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Zoonotic visceral leishmaniasis (ZVL), caused by the protozoan parasite Leishmania infantum
and transmitted tohumans and reservoirhosts by female sandflies, is endemic inmanyparts of
the world (notably in Africa, Asia and the Mediterranean). This study presents a new mathe-
matical model for assessing the transmission dynamics of ZVL in human and non-human
animal reservoir populations. The model undergoes the usual phenomenon of backward
bifurcation exhibited by similar vector-borne disease transmission models. In the absence of
such phenomenon (which is shown to arise due to the disease-induced mortality in the host
populations), the nontrivial disease-free equilibrium of the model is shown to be globally-
asymptotically stable when the associated reproduction number of the model is less than
unity. Using case and demographic data relevant to ZVL dynamics inAracatubamunicipality of
Brazil, it is shown, for the default case when systemic insecticide-based drugs are not used to
treat infected reservoir hosts, that the associated reproduction number of the model ðℛ0Þ
ranges from 0.3 to 1.4, with a mean ofℛ0 ¼ 0:85. Furthermore, when the effect of such drug
treatment is explicitly incorporated in the model (i.e., accounting for the additional larval and
sandfly mortality, following feeding on the treated reservoirs), the range of ℛ0 decreases to
ℛ02½0:1; 0:6�, with a mean of ℛ0 ¼ 0:35 (this significantly increases the prospect of the
effective controloreliminationof thedisease). Thus, ZVL transmissionmodels (in communities
where such treatment strategy is implemented) that do not explicitly incorporate the effect of
such treatmentmaybeover-estimating thedisease burden (asmeasured in termsofℛ0) in the
community. It is shownthatℛ0 ismoresensitive to increases insandfly lifespanthan thatof the
animal reservoir (so, a strategy that focuses on reducing sandflies, rather than the animal
reservoir (e.g., via culling), may be more effective in reducing ZVL burden in the community).
Further sensitivity analysis of themodel ranks the sandfly removal rate (by natural death or by
feeding from insecticide-treated reservoir hosts), the biting rate of sandflies on the reservoir
hosts and the progression rate of exposed reservoirs to active ZVL as the three parameterswith
the most effect on the disease dynamics or burden (as measured in terms of the reproduction
numberℛ0). Hence, this study identifies the key parameters that playa key role on the disease
dynamics, and thereby contributing in the design of effective control strategies (that target the
identified parameters).
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://
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1. Introduction

The protozoan Leishmania infantum (syn., L. chagasi) is the causative agent of zoonotic visceral leishmaniasis (ZVL) in
humans and canine leishmaniasis (CanL) in dogs (Hartemink et al., 2011; Podaliri Vulpiani, Iannetti, Paganico, Iannino,& Ferri,
2011; Ribas, Zaher, Shimozako, &Massad, 2013). The protozoan parasite is transmitted from infected animal hosts (domestic
dogs serve as principal reservoirs) to susceptible female sandflies (Diptera: Phlebotomine) and then to susceptible humans
(who are regarded as dead-end hosts of the disease) (Elnaiem et al., 2001; Hoogstraal & Heyneman, 1969; Hussaini, Lubuma,
Barley, & Gumel, 2016; Kirk, 1939; Podaliri Vulpiani et al., 2011; Ribas et al., 2013). ZVL, which is endemic in Africa, Europe
(particularly the Mediterranean region) and Asia (particularly the Indian subcontinent) (European Centre for Disease
Prevention and Control, ; Podaliri Vulpiani et al., 2011), is an acute and life-threatening emerging disease with estimated
yearly incidence in the range 200 000 to 400 000 (Leta, Dao, Mesele, & Alemayehu, 2014; World Health Organization).
Furthermore, increase in risk factors associated with climate change and other environmental challenges makes ZVL to be a
growing major public health concern (Hartemink et al., 2011).

An adult female sandfly lays about 40� 70 eggs during a single gonotrophic cycle (these eggs are typically laid in damp
dark places in the cattle sheds, animal burrows, tree roots and in soil rich in organic matter) (European Centre for Disease
Prevention and Control, ; Sand fly life cycle, ). The eggs laid in these micro-habitats hatch into larvae in 4� 20 days
(European Centre for Disease Prevention and Control, ). Larvae develop into four instar stages (each one larger than the one
before; the newly hatched first instar larvae have two rear bristles, while all later larval developments have four rear bristles)
(European Centre for Disease Prevention and Control, ). Larvae are mainly scavengers found in moist areas, such as animal
burrows, feeding on organic matter (e.g., fungi, decaying leaves and animal faeces) (European Centre for Disease Prevention
and Control, ; Sand fly life cycle, ). During the fourth molt, the larva matures into a pupa (the whole process of maturation
from larvae to pupae takes about 20� 30 days depending on species, temperature and nutrient availability) (European Centre
for Disease Prevention and Control, ). Pupae then develop into adult sandflies in about 6� 13 days (European Centre for
Disease Prevention and Control, ; Sand fly life cycle, ). Thus, the duration of the whole cycle, from egg laying to an adult
sandfly, varies between 30 and 63 days depending on species, temperature and nutrient availability (European Centre for
Disease Prevention and Control, ). Adult sandflies usually mate within a few days after emerging from the pupal stage,
after which the female sandfly moves to quest for blood meal required to produce eggs (European Centre for Disease
Prevention and Control, ). The feeding activity of the female adult sandfly is influenced by temperature, humidity and air
movement (European Centre for Disease Prevention and Control, ; Sand fly life cycle, ). Sandflies, which are active and feed
during the early morning and evening hours when temperature falls and humidity rises, have an average lifespan of about 14
days (European Centre for Disease Prevention and Control, ; Sand fly life cycle, ). A schematic description of the life-cycle of
the sandfly is depicted in Fig. 1. Although there is a vaccine against ZVL in animal populations (CaniLeish) (CaniLeish, 2017;
Vetlife), no such vaccine currently exists for use in humans (although a number of candidate vaccines are at various stages of
development and clinical trials) (Gillespie et al., 2016; Kumar & Engwerda, 2014; Mcallister, 2014) (it is however, known that
an effective vaccine against leishmaniasis will prompt long-lasting immunity in humans (Bertholet et al., 2009; Gillespie et al.,
2016; Mcallister, 2014; Nagill & Kaur, 2011)). Furthermore, although ZVL is curable using drugs such as miltefosine,
paromomycin and liposomal amphotericin B (Chappuis et al., 2007), basic anti-ZVL preventive measures (such as personal
protection against sandfly bites and sandfly-reduction strategies focused on spraying anti-sandfly insecticides in human and
animal reservoir habitats) remain perhaps the most effective method for combating ZVL spread in humans (World Health
Organization). Treatment of animal reservoir (with systemic insecticide-based drugs, such as fipronil) are implemented in
places like Bihar, India (Poch�e, Grant, & Wang, 2016). An additional benefit of the treatment strategy is that it reduces the
Fig. 1. Schematic diagram of the life-cycle of the sandfly (Sharma, ).
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number of larvae and adult sandflies who feed on the faeces of (insecticide-based) treated infected reservoirs (Poch�e et al.,
2016).

