotations in the Ensembl
Variant Effect Predictor (McLaren et al., 2016), and extracted
all the variants that were missense (classifying these as damaging
if a damaging effect was predicted by both SIFT and Polyphen2,
but benign if only one algorithm predicted a damaging effect),
synonymous, or annotated with a regulatory region. For
regulatory variants, we extracted those with an annotated
regulatory region based in the ENCODE identifier. A manual
search was performed in PharmGKB for the evidence level for
the benign missense, synonymous, and regulatory variants; for
annotated variants a search was performed in PubMed
for reports of at least 10 associations with drug-variant
relationships. The global allele frequency of each actionable
pharmacogenetic missense variant in the MxGDAR/Encodat
was compared with those identified in the Genome
Aggregation Database (gnomAD; (Kobayashi et al., 2017))
using a chi-square test and a delta de MAF calculation
(dMAF). The degree of differentiation of variants between the
admixture subgroups was analyzed with Wright’s fixation index
(FST; (Patterson et al., 2006)).
TABLE 1 | Sociodemographic characteristics of the subsample.

Subsample MxGDAR/Encodat (n = 1525)

Age (years) (SD) 38.34 (14.46)
Gender
Male 652 (42.75%)
Female 873 (57.25%)

Marital Status
Married 645 (42.30%)
Cohabiting 289 (18.95%)
Separated 82 (5.38%)
Divorced 30 (1.98%)
Widowed 56 (3.67%)
Single 423 (27.74%)

Occupation
Professional 30 (1.96%)
Teacher 13 (0.85%)
Company Director 3 (0.19%)
Small Business Owner 85 (5.57%)
Office Worker 78 (5.11%)
Skilled worker 73 (4.79%)
Unskilled worker 227 (18.16%)
Farm Worker 24 (1.57%)
Farmer 71 (4.66%)
Unemployed 68 (4.46%)
Student 115 (7.54%)
Housewife 519 (34.03%)
Retired 30 (1.98%)
Other 139 (9.04%)
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RESULTS

Analysis of the Regional Distribution of
Admixture Subgroups
An analysis of global ancestry found the distribution of European
to Native American ancestry of individuals in the MxGDAR/
Encodat (Figure 2A), and an analysis of admixture groups
detected seven groups (Figure 2B). Groups 2 and 3 show the
Frontiers in Pharmacology | www.frontiersin.org 5
greatest frequency, with a total of 821 (53.87%) individuals in the
two groups (Table 2). Groups 2, 3, and 7 have a heterogeneous
distribution in different regions, with no local concentration.
Groups 4 and 5, with a total of 270 (17.72%) individuals, are
concentrated in the Southeast, with more than 90% of the
individuals in each group in that region (Figure 2C). The 170
individuals in Group 1 (72.96%) are in the Central-East and
Southeast, and the 160 (94.67%) in Group 6 are in the Northwest,
A
B

C

FIGURE 2 | Admixture analysis of the MxGDAR/Encodat. Panels: (A) Principal component analysis with the Human Genome Diversity Project Database (HGDP)
admixture reference; individuals from the MxGDAR/Encodat in red and individuals from the HGDP database in gray; (B) Plotting of the individuals from the MxGDAR/
Encodat (those in red in panel A), color according to the admixture group identified by Gaussian model-based clustering; (C) Analysis of the geographical distribution
of the identified admixture subgroups in each region. Each pie represents the percentages of admixture groups identified in that particular region.
TABLE 2 | Distribution of admixture groups in Mexico by region.