A number of modeling studies have been carried out to gain insight into ZVL transmission dynamics in human and/or
reservoir populations (see, for instance (Burattini, Coutinho, Lopez, & Massad, 1998; Carvalho et al.,; Hartemink et al., 2011;
Hussaini et al., 2016; Ribas et al., 2013; Shimozako, Wu, & Massad, 2017; Zhao et al., 2016), and some of the references
therein). Burattini et al. (Burattini et al., 1998). proposed mechanistic model for ZVL transmission within the human and
animal reservoir populations, and used the model to evaluate control strategies. Ribas et al. (Ribas et al., 2013). added control
terms to the model in (Burattini et al., 1998) to estimate the optimal control strategies for ZVL. Zhao et al. (Zhao et al., 2016).
developed amodel to describe the ZVL transmission dynamic using amodified SEIRmodel and themodel exhibited backward
bifurcation phenomenon. Shimozako et al (Shimozako et al., 2017). updatedmost of parameters in (Burattini et al., 1998; Ribas
et al., 2013) and calculated new value of ℛ0. The current study focuses on the design and analysis of a novel model, which
extends some of the aforementioned modeling studies, for assessing the transmission dynamics of ZVL in human and non-
human animal reservoir populations. The paper is organized as follows. The model is formulated in Section 2 and rigorously
analyzed in Section 3. Sensitivity uncertainty analysis and numerical simulations are reported in Section 4.

2. Model formulation

The model to be developed monitors the transmission dynamics of zoonotic visceral leishmaniasis (ZVL) within the
human and animal (reservoir) host populations. Unlike anthroponotic visceral leishmaniasis (which is transmitted from
human to vector to human), ZVL is transmitted from infected animals (reservoir) to susceptible vectors (sandflies) and then
back to humans. The total human population at time t, denoted byNHðtÞ, is sub-divided into four compartments of susceptible
ðSHðtÞÞ, infected but not infectious (i.e., asymptomatically-infected humans) ðEHðtÞÞ, symptomatically-infected ðIHðtÞÞ and
recovered ðRHðtÞÞ humans, so that:

NHðtÞ ¼ SHðtÞ þ EHðtÞ þ IHðtÞ þ RHðtÞ:
Furthermore, the total sandfly population at time t, denoted by NV ðtÞ, is split into two main classes of immature and
mature adult female phlebotomine sandfly classes. The total immature sandfly population at time t, denoted byNVIðtÞ, consists
of the first three stages of sandfly life-cycle (i.e., eggs ðEV ðtÞÞ, larvae ðLV ðtÞÞ and pupae ðPV ðtÞÞ). Further, the total mature female
sandfly population at time t, denoted by NVMðtÞ, is split into compartments for susceptible female sandflies ðSV ðtÞÞ and
infected female sandflies ðIV ðtÞÞ, so that
Fig. 2. Flow chart of model (2.1), where lH ¼ bHbH IV
NHþNR

, lR ¼ bRbRIV
NHþNR

, lVI ¼ bV bR IR
NHþNR

, lVE ¼ bV bRhRER
NHþNR

.
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NV ðtÞ ¼ NVIðtÞ þ NVMðtÞ ¼ EV ðtÞ þ LV ðtÞ þ PV ðtÞ þ SV ðtÞ þ IV ðtÞ:
Finally, the total animal reservoir population at time t, denoted by NRðtÞ, is sub-divided into compartments for susceptible
ðSRðtÞÞ exposed ðERðtÞÞ, infected ðIRðtÞÞ and treated ðTRðtÞÞ reservoirs, so that

NRðtÞ ¼ SRðtÞ þ ERðtÞ þ IRðtÞ þ TRðtÞ:
Themodel for ZVL transmission in human and reservoir animal populations is given by the following deterministic system
of non-linear differential equations (a flow diagram of the model is depicted in Fig. 2; the state variables and parameters of
the model are described in Tables 1 and 2, respectively):

dSH
dt

¼ PH � bHbHIV
NH þ NR

SH � mHSH;

dEH
dt

¼ bHbHIV
NH þ NR

SH � ðgH þ mHÞEH ;

dIH
dt

¼ gHEH � ðtH þ mH þ dHÞIH;

dRH
dt

¼ tHIH � mHRH ;

dEV
dt

¼ jV

�
1� NVM

KM

�
ðSV þ IV Þ � ðsE þ mEÞEV ;

dLV
dt

¼ sEEV � ðsL þ mL þ xL þ rLLV ÞLV ;

dPV
dt

¼ sLLV � ðsP þ mPÞPV ;

dSV
dt

¼ sPf PV � bVbRðhRER þ IRÞ
NH þ NR

SV � ðmM þ xMÞSV ;

dIV
dt

¼ bVbRðhRER þ IRÞ
NH þ NR

SV � ðmM þ xMÞIV ;

dSR
dt

¼ PR �
bRbRIV
NH þ NR

SR � mRSR;

dER
dt

¼ bRbRIV
NH þ NR

SR � ðgR þ mRÞER;

dIR
dt

¼ gRER þ rRTR � ðtR þ mR þ dRÞIR;

dTR
dt

¼ tRIR � ðrR þ mRÞTR:

(2.1)
In the model (2.1),PHðPRÞ is the recruitment rate for human (reservoir), bHðbRÞ is the biting rate of adult female sandflies
on the human (reservoir) host, bHðbRÞ is the probability of infection per bite from an infected adult female sandfly (human) to
Table 1
Description of the variables of the model (2.1).

Variable Interpretation

SHðtÞ Population of susceptible humans
EHðtÞ Population of humans exposed to ZVL
IHðtÞ Population of humans with clinical symptoms of ZVL
RHðtÞ Population of humans who recovered from ZVL
EV ðtÞ Population of sandfly eggs
LV ðtÞ Population of sandfly larvae
PV ðtÞ Population of sandfly pupae
SV ðtÞ Population of susceptible adult female sandflies
IV ðtÞ Population of ZVL-infected adult female sandflies
SRðtÞ Population of susceptible ZVL reservoirs
ERðtÞ Population of reservoirs exposed to ZVL
IRðtÞ Population of infected reservoirs with clinical symptoms of ZVL
TRðtÞ Population of ZVL-treated reservoirs



Table 2
Description of parameters of the model (2.1).

Parameter Interpretation

PHðPRÞ Recruitment rate of humans (reservoirs)
mHðmRÞ Natural death rate of humans (reservoirs)
jV Oviposition rate
mE ;mL;mP ;mM Natural death rate of eggs, larvae, pupae and adult sandflies, respectively
bHðbRÞ Transmission probability from infected sandflies to susceptible human (reservoir) hosts
bV Transmission probability from infected reservoirs to susceptible sandflies
bHðbRÞ Per capita biting rate of sandflies on the human (reservoir) hosts
gHðgRÞ Progression rate of exposed human (reservoir) hosts to active ZVL class
tHðtRÞ Treatment rates of human (reservoir) hosts
sE Average maturation rate from eggs to larvae
sL Average maturation rate from larvae to pupae
sP Average maturation rate from pupae to adult sandflies
rR Rate of relapse of treated reservoirs
KM Carrying capacity of adult sandflies
hR Modification parameter for relative of infectiousness of reservoirs
f Fraction of newly-emerged sandflies that are females
dHðdRÞ Disease-induced death rates of human (reservoir) hosts
xLðxMÞ Additional death rate of larvae (adult sandflies) due to feeding on faeces of treated reservoir
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a susceptible human (sandfly), bV is the probability of infection per bite from an infected reservoir to a susceptible adult
female sandfly, mHðmRÞ is the natural death rate in humans (reservoir hosts) and hR accounts for the reduction of infec-
tiousness of exposed reservoirs. Laboratory experiments by Laurenti et al. (Laurenti et al., 2013), show that asymptomatic
reservoir transmits ZVL to susceptible sandflies at a rate greater than that of symptomatic reservoir hosts (i.e., hR >1). The
parameter gHðgRÞmeasures the rate at which humans (reservoir hosts) in the EHðERÞ class develop clinical symptoms of ZVL,
while the parameter tHðtRÞmeasures the treatment rate of symptomatic humans (reservoir hosts). The parameters dR and rR
account, respectively, for the disease-induced death rate and failure rate of treatment received by infected reservoir hosts. It is
assumed that recovery confers permanent immunity against ZVL re-infection in humans (Roberts, 2005).

Eggs are laid by adult female sandflies (usually on the surface an organic matter), assumed to be at a logistic rate

jV

�
1� NVMðtÞ

KM

�
(where KM >NVMðtÞ for all t is the carrying capacity of female adult sandflies and jV is the egg deposition

rate). Eggs hatch into the larvae (at a rate sE) which, in turn, mature into pupae (at a rate sL) and, finally, pupae mature
into adult female sandflies (at a rate sP). Susceptible adult female sandflies acquire ZVL infection (at the rate lVE þ lVI , as
defined in the caption of Fig. 2) and suffer natural death (at a rate mM). Furthermore, adult female sandflies die due to
feeding on infected reservoir hosts that have been treated with systemic insecticide-based drugs (Poch�e et al., 2016) (at a
rate xM).

The parameters mE;mL and mP represent, respectively, the natural death rate for eggs, larvae and pupae, while rLLV is the
density-dependent mortality rate for larvae (accounting for the cannibalism that occurs during larval competition for
resources (nutrients) and space) (Poch�e et al., 2016; Srinivasan & Panicker, 1992). Finally, as in the case of adult sandflies,
larvae also suffer additional mortality by feeding on organicmaterial from (insecticide-based) treated infected reservoir hosts,
at a rate xL (Poch�e et al., 2016). Following (Poch�e et al., 2016), the parameters xL and xM are defined, respectively, as:

xL ¼ 0:567e�0:073ðDPT�1Þ�0:00545DPD and xM ¼ 0:515e�0:094DPT ;

where, DPT is the number of days of post-treatment of infected reservoir and DPD is the number of post-defecation days of
reservoir. The model (2.1) accounts for the conservation law of sandfly bites on human and reservoir hosts (the consequence
of which is that the human (and reservoir) hosts are always sufficient in abundance and the total number of bites made by
sandflies balances the total number of bites received by the human (and reservoir) hosts; see also (Bergsman, Hyman, &
Manore, 2016; Bowman, Gumel, van den Driessche, Wu, & Zhu, 2005; Cruz-Pacheco, Esteva, & Vargas, 2012; Marini, Ros�a,
Pugliese, & Heesterbeek, 2017; Subramanian, Singh, & Sarkar, 2015) for models of similar diseases with one vector and
multiple hosts).

Some of the main assumptions made in the formulation of the model (2.1) are:

(i) Humans are dead-end hosts (i.e., they acquire, but do not transmit, ZVL infection) (Hartemink et al., 2011).
(i) Humans who recovered from ZVL infection acquire permanent immunity against re-infection (i.e., tHs0) (Roberts,

2005).
(ii) Treated infected reservoir hosts do not usually get cured but develop an immune response that prevents them from

becoming infectious (Baneth & Shaw, 2002; Espejo, Costard, & Zagmutt, 2015).
(iii) Treated reservoir hosts can relapse to active ZVL class due to treatment failure (i.e., rRs0) (Petersen & Barr, 2009;

Quinnell & Courtenay, 2009).
(iv) Recovery confers permanent immunity against ZVL re-infection in humans (Hussaini et al., 2016).
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Table 3
Human reported ZVL cases in Aracatuba municipality, Brazil (Shimozako et al., 2017).

year Number of cases Cumulative cases

1999 15 15
2000 12 27
2001 29 58
2002 52 110
2003 40 150
2004 41 191
2005 16 207
2006 20 227
2007 42 269
2008 27 296
2009 15 311
2010 4 315
2011 5 321
2012 6 327
2013 3 330
2014 12 342
2015 4 346
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(v) No direct transmission between reservoirs or between sandflies is assumed (Hartemink et al., 2011).

The model (2.1) extends the deterministic models for ZVL transmission developed in (Burattini et al., 1998; Ribas et al.,
2013; Shimozako et al., 2017; Zhao et al., 2016) by, inter alia,

(a) adding the compartments of immature sandflies (i.e., the compartments EV , LV and PV ).
(b) allowing for the relapse of treated reservoir hosts to active ZVL class due to treatment failure (i.e., rRs0).
(c) adding density-dependent larval mortality (i.e., rLs0).
(d) allowing for additional mortality of sandfly larvae (i.e., xLs0) and adult female sandfly ðxMs0Þ due to feeding on the

faeces of treated infected reservoir hosts.
(e) using varying total populations of the human and reservoir hosts (constant population was used in (Burattini et al.,

1998; Ribas et al., 2013; Shimozako et al., 2017)).