Region1 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Total

Northwest 7 (3.68) 116 (30.77) 27 (6.08) 1 (0.64) 1 (0.88) 33 (19.53) 5 (16.12) 190 (12.47)
North 39 (8.82) 114 (30.24) 192 (43.24) 0 (0.00) 2 (1.77) 89 (52.66) 6 (19.35) 442 (29.00)
Central-West 17 (7.30) 97 (25.73) 94 (21.17) 0 (0.00) 0 (0.00) 38 (22.49) 1 (3.23) 247 (16.21)
Central-East 123 (52.79) 38 (10.08) 101 (22.75) 1 (0.64) 3 (2.65) 8 (4.73) 8 (25.81) 282 (18.50)
Southeast 47 (20.17) 12 (3.12) 30 (6.76) 155 (98.73) 107 (94.69) 1 (0.59) 11 (35.48) 363 (23.82)
Total 233 (15.29) 377 (24.74) 444 (29.14) 157 (10.30) 113 (7.41) 169 (11.09) 31 (2.03) 1524 (100.00)
April
 2020 | Volume 1
1States included in each region: Northwest: Baja California, Baja California Sur, Nayarit, Sinaloa, and Sonora; North: Coahuila, Chihuahua, Durango, Nuevo León, San Luis Potosí,
Tamaulipas, and Zacatecas; Central-West: Aguascalientes, Colima, Jalisco, and Michoacán; Central-East: Mexico City, Guerrero, Hidalgo, Estado de México, Morelos, Puebla, Quéretaro,
and Tlaxcala; and Southeast: Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Veracruz, and Yucatán.
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North, and Central-West regions. Groups 1 and 4 are the most
closely related to the Native American population (Figure 2B).
Analysis of Actionable Pharmacogenetic
Missense Damaging Variants
Analysis of the actionable pharmacogenetic missense variants
found a total of 32 variants in 31 genes, four of which have a
PharmGkB evidence level of 1 (Table 3): SLCO1B1*5,
NUDT15*3, and CYP4F2*3 with evidence level 1A, and XPC
p.Q939K with level 1B. The difference in minor allele frequency
(dMAF) in these variants between the individuals in the
MxGDAR/Encodat and the gnomAD range from -0.27 to -0.36
and are statistically significant. The variant with the greatest
difference, -0.36, was XPC p.Q939K. NUDT15*3 was the only
variant with a greater allele frequency in the MxGDAR/Encodat
than in the gnomAD, with a difference of 0.45.

There were 28 variants at the PharmGkB evidence level 2
(Table 4), 13 of which were at level 2A (MTHFR p.A22V,
FCGR2A p.H166R, UGT1A1*6, ADRB2 p.G71R, ABCB1*2,
NAT2*6, CYP2C8*3, KCNJ11 p.K23E, GSTP1 p.I188V, VDR
p.M51T, NQO1 p.P187S, APOE-E2, and COMT p.V158M),
and 15 at level 2B (EPHX1 p.Y113H and p.H139R, UMPS
p.G213A, ADD1 p.G460W, UGT2B15*2, MTRR p.I49M,
OPRM1 p.N40D, SOD2 p.V16A, CHRNA5 p.D398N, GP1BA
p.T161M, XRCC1 p.Q399R, ERCC1 p.Q506K, ITPA p.P32T,
CBR3 p.V244M, and PNPLA3 p.I148M). There were
differences in allele frequencies ranging from -0.45 to 0.18
between the MxGDAR/Encodat and the gnomAD. The NQO1
p.P187S variant showed the greatest positive difference in minor
allele frequency (dMAF = 0.1835) in the MxGDAR/Encodat, and
the XRCC1 p.Q399R the greatest negative difference (dMAF =
-0.45). The variants MTHFR p.A22V, GSTP1 p.I188V, NQO1
p.P187S, UMPS p.G213A, ERCC1 p.Q506K, and PNPLA3
p.I148M showed the largest positive differences in the
MXGDAR/Encodat, and NAT2*6, KCNJ11 p.K23E, VDR
p.M51T, EPHX1 p.Y113H, UGT2B15*2, MTRR p.I49M, SOD2
p.V16A, CHRNA5 p.D398N, XRCC1 p.Q399R, and CBR3
p.V244M the largest negative differences.
Frontiers in Pharmacology | www.frontiersin.org 6
Analysis of Actionable Pharmacogenetic
Synonymous, Benign, and Regulatory
Variants in the MxGDAR/Encodat
A total of 427 synonymous, benign, and regulatory variants were
identified, only seven of which had been previously been
associated with drug response (Table 5). Of these seven, there
was one at evidence level 1A (CYP2C19*2), three at level 2A
(ABCG2 p.Q141K, NAT2*7), and three at level 2B (GNB3
p.S274S, GP1BA p.T161M, NEDD4L p.Q8Q). The differences
in minor allele frequency between the MxGDAR/Encodat and
the gnomAD ranged from -0.1820 to 0.1387. The synonymous
variant GNB3 p.S274S had the largest negative difference
(dMAF = -0.1820), and the variant ABGCG2 p.Q141K the
largest positive difference (dMAF = 0.1387).

Analysis of Actionable Pharmacogenetic
Variants in the Admixture Subgroups
An analysis of differentiation of the identified actionable
pharmacogenetic variants in the different admixture groups
found a total of 105 PGx variants with a low degree of
differentiation (FST > 0.01), of which 36 (34.29%) had a
regulatory or synonymous function and 69 (65.71%) were
missense variants (Figure 3). Of the latter, 20 variants had a
FST > 0.03. In Groups 1 and 4, both with regional distribution
(one in the Central-East region, and the other in the Southeast;
see Figures 4 and 2C),15 of the 20 variants had lower
frequencies, and five higher frequencies.
DISCUSSION

The analysis of actionable pharmacogenetic variants in admixed
populations has been centered on genes or groups recruited in
specific regions (Bonifaz-Peña et al., 2014; Cuautle-Rodríguez
et al., 2014; Gonzalez-Covarrubias et al., 2016; Gonzales-
Covarrubias et al., 2017). The present study is one of the first
to analyze the distribution of known actionable PGx variants in a
population-based sample for all states of Mexico, and examining
TABLE 3 | Missense damaging variants in pharmacogenes with pharmGkB evidence Level 1.

Evidence 1A
Chr bp Gene SNP Alleles Synonymous Amino acid

change
MAF1 gMAF2 DMAF3 Drug Effect on Drug

12 21331549 SLCO1B1 rs4149056 T > C SLCO1B1*5 V174A 0.1060 0.1326 -.0266 Simvastatin Higher risk of myopathy
13 48619855 NUDT15 rs116855232 C > T NUDT15*3 R139C 0.0733 0.0281 0.0452 Purine-based

compounds
Higher risk of leukopenia,
neutropenia, or alopecia

19 15990431 CYP4F2 rs2108622 C > T CYP4F2*3 V433M 0.1920 0.2735 -.0815 Warfarin Higher dose

Evidence 1B
Chr bp Gene SNP Alleles Synonymous Amino acid

change
MAF gMAF DMAF Drug Effect on Drug

3 14187449 XPC rs2228001 G > T NR Q939K 0.2601 0.6359 -.3758 Platinum-based
compounds

Decreased risk for toxicity
Apri
1MAF, Minor allele frequency in the MxGDAR/Encodat. 2gMAF, Global minor allele frequency (MAF) reported by the gnomAD. 3DMAF, difference between MxDAR/Encodat
individuals and gMAF.
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TABLE 4 | Missense damaging variants in pharmacogenes with pharmGkB evidence level of 2.

Drug Effect on Drug

tinum-based compunds Higher risk of toxicity and decreased
response
Decreased response4

Increased risk of neutropenia
l Decreased response

n/ondansetron/sunitinib Decreased clearance
pyrazinamide/rifampin Increased risk of hepatoxicity

Increased metabolism
lfonamides Decreased response
pirubicin, uracil-based compounds and
ounds