The model (2.1) is, first of all, fitted using the ZVL case and demographic data from Aracatuba municipality, Brazil for the
period 1999� 2015 (tabulated in Table 3) (Centre of Epidemiological Surveillance of Sao Paulo State (CES-SP) and Brazil, 2016;
Shimozako et al., 2017). The results obtained, depicted in Fig. 3, show a reasonably good fit to the data (expressed in terms of
cumulative number of yearly cases). It is worth mentioning that, for the model fitting, the human demographic parameters
(PH and mH) are parameterize as follows. Since the average total population of Aracatuba municipality is 180;000 (see Table
3), and the average lifespan in Brazil is 75 years (World Bank ata, 2015) (i.e., 1=mH ¼ 75 years, so that mH ¼ 3:65� 10�5 per
day), it follows from the relation PH=mH ¼ 180;000 that PH ¼ 6:575 per day. Furthermore, since systemic insecticide-based
drugs were not used to treat infected reservoir hosts in Aracatuba municipality, Brazil during the period 1999 to 2015, the

̣

Fig. 3. Comparison of observed ZVL cumulative data from Aracatuba municipality, Brazil (dotted lines) and model prediction (solid curve). Parameter values used
are as given in Table 4, with xL ¼ xM ¼ 0 and the following initial conditions: SH(0) ¼ 176000; EH(0) ¼ 4000; IH(0) ¼ 15; RH(0) ¼ 9; EV (0) ¼ 1000; LV (0) ¼ 100;
PV (0) ¼ 50; SV (0) ¼ 10; IV (0) ¼ 1000; SR(0) ¼ 2000; ER(0) ¼ 300; IR(0) ¼ 100; TR(0) ¼ 10.



Table 4
Values and ranges of the parameters of the model (2.1).

Parameter Range Baseline Reference

PH 4� 7 day�1 6 day�1 (World Bank ata, 2015)
mH 3:67� 10�5 � 5:07� 10�5 day�1 3:67� 10�5 day�1 (World Bank ata, 2015)
bR 0:03� 0:2 0.16 (Hartemink et al., 2011; Shimozako et al., 2017)
bH 0:2� 0:8 0.56 (Hartemink et al., 2011; Zhao et al., 2016)
dH 2:37� 10�4 � 5:03� 10�4 day�1 0.0003 day�1 (Stauch et al., 2011; Zhao et al., 2016)
tH 0:12� 0:95 day�1 0.5294 day�1 (Stauch et al., 2011; Zhao et al., 2016)
gH 0:00556� 0:01667 day�1 0.0111 day�1 (Shimozako et al., 2017)
jV 30� 70 egg oviposition�1 50 egg oviposition�1 (European Centre for Disease Prevention and Control, )
KM 9000� 1:1� 109 5:5� 106 (Hussaini et al., 2016)
mE 0:05� 0:25 day�1 0.143 day�1 (European Centre for Disease Prevention and Control, )
mL 0:0333� 0:05 day�1 0.0455 day�1 (European Centre for Disease Prevention and Control, )
mP 0:0769� 0:167 day�1 0.143 day�1 (European Centre for Disease Prevention and Control, )
mM 0:0416� 0:083 day�1 0.0714 day�1 (European Centre for Disease Prevention and Control, )
sE 0:05� 0:25 day�1 0.0833 day�1 (European Centre for Disease Prevention and Control,)
sL 0:0333� 0:05 day�1 0.04 day�1 (European Centre for Disease Prevention and Control, 2017)
rL 0:0009� 0:011 day�1 0.00893 day�1 Fitted
sP 0:07� 0:1667 day�1 0.0833 day�1 (European Centre for Disease Prevention and Control,)
f 0:413� 0:9 0.5 Assumed
xL 0:0456� 0:564 day�1 0.1 day�1 (Poch�e et al., 2016)
xM 0:0192� 0:469 day�1 0.0923 day�1 (Poch�e et al., 2016)
bV 0:2� 0:8 0.7 (Hartemink et al., 2011; Zhao et al., 2016)
PR 7:49� 11:4 day�1 8.33 day�1 (The Africa Report, 2013)
mR 1:522� 10�4 � 5:48� 10�4 day�1 2:28� 10�4 day�1 (PetCareRx, 2013)
bR 0:03� 0:2 0.16 (Hartemink et al., 2011; Shimozako et al., 2017)
dR 0:0099� 0:0121 day�1 0.011 day�1 (Hartemink et al., 2011)
hR 1:0� 1:75 1.39 Fitted
rR 0:00137� 0:011 day�1 7:083� 10�3 day�1 Fitted
tR 0:01� 0:04 day�1 0.0233 day�1 (Hartemink et al., 2011)
gR 3:9� 10�4 � 0:0167 day�1 0.011 day�1 (Parasites - Leishmaniasis, 2017; Parnell, Guptill, & Solano-Gallego, 2008)
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associated parameters xL and xM (for the treatment of infected reservoir hosts) were set to zero, while all other parameters of
the model are set at their baseline values in Table 4.

2.1. Basic properties

The basic properties of themodel (2.1) will now be explored. It should be noted, first of all, that all parameters of themodel
are non-negative (with the death rates (mH , mE , mP , mM , mR), recruitment rates ðPH;PRÞ, transmission probabilities ðbH ; bV ; bRÞ
and the biting rates ðbH; bV ; bRÞ assumed to be strictly positive). It is convenient to let mV ¼ minfmE;mL;mP ;mMg. Consider the
following equations for the rate of change of the total human, vector and reservoir host populations:

dNH

dt
¼ PH � mHNH � dHIH � PH � mHNH; (2.2)

dNV
�

NVM
�

2
�

NVM
�

dt
¼ jV 1�

KM
NVM � xMNVM � xLLV � rLLV � ð1� f ÞsPPV � mVNV � jV 1�

KM
NVM � mVNV

� jVKM � mVNV ; (2.3)

dNR
dt
¼ PR � mRNR � dRIR � PR � mRNR: (2.4)
Furthermore, consider the region:

U ¼
�
ðSH ; EH; IH;RH; EV ; LV ; PV ; SV ; IV ; SR; ER; IR; TRÞ2ℝ13

þ : NHðtÞ �
PH

mH
;NV ðtÞ �

KMjV
mV

;NRðtÞ �
PR

mR

�
;

It can be shown (by solving for NHðtÞ;NV ðtÞ and NRðtÞ in (2.2), (2.3) and (2.4)) that all solutions of the system starting in the
regionU remain inU for all t � 0. Thus, the regionU is positively-invariant, and it is sufficient to consider solutions inU. In this
region, the usual existence, uniqueness and continuation results hold for the system (Forouzannia & Gumel, 2014).
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3. Mathematical analysis

3.1. Disease-free equilibria

The model (2.1) has two disease-free equilibria, namely the trivial disease-free equilibrium (TDFE, denoted by T 0) and a
non-trivial disease-free equilibrium (NDFE, denoted by E 0), as described below.