Decreased response and increased
toxicity

/ribavirin Decreased response
racil-based compounds Worse outcome

Increased response
oxycodone/remifentanil/sufentanil/ Increased response

Drug Effect on Drug

Higher metabolism
Increased dose

acil/leucovorin/tegafur Increased toxicity
olactone Decreased response

Increased clearance
Greater toxicicty and increased
response

ntanil/buprenorphine/fentanyl/heroin/
ramadol

Increased cortisol peak and
Increased dose (opioids)
Decreased survival
Increased risk of dependence
Decreased risk of resistance

s Decreased response
ounds Decreased risk of nephrotoxicity

/ribavirin/interferon alfa-2b Decreased risk of anemia
Decreased risk of cardiac damage

osphamide/daunorubicin/prednisolone/ Increased risk of hepatoxicity

ween MxDAR/Encodat individuals and gMAF. 4 In bold are present the non-significant
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Evidence 2A
Chr Position Gene SNP Alleles Synonymous Amino acid

change
MAF1 gMAF2 DMAF3

1 11856378 MTHFR rs1801133 G > A NR A222V 0.4854 0.3085 0.1769 Methotrexate and pla

161479745 FCGR2A rs1801274 A > G NA H166R 0.4810 0.4791 0.0019 Trastuzumab
2 234669144 UGT1A1 rs4148323 G > A UGT1A1*6 G71R 0.0312 0.0221 0.0091 Irinotecan
5 148206440 ADRB2 rs1042713 G > A NR G16R 0.4453 0.4208 0.0245 Salbutamol/Salmeter
7 87160561 ABCB1 rs2032582 A > C ABCB1*2 S893A 0.4765 0.5498 -0.0733 Atazanavir/simvastat
8 18258103 NAT2 rs1799930 G > A NAT2*6 R197Q 0.1394 0.2730 -0.1336 Ethambutol/isoniazid
10 96798749 CYP2C8 rs10509681 T > C CYP2C8*3 K329R 0.0562 0.0838 -0.0276 Rosiglitazone
11 17409572 KCNJ11 rs5219 T > C NR K23E 0.3899 0.6477 -0.2578 Glibenclamide and s

67352689 GSTP1 rs1695 A > G NR I188V 0.4635 0.3402 0.1233 Cyclophosphamide,
platinum-based com

12 48272895 VDR rs2228570 A > G NR M51T 0.4988 0.6295 -0.1307 Peginterferon alfa-2b
16 69745145 NQO1 rs1800566 G > A NR P187S 0.4356 0.2521 0.1835 Anthracyclines and u
19 4541207 APOE rs7412 C > T APOE-E2 R176C 0.0447 0.0612 -0.0165 Atorvastatin
22 19951271 COMT rs4680 G > A NR V158M 0.3924 0.4625 -0.0701 Nicotine/methadone/

tramadol

Evidence 2B
Chr bp Gene SNP Alleles Synonymous Amino acid

change
MAF gMAF DMAF

1 226019633 EPHX1 rs1051740 T > C NR Y113H 0.4059 0.3215 0.0844 Carbamazepine
226026406 rs2234922 A > G NR H139R 0.0735 0.1870 -0.1135 Carbamazepine

3 124456742 UMPS rs1801019 G > C NR G213A 0.3442 0.1946 0.1496 Capecitabine/fluorou
4 2906707 ADD1 rs4961 G > T NR G460W 0.1943 0.2027 -0.0084 Furosemide/spiron

69536084 UGT2B15 rs1902023 A > C UGT2B15*2 Y85D 0.3329 0.5149 -0.1820 Lorazepam/oxazepa
5 7870973 MTRR rs1801394 A > G NR I49M 0.1976 0.4678 -0.2702 Methotrexate

6 154360797 OPRM1 rs1799971 A > G NR N40D 0.2181 0.1884 0.0297 Naloxone/ethanol/alf
morphine/sufentanil/

160113872 SOD2 rs4880 A > G NR V16A 0.3430 0.4823 -0.1393 Cyclophosphamide
15 78882925 CHRNA5 rs16969968 G > A NR D398N 0.1192 0.2655 -0.1463 Nicotine
17 4836381 GP1BA rs6065 C > T NR T161M 0.1510 0.0980 0.0530 Aspirin
19 44055726 XRCC1 rs25487 T > C NR Q399R 0.2342 0.6850 -0.4508 Platinum coumpound