(i) TDFE (where no sandflies exist):

T 0 ¼ �
S�H ; E

�
H; I

�
H;R

�
H; E

�
V ; L

�
V ; P

�
V ; S

�
V ; I

�
V ; S

�
R; E

�
R; I

�
R; T

�
R
	

¼
�
PH

mH
;0;0;0;0;0;0; 0;0;

PR

mR
;0;0;0

�
:

(ii) NDFE:

E 0 ¼ �
S⋄H ; E

⋄
H; I

⋄
H;R

⋄
H ; E

⋄
V ; L

⋄
V ; P

⋄
V ; S

⋄
V ; I

⋄
V ; S

⋄
R; E

⋄
R; I

⋄
R; T

⋄
R
	

¼
�
PH

mH
;0;0;0; E⋄V ; L

⋄
V ; P

⋄
V ; S

⋄
V ; 0;

PR

mR
;0;0;0

�
;

where,
E⋄V ¼ gL þ rLL⋄V
sE

L⋄V ; P
⋄
V ¼ sL

gP
L⋄V ; S

⋄
V ¼ sLfsP

gPgM
L⋄V ; L

⋄
V ¼ 1

Q

�
1� 1

ℛEP

�
;

with Q ¼ gEgPgMrL þ sLfsP ; g ¼ s þ m ; g ¼ s þ m þ x ; g ¼ s þ m ; g ¼ m þ x and

jVsEsLfsP gPgMKM E E E L L L L P P P M M M

ℛEP ¼ jVsEsLfsP
ðsE þ mEÞðsL þ mL þ xLÞðsP þ mPÞðmM þ xMÞ : (3.1)
It follows that the NDFE ðE 0Þ exists if and only if ℛEP >1. Furthermore, the NDFE ðE 0Þ reduces to the TDFE ðT 0Þ when
ℛEP ¼ 1. The thresholdℛEP is similar to the vectorial reproduction number described in (Okuneye, Abdelrazec,&Gumel, 2018).
It measures the average number of new adult female sandflies produced by one reproductive sandfly during its entire
reproductive period. It is the product of the eggs oviposition rate ðjV Þ, the fraction of eggs that survives and develops into

larvae
� sE
sEþmE

	
, the fraction of these larvae that survives and develops into pupae

� sL
sLþmLþxL

	
, the fraction of pupae that survives

and develops into female adult sandflies
�

fsP
sPþmP

�
and the average lifespan of adult female sandfly

�
1

mMþxM

�
.

3.1.1. Asymptotic stability of TDFE

Theorem 3.1. The TDFE of the model (2.1), T 0, is globally-asymptotically stable (GAS) in U whenever ℛEP � 1.

Proof. Let ℛEP � 1. Consider, first of all, the sandfly-only system of the model (2.1):

dEV
dt

¼ jV

�
1� NVM

KM

�
ðSV þ IV Þ � ðsE þ mEÞEV ;

dLV
dt

¼ sEEV � ðsL þ mL þ xL þ rLLV ÞLV ;

dPV
dt

¼ sLLV � ðsP þ mPÞPV ;

dSV
dt

¼ sPf PV � lVSV � ðmM þ xMÞSV ;

dIV
dt

¼ lVSV � ðmM þ xMÞIV :

(3.2)
The system (3.2) has a unique trivial equilibrium (whenever ℛEP � 1), given by
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T 01 ¼ �
E�V ; L

�
V ; P

�
V ; S

�
V ; I

�
V
	 ¼ ð0; 0;0; 0;0Þ;

in the invariant region
U1 ¼
n
ðEV ðtÞ; LV ðtÞ; PV ðtÞ; SV ðtÞ; IV ðtÞÞ2ℝ5

þ : 0 � EV ðtÞ;0 � LV ðtÞ;

0 � PV ðtÞ;0 � SV ðtÞ;0 � SV ðtÞ;0 � IV ðtÞ;NV ðtÞ �
KMjV
mV

�
;

Furthermore, consider the following Lyapunov function for the system (3.2):

K 1 ¼ fsEsLsPEV þ fsLgEsPLV þ fgEgLsPPV þ gEgLgPðSV þ IV Þ;
where, gE ¼ sE þ mE; gL ¼ sL þ mL þ xL; gP ¼ sP þ mP and gM ¼ mM þ xM , with Lyapunov derivative given by (where a dot

represents differentiation with respect to time t):

_K 1 ¼ sEsLsPf
dEV
dt

þ sLgEsPf
dLV
dt

þ gEgLsPf
dPV
dt

þ gEgLgP

�
dSV
dt

þ dIV
dt

�
;

¼ sEsLsPf
�
jV

�
1� NVM

KM

�
ðSV þ IV Þ � gEEV

�

þsLgEsPf ðsEEV � gLLV Þ þ gEgLsPf ðsLLV � gPPV Þ þ gEgLgP ½sPf PV � gMðSV þ IV Þ� � sLgEsPf rLL
2
V ;

¼ sEsLsPfjV

�
1� NVM

KM

�
ðSV þ IV Þ � gEgLgPgMðSV þ IV Þ � sLgEsPf rLL

2
V ;

¼ gEgLgPgM

�
ðℛEP � 1Þ �ℛEP

NVM

KM

�
ðSV þ IV Þ � fsLgEsPrLL

2
V :
Thus, it follows, for ℛEP � 1 in U1, that the Lyapunov derivative _K 1 <0. Furthermore, it follows from the LaSalle’s
Invariance Principle (Theorem 6.4 of (LaSalle, 1976)) that the maximal invariant set contained in fðEV ðtÞ, LV ðtÞ, PV ðtÞ, SV ðtÞ,
IV ðtÞ Þ2U1 : _K 1 ¼ 0g is the singleton fT 01g is the singleton fT 01g. Hence, the unique trivial equilibrium ðT 01Þ of the
system (3.2) is GAS in U1 whenever ℛEP � 1. Thus, for ℛEP � 1,

ðEV ðtÞ; LV ðtÞ; PV ðtÞ; SV ðtÞ; IV ðtÞÞ/ð0; 0;0; 0;0Þ; as t/∞: (3.3)
Since the model (2.1) is Type K (Smith, 1986), it follows, by substituting (3.3) into (2.1), that

ðSH; EH; IH ;RH; SR; ER; IR; TRÞðtÞ/
�
PH

mH
;0;0;0;

PR

mR
; 0;0;0;0

�
; as t/∞: (3.4)
Thus, by combining Equations (3.3) and (3.4), it follows that the TDFE ðT 0Þ of the model (2.1) is GAS in U whenever
ℛEP � 1.

It is worth stating that the trivial equilibrium ðT 0Þ is ecologically unrealistic, since it is associated with the (unrealistic)
scenario where sandflies do not exist.

3.1.2. Asymptotic stability of NDFE
Let ℛEP >1 (so that the NDFE, E 0, of the model (2.1) exists). It can be shown, using the next generation operator method

(Diekmann, Heesterbeek, &Metz, 1990; Van den Driessche &Watmough, 2002), that the associated reproduction number of
the model (2.1) (denoted by ℛ0) is given by:

ℛ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℛVR �ℛRV

p
; (3.5)

where,

ℛVR ¼ bRbRS⋄R
gM

�
N�
H þ N�

R

	 (3.6)
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and,

ℛRV ¼ bRbVS⋄V
N�
H þ N�

R

�
hR
g1

þ gRg3
g1ðg2g3 � tRrRÞ

�
; (3.7)

with N�
H ¼ PH

mH
, N�

R ¼ PR
mR
, g1 ¼ gR þ mR, g2 ¼ tR þ mR þ dR, g3 ¼ rR þ mR, gM ¼ mM þ xM and g2g3 � tRrR ¼ tRmR þ ðmR þ dRÞg3 >0.

The result below follows from Theorem 2 of (Van den Driessche & Watmough, 2002).

Theorem 3.2. The NDFE, E 0, of the model (2.1), with ℛEP >1, is locally-asymptotically stable (LAS) in UyfT 0g if ℛ0 <1, and
unstable if ℛ0 >1.

The epidemiological implication of Theorem 3.2 is that ZVL can be effectively controlled in the two hosts populations
(humans and non-humans animal reservoir hosts) if the initial number infected hosts and vector are small enough (i.e., in the
basin of attraction of the non-trivial disease-free equilibrium, E 0).

Interpretation of ℛ0. The threshold quantity ℛ0 is ecologically and epidemiologically interpreted as follows.

1. Interpretation of ℛVR: The quantity ℛVR, given in (3.6), is associated with the infection of susceptible reservoirs by in-

fectious sandflies. It is the product of the infection rate of susceptible reservoirs by infectious sandflies
�
bRbR

S⋄R
N�

HþN�
R

�
and

the average duration of infectious sandflies in the IV class,
�

1
gM

�
.

2. Interpretation ofℛRV : The quantityℛRV , given in (3.7), is associated with the infection of susceptible sandflies by exposed
(asymptotically infectious) and symptomatically infectious reservoirs. It can further be expressed as

ℛRV ¼ ℛERV þℛIRV þℛðIR↔TRÞV ; (3.8)

where,

ℛERV ¼ bRbV
S⋄V

N�
H þ N�

R
$
hR
g1

; ℛIRV ¼ bRbV
S⋄V

N�
H þ N�

R
$
gR
g1

$
1
g2

;

ℛðIR↔TRÞV ¼ bRbV
S⋄V

N�
H þ N�

R
$
gR
g1

$
1
g2
$
X
i¼1

n �
tRrR
g2g3

�i

;

where n/∞ is the total number of the cycles at which infectious reservoir received and failed treatment (and returned to the
symptomatically-infectious class),ℛERV accounting for the average number of new infectious sandflies generated by exposed
(asymptomatically-infectious) reservoirs ðERÞ, ℛIRV measures the average number of new infectious sandflies generated by
symptomatically-infectious reservoirs ðIRÞ that have not undergone any treatment and ℛðIR↔TRÞV accounts for the average
number of new infectious sandflies generated by symptomatically-infectious reservoirs that have undergone (and failed)
treatment (and return to the symptomatically-infectious class) at least once. In particular,

i. ℛERV is the product of the infection rate of susceptible sandflies by exposed (asymptomatically-infected) reservoirs�
hRbRbV

S⋄V
N�

HþN�
R

�
, and the average duration in the ER class,

�
1
g1

�
.

ii. ℛIRV is the product of the infection rate of susceptible sandflies by symptomatically-infected reservoirs
�
bRbV

S⋄V
N�

HþN�
R

	
,

the probability that an exposed reservoir becomes symptomatic (i.e., survived the ER class and move to the IR class)�
gR
g1

�
, and the average duration in the IR class,

�
1
g2

�
.

iii. ℛðIR↔TRÞV is the product of the infection rate of susceptible sandflies by symptomatically infected reservoirs ℛIHV
(described above in ii.), and the probability that such infectious reservoirs have received and failed treatment(s) at least

once given by
Pn

i¼1

�
tRrR
g2g3

�i

(where tR
g2 is the fraction of symptomatic reservoir hosts who received treatment (and

progressed to the TR class), and rR
g3
is the fraction of reservoir hosts who failed treatment and reverts to the IR class). It is

worth mentioning that the total number of the cycle at which infectious reservoir hosts received and failed treatments
(and return to the symptomatically infectious class) is finite (i.e., n<∞). Although ZVL is not completely curable (as
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relapses are commonwhen treatment ceases), euthanasia1 is considered in some cases where the animal is chronically
infected (and cannot be cured) (Petersen, 2009).

3.2. Backward bifurcation analysis

Backward bifurcation, which has been observed in numerous models for vector-borne diseases (see, for instance
(Forouzannia & Gumel, 2014; Garba, Gumel, & Abu Bakar, 2008),), typically occurs when the asymptotically-stable disease-
free equilibrium of the model co-exists with a stable endemic equilibriumwhen the associated reproduction number ðℛ0Þ of
the model is less than unity (Castillo-Chavez& Song, 2004). The epidemiological consequence of backward bifurcation is that
having the associated basic reproduction number of the model to be less than unity, while necessary, is no longer sufficient for
ZVL control (or elimination). In a backward bifurcation situation, effective community-wide control of ZVL (when ℛ0 <1) is
dependent on the initial sizes of the subpopulations of the model. In other words, backward bifurcation makes effective ZVL
control in the community difficult. It is instructive, therefore, to explore the possibility of backward bifurcation in the model
(2.1).

Let E ��
1 ¼ ðS��H ; E��H ; I��H ;R��H ; E��V ; L��V ; P��V ; S��V ; I��V ; S��R ; E��R ; I��R ; T��

R Þ represents an arbitrary non-trivial equilibrium point (EEP)
of the model (2.1) and,

l��H ¼ bHbHI��V
N��
H þ N��

R
; l��V ¼ bRbV

�
hRE

��
R þ I��R

	
N��
H þ N��

R
; l��R ¼ bRbRI��V

N��
H þ N��

R
:

Solving the equations of the model (2.1) at E ��
1 gives:

S��H ¼ PH

l��H þ mH
; E��H ¼ l��H

g4
S��H ; I��H ¼ gH

g5
E��H ;R��H ¼ tH

mH
I��H ;

E��V ¼ jVsLfsP
G2 ðℛEP � 1Þ; L��V ¼ gPgMKM

G
ðℛEP � 1Þ; P��V ¼ sL

gP
L��V ;

S��V ¼ fsP
l��V þ gM

P��V ; I��V ¼ l��V
gM

S��V ; S��R ¼ PR

l��R þ mR
; E��R ¼ l��R

g1
S��R ;

I��R ¼ g3gR
g2g3 � rRtR

E��R ; T��R ¼ tR
g3
I��R ;

(3.9)

where
G ¼ f 2jVsEs

2
Ls

2
P þ KMg3g25g

2
MrL; g1 ¼ gR þ mR; g2 ¼ tR þ mR þ dR; g3 ¼ rR þ mR; g4 ¼ gH þ mH; g5 ¼ tH þ mH ; gE ¼ sE þ mE; gL ¼

sL þ mL þ xL; gP ¼ sP þ mP ; gM ¼ mM þ xM , N��
VM ¼ S��V þ I��V and ℛEP is as given in Equation (3.1).