45912736 ERCC1 rs3212986 C > A NR Q506K 0.4390 0.2864 0.1526 Platinum-based com
20 3193842 ITPA rs1127354 C > A NR P32T 0.0240 0.0750 -0.0510 Peginterferon alfa-2b
21 37518706 CBR3 rs1056892 G > A NR V244M 0.2512 0.3669 -0.1157 Anthracyclines
22 44324727 PNPLA3 rs738409 C > G NR I148M 0.4174 0.2777 0.1397 Asparaginase/cyclop

vincristine

1MAF, Minor allele frequency in the MxGDAR/Encodat. 2gMAF, Global minor allele frequency (MAF) reported by the gnomAD. 3DMAF, difference be
variants (p-value < 0.05).
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the possible contributions a consideration of admixture patterns
could make to pharmacogenetic counseling. The analysis found
that 50 actionable PGx variants (96.15%) were different in the
MxGDAR/Encodat database than in the gnomAD database for
the global population. The following sections will discuss the
implications of these differences for the pharmacological
Frontiers in Pharmacology | www.frontiersin.org 8
parameters of response, toxicity, and dosage requirements, by
PharmGKB evidence level.

Evidence Level 1
The XPC p.Q939K variant, with evidence level 1B, reduces
toxicity to individuals treated with platinum-based compounds
(Caronia et al., 2009; Sakano et al., 2010). It was more than 30%
less prevalent in the Mexican population, which could mean
increased risk for toxicity. The only variant with evidence level 1
that showed greater MAF in the MxGDAR/Encodat was
NUDT15*3 (dMAF = 0.0452), a variant that may increase the
risk of leukopenia or neutropenia in those individuals treated
with purine compounds (Yang et al., 2014). Differences were also
found in CYP2C19*2, which has treatment guidelines that
depend on different drug-gene relationships, and which had a
lower MAF, which could mean a reduced response to drugs like
escitalopram, citalopram, and clopidogrel. The reduction of this
allele has been previously reported in a sample from western
Mexico (Favela-Mendoza et al., 2015).

Evidence Level 2
The variants with evidence level 2, ABCG2 p.Q141K, MTHFR
p.A22V, GSTP1 p.I188V, NQO1 p.P187S, UMPS p.G213A,
ERCC1 p.Q506K, and PNPLA3 p.I148M, showed higher allele
frequencies in the Mexican population. These variants could
affect the treatment of cancer patients. MTHFR p.A22V could
have a greater degree of toxicity and decreased response in
treatments with methotrexate and platinum-based compounds
(Huang et al., 2008; López-Rodríguez et al., 2018), GSTP1
p.I188V could lessen the response to cyclophosphamide,
epirubucin, uracil-based, and platinum-based compounds
(Oliveira et al., 2010; Zhang et al., 2011), and NQO1 p.P187S
could diminish the response to anthracyclines and uracil-based
compounds (Fagerholm et al., 2008). PNPLA3 p.I148M could
FIGURE 3 | Regulatory and missense variants by FST value between
admixture groups.
TABLE 5 | Synonymous, benign, and regulatory actionable pharmacogenetic variation in the MxGDAR/Encodat.

Evidence 1A
Chr bp Gene SNP Alleles Synonymous Amino acid change MAF1 gMAF2 DMAF3 Drug Effect on Drug

10 96541616 CYP2C19 rs4244285 G > A CYP2C19*2 p.P227P 0.1061 0.2214 -0.1153 Amitriptiline/Esctialopram/
Citalopram/Clomipramine/
Sertraline/Clopidrogel

Poor Metabolizer
(Clinical CPIC
Dosing Guideline)

Evidence 2A
4 89052323 ABCG2 rs2231142 C > A NR p.Q141K 0.2581 0.1194 0.1387 Rosuvastatin Higer plasma

concentration
8 18258370 NAT2 rs1799931 G > A NAT2*7 p.G286E 0.1647 0.0773 0.0874 Ethambutol/isoniazid/

pyrazinamide/rifampin
Increased risk of
hepatoxicity

16 31105353 VKORC1 rs17708472 G > A VKORC1*4 Promoter
(ENSR00000085299)