For mathematical tractability, the computations will be carried out for the special case of the model (2.1) in the
absence of disease-induced mortality in humans (i.e., dH ¼ 0) and larval density-dependence (i.e., rL ¼ 0). Let
ℛ1 ¼ ℛ0jdH¼rL¼0. It can be shown, by solving for the variables of the resulting reduced version of the model (2.1) at
steady-state and dH ¼ rL ¼ 0 (and simplifying), that the solutions of the resulting model (at steady-state, E ��

1 ) satisfy the
following quadratic (in terms of l��R ):

A0
�
l��R

	2 þ A1
�
l��R

	þ A2 ¼ 0; (3.10)

where,
A0 ¼ gEgLgPgMℛEPD1½gMD1 þ bRbVPRhRðg2g3 � tRrRÞ þ bRbVPRg3gR�;
A1 ¼ gEgLgPg2Mg21mRðg2g3 � tRrRÞ2ðN�

H þ N�
RÞℛEP

�
2 D1
D2

� ðN�
H þ N�

R � bRS⋄RS
⋄
V Þℛ2

1

�
;

A2 ¼ gEgLgPg2Mg1ðtRmR þ ðmR þ dRÞg3ÞðN�
H þ N�

RÞ2ℛEPð1�ℛ2
1Þ;

with,

D1 ¼ �
g1N

�
H þPR

	ðg2g3 � tRrRÞ þPRgRðg3 þ tRÞand D2 ¼ gMg1ðg2g3 � tRrRÞ:
The results below follows from Equation (3.10).

Theorem 3.3. Let ℛEP >1. The model (2.1) with dH ¼ rL ¼ 0 has:
1 Euthanasia is the painless killing of a patient suffering from an incurable and painful disease.



Fig. 4. Backward bifurcation diagrams of the model (2.1) in the absence of disease-induced death in humans (i.e., dH ¼ 0). Parameter values used are as given by
their baseline values in Table 4 with PR ¼ 500.
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(i) a unique endemic equilibrium if A2 <0⇔ℛ1 >1;
(ii)a unique endemic equilibrium if A1 <0, and A2 ¼ 0 or A2

1 � 4A0A2 ¼ 0;
(iii) two endemic equilibria if A2 >0 ðℛ1 <1Þ, A1 <0 and A2

1 � 4A0A2 >0;
(iv) no endemic equilibrium otherwise.

Item (iii) of Theorem 3.3 suggests the possibility of a backward bifurcation in the model (2.1) (since the model could have
two endemic equilibria when ℛ1 <1). This is explored below.

Theorem 3.4. The special case of the model (2.1) with dH ¼ rL ¼ 0 undergoes a backward bifurcation at ℛ1 ¼ 1 whenever the
Inequality (A-3), given in Appendix A, holds.

The proof of Theorem 3.4, based on using Centre Manifold theory (Castillo-Chavez & Song, 2004; Forouzannia & Gumel,
2014), is given in Appendix A. Fig. 4 depicts the backward bifurcation diagram of model (2.1) for the cases with dH ¼ 0
(Fig. 4(a)), dR ¼ 0 (Fig. 4(b)) and dHs0 and dRs0 (Fig. 4(c)).

It is worth mentioning that, for a special case of the model with negligible disease-induced mortality in the host pop-
ulations (such as dH ¼ dR ¼ 0), the expressions for the backward bifurcation coefficients a and b given by Equations (A-2) and
(A-3), respectively, in Appendix A, reduce to (it should be noted from Appendix A that eigenvectors v9, v11 and w9 are all
positive, while w8 and w10 are negative):

a ¼ �2w8w10

�
gM
S⋄R

v9 þ
mR
S⋄V

v11

�
<0 and b ¼ bRv11w9 >0:
Hence, it follows from Theorem 4.1 in (Castillo-Chavez & Song, 2004), that the special case of the model (2.1) with dH ¼
dR ¼ 0 will not undergo a backward bifurcation at ℛ2 ¼ ℛ0jdH¼dR¼0 ¼ 1. This result is consistent with those reported for the
dynamics of vector borne diseases, such as those in (Bowman et al., 2005; Forouzannia & Gumel, 2014; Garba et al., 2008;
Hussaini et al., 2016). The global asymptotic stability of the non-trivial equilibrium ðE 0Þ of the model (2.1) is proved
below for the aforementioned special case.

Theorem 3.5. The NDFE, E 0, of the special case of the model (2.1) with dH ¼ dR ¼ 0 is GAS in UyfT 0g whenever ℛEP >1 and
ℛ2 ¼ ℛ0jdH¼dR¼0 <1.

The proof, based on the approach in (Dumont & Chiroleu, 2010; Okuneye & Gumel, 2017), is given in Appendix B. The
epidemiological implication of Theorem 3.5 is that, for the special case of the model (2.1) with negligible disease-induced
mortality in the host populations (i.e., dH ¼ dR ¼ 0), bringing (and maintaining) the threshold quantity ℛ2 to a value less
than unity is necessary and sufficient for the effective control (or elimination) of ZVL in the human and animal reservoir
populations.

4. Sensitivity analysis and numerical simulations

The model (2.1) contains 30 parameters, and uncertainties in the estimates of these parameters are expected to arise. The
effect of such uncertainties is assessed using Latin Hypercube Sampling (LHS) (Blower & Dowlatabadi, 1994; Marino, Hogue,
Ray, & Kirschner, 2008; McLeod, Brewster, Gumel, & Slonowsky, 2006; Mckay, Beckman, & Conover, 1979). Furthermore,
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Table 5
PRCC values for the parameters of the model (2.1) using the basic reproduction number ðℛ0Þ as response function (the top three (most dominant) parameters
that affect the dynamics of the model with respect to ℛ0 are highlighted in bold font). Parameter values and ranges used are as given in Table 4.