0.0798 0.0937 -0.0139 Warfarin Higher dose

Evidence 2B
12 6954875 GNB3 rs5443 C > T NR p.S274S 0.6374 0.8194 -0.1820 Sildenafil Reduction in

positive erectile
response

17 4836381 GP1BA rs6065 C > T NR p.T161M 0.1511 0.1316 0.0195 Aspirin Increased aspirin
resistance

18 55816791 NEDD4L rs4149601 G > A NR p.Q8Q 0.1340 0.2762 -0.1422 Diuretics or
hydrochlorothiazide

Decreased
response
April 2020 | Volum
1MAF, Minor allele frequency in the MxGDAR/Encodat. 2gMAF, Global minor allele frequency (MAF) reported by the gnomAD. 3DMAF, difference between MxDAR/Encodat
individuals and gMAF.
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increase hepatotoxicity in individuals treated with asparaginase,
ciclophosphamide, daunorubicin, prednisolone, or vincristine
(Chambers et al., 2011; Gutierrez-Camino et al., 2017), while
ERCC1 p.Q506K could decrease nephrotoxicity in patients
treated with platinum-based compounds (Tzvetkov et al.,
2011). UMPS p.G213A could increase the toxicity of the cancer
drugs capacetabine and fluorouracil (Tsunoda et al., 2011) and of
leucovirin, an agent used to reduce the effect of methotrexate
treatment. ABCG2 p.Q141K increases the plasma concentration
of rosuvastatin, which could reduce its effect in the Mexican
population (Tomlinson et al., 2010).

The variants NAT2*6, KCNJ11 p.K23E, VDR p.M51T, EPHX1
p.H139R, UGT2B15*2, MTRR p.I49M, SOD2 p.V16A, CHRNA5
p.D398N, XRCC1 p.Q399R, GNB3 p.S274S, NEDD4L p.Q8Q,
and CBR3 p.V244M all had reduced MAF in the Mexican
population. These variants could potentially affect a variety of
drugs, including those for cancer, psychiatric illness,
tuberculosis, viruses, and diabetes. The reduction in the
frequency of the NAT2*6 allele could reduce hepatotoxicity in
treatment with ethambutol, pyramizid, and rifampin (Kim et al.,
2009; Ben Mahmoud et al., 2012), and KCNJ11 p.K23E could
increase the response to glibenclamide and sulfonamides
(Javorsky et al., 2012). The reduced MAF of VDR p.M51T
could increase response rates to peginterferon and ribavirin
(García-Martín et al., 2013; El-Derany et al., 2016). The
reduction of EPHX1 p.H139R could result in lower dose
requirements for the psychiatric drug carbamazepine (Kamiya
et al., 2005; Hung et al., 2012; Puranik et al., 2013), and that of
UGT2B15*2 could reduce the clearance of lorazepam and
oxazepam (He et al., 2009; Bhatt et al., 2019). For oncology
patients,MTRR p.I49M could reduce the toxicity of metrotrexate
(López-Rodríguez et al., 2018), XRCC1 p.Q399R could increase
Frontiers in Pharmacology | www.frontiersin.org 9
the response to platinum-based compounds (Yin et al., 2012),
and SOD2 p.V16A could increase survival in those treated with
cyclophosphamide (Glynn et al., 2009). CBR3 p.V244M could
increase the risk of cardiac damage from anthracyclines (Blanco
et al., 2008; Gonzalez-Covarrubias et al., 2008). Interestingly, the
variant CHRNA5 p.D398N could reduce the dependence on
nicotine in the Mexican population (Johnson et al., 2010;
Gelernter et al., 2015; Hancock et al., 2017), which could
help to explain the lower rates of cigarette consumption
reported for Latino populations (Pagano et al., 2018). Further
studies are needed to explore the effect of this variant on
nicotine dependence.
The Pharmacogenetic Counseling Based
on these Variants Could Depend on the
Admixture Pattern Found in different
Geographical Regions of Mexico
The admixture of the Mexican population has been divided into
two populations: Native Americans (NA) and Mexican Mestizos
(MM) (Wang et al., 2008; Moreno-Estrada et al., 2014). There
have been some attempts to identify how variants in the NA
population affect pharmacology (Gonzalez-Covarrubias et al.,
2016; Romero-Hidalgo et al., 2017; Gonzalez-Covarrubias et al.,
2019), but in many analyses the entire MM population is
grouped together, with no estimation of how admixture
patterns within that group could affect the frequency of
actionable pharmacogenetic variants or clinical counseling.

In the present study, a global ancestry model-based clustering
algorithm identified seven admixture groups, some of which had a
particular distribution in specific geographic areas in Mexico.
Groups 4 and 5 were found only in the Central-East and
A B

FIGURE 4 | Differences in minor allelic frequencies (MAF) of the PGx variants with FST > 0.03: (A) MAF differences of the damaging missense variants between
admixture groups; (B) MAF differences of regulatory, benign or synonymous variants between admixture groups.
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Southeast, and Group 1 in the Northwest, North, and Central-West
regions. Groups 1 and 4 are the most closely related to the NA
population. The mapping of geographically dependent admixture
patterns has been analyzed in the African-American and Latino
populations in the United States (Bryc et al., 2015). Bryc et al., found
that specific admixture groups of these populations were more
prevalent in some regions, and they also reported that self-
identification (used mainly in epidemiological studies) did not
correlate with individuals’ ancestry. The identification of
admixture patterns could help to more accurately identify
individual ancestry and aid with pharmacogenetic counseling and
treatment decisions guided by genomics.

The present study found 20 actionable Pgx variants with possible
dependence on admixture patterns. The variantsMTRR p.I49M and
NAT2*6 are less frequent in individuals from Groups 1 and 4 (those
witha greaterdegreeofNAancestry) andcouldpredict a reduction in
toxicity in cancer patients treated with methotrexate, reduce the risk
of hepatotoxicity in tuberculosis patients, and the risk in its use for
treatment of acute lymphoblastic leukemia (Gast et al., 2007; Huang
et al., 2008), for which it is one of the main drugs used in Mexico
(Medellin-Garibay et al., 2019). Another variant with a substantial
difference inMAF between admixture groups wasABCG2 p.Q141K,
which affects the response to rosuvastatin (Tomlinson et al., 2010),
the most cost-effective option for dyslipidemia treatment in Mexico
(Briseño and Mino-León, 2010).

Although we were able to identify missense variants in
pharmacogenes with possible differential actionable effects in the
Mexican population, one limitation of this study is that the
MxGDAR/Encodat database does not have information about
drug responses or adverse reactions, which limits the conclusions
that can be drawn about the specific effects on the Mexican
population. Another limitation is our use of a genotyping
platform with reduced coverage and a fixed number of variants.
Microarray genotyping technology eliminates the possibility of
finding new variants in these pharmacogenes, but this could be
accomplished with other techniques, such as next-generation
technologies (NGS). An analysis of the Mexican population
recently performed utilizing NGS found novel variation for some
pharmacogenes between NA and MM populations (Gonzalez-
Covarrubias et al., 2019). However, that analysis considered the
MM population as a single group: an analysis of admixture patterns
within theMMpopulation, as performed in the present study, could
be applied using NGS to refine the analysis of the Mexican
population, and genomic guided some public health decisions
in Mexico.
CONCLUSIONS

A description of the pharmacogenetic variants that can be
actionable in this representative subsample of the Mexican
population will help to understand and reduce treatment
disparities in persons of admixed genetic background with
differing pharmacogenetic variants. Such studies can serve as
guides to precision medicine in the Mexican population and in
other populations with mixed genetic backgrounds.
Frontiers in Pharmacology | www.frontiersin.org 10
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