Parameters PRCCℛ0 Parameters PRCCℛ0 Parameters PRCCℛ0

PH �0:15 rR þ0:016 sP þ0.36
mH þ0:14 dR �0:049 mP �0.31
PR þ0:053 jV þ0.42 f þ0.39
mR �0:23 sE þ0.35 bV þ0.37
hR þ0:14 mE �0.36 mMT �0.91
bR þ0.74 sL þ0.33 rL �0:061
bR þ0.38 mLT �0:28 KM �0:0016
gR ¡0.51 tR �0:0047
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sensitivity analysis (using Partial Rank Correlation Coefficients (PRCC)) is carried out to determine the parameters that have
the greatest influence on the dynamics of the disease (using the basic reproduction number ðℛ0Þ as response function (as
shown in Table 5)). The ranges and baseline values of the parameters tabulated in Table 4 will be used in this analysis.

The top three PRCC-ranked parameters are the sandfly removal rate (given by the aggregated parameter mMT , defined as
mMT ¼ mM þ xM), the biting rate of sandflies on reservoir hosts ðbRÞ, the progression rate of exposed reservoirs to active ZVL
class ðgRÞ. Furthermore, parameters such as the sandfly oviposition rate ðjV Þ, fraction of female sandfly reaching adult stage
ðf Þ, probabilities of infection per bite ðbR; bV Þ, progression rate of immature sandfly ðsi; i ¼ E; L; PÞ, death rates of immature
sandfly ðmi; i ¼ E; L; PÞ are also influential (but not as dominant as the aforementioned top three PRCC-ranked parameters).
Thus, this study shows that effective disease control entails a multi-faceted approach based on minimizing the contact
reservoirs havewith sandflies (i.e., minimizing bR and bR by clearing sandfly breeding sites around the reservoirs and spraying
of sandfly repellents), reducing sandfly population (i.e., increasing mMT ði ¼ MT ; E; L; PÞ and reducing si ði ¼ E; L; PÞ by clearing
sandfly breeding sites around the reservoirs) and early diagnosis of ZVL cases in reservoirs (i.e., increasing gR by ZVL screening
to high-risk individuals).

The effect of the average lifespan (survival) of sandflies ð1=mMT Þ and animal reservoir hosts ð1=mRÞ is monitored by
simulating the model (2.1) using the baseline parameter values in Table 4 (relevant to ZVL dynamics in Aracatuba munici-
pality, Brazil (Shimozako et al., 2017)). A contour plot of ℛ0, as a function of 1=mMT and 1=mR, shows that ℛ0 (i.e., disease
burden) increases with increasing survival of both the vector ð1=mMT Þ and animal reservoir hosts (1=mR), as expected (Fig. 5).
In particular, the range ofℛ0 values now increases toℛ02½0:3; 1:4�, with a mean ofℛ0 ¼ 0:85. It should be noted that these
simulations were generated for the case when xL ¼ xM ¼ 0 (since insecticide-based treatment strategy of the reservoir hosts
was not implemented in the Aracatuba municipality during the 1999e2015 study period). However, in the hypothetical
scenario where such treatment is used (and at the baseline rates given in Table 4), the range of ℛ0 significantly decreases to
ℛ02½0:1;0:6�, with a mean ofℛ0 ¼ 0:35 (Fig. 6). This represents about 60% reduction in the mean value ofℛ0. Although the
default scenario also suggests the feasibility of effective disease control (since the mean value of ℛ0 is ℛ0 ¼ 0:85<1; and
Theorem 3.5 shows that disease elimination is feasible, if dH and dR are small enough and ℛ0 <1), the latter (hypothetical)
scenario, where infected reservoirs are treated, significantly enhances the prospect of disease elimination in the municipality
(since the mean value ofℛ0 is 0.35). This is quite intuitive, since the population of sandflies obviously decreases if the larvae
and adult sandflies continue to feed from the faeces of infected reservoirs. But this poses an ecological dilemma, since
treatment of reservoirs can lead to perhaps the removal of sandflies from the local ecosystem (albeit it serves a major
Fig. 5. Contour plot of ℛ0, as a function of the average life expectancy of sandflies ð1=ðmM þ xMÞ and animal reservoir hosts ð1=mRÞ. Parameter values used are as
in Table 4.
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Fig. 6. Contour plot of ℛ0, as a function of the average life expectancy of sandflies ð1=mMÞ and animal reservoirs ð1=mRÞ. Parameter values used are as in Table 4.
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epidemiological function of minimizing, or even eliminating, ZVL burden in the community). These simulations show that
ZVL modeling studies in communities where such insecticide-based treatment strategy of infected reservoirs is implemented
may well be over-estimating the disease burden if they failed to explicitly incorporate the effect of such treatment (i.e.,
additional larval and adult sandflymortality due to their feeding on the faeces of the treated infected reservoirs) in the model.
Fig. 5 further shows that ℛ0 is more sensitive to increases in sandfly lifespan than that of the animal reservoir (so, a strategy
that focuses on reducing sandflies, rather than the animal reservoir (e.g., via culling), may be more effective in reducing ZVL
burden in the community).

̣

Conclusions

This study is based on the design, analysis and numerical simulations of a new deterministic model for assessing the
transmission dynamics of zoonotic visceral leishmaniasis (ZVL) in a community. The model is fitted using case and de-
mographic data relevant to ZVL dynamics in Aracatuba municipality in Brazil. The main theoretical and epidemiological
findings of the study are summarized below.

(i) The model has a trivial disease-free equilibrium (TDFE) which is globally-asymptotically stable if a certain vectorial
threshold quantity ðℛEPÞ is less than unity. It also has a non-trivial disease-free equilibrium (NDFE; whenever ℛEP is
greater than unity) which undergoes a backward bifurcation under certain conditions. In the absence of backward
bifurcation, the NDFE is globally-asymptotically stable, for a special casewhenever the associated reproduction number
is less than unity.

(ii) Sensitivity analysis of the model (using the basic reproduction number ðℛ0Þ as the response function) show that the top
three PRCC-ranked parameters are the sandfly removal rate (mMT ¼ mM and xM), the biting rate of sandflies on reservoir
hosts ðbRÞ, the progression rate of exposed reservoirs to active ZVL class ðgRÞ. Hence, this study identifies the pa-
rameters that should be targeted for effective anti-ZVL control in the community. Other parameters with high PRCC
ranking (but not as high as the aforementioned three) are sandfly oviposition rate ðjV Þ, the fraction of pupae that
became adult female sandflies ðf Þ, and the infection probabilities bR and bV ).

(iii) Numerical simulations, using the data for ZVL dynamics in Aracatuba municipality during the 1999e2015 study period,
show that the associated reproduction number ðℛ0Þ ranges from0.3 to 1.4, with amean of 0.85. This range dramatically
decreases, to ℛ02½0:1;0:6� (with a mean of 0.35), when insecticide-based treatment of the animal reservoir hosts is
implemented. Thus, the prospect of the effective control of ZVL in the community is greatly enhanced if a control
strategy based on using insecticide-based treatment of the animal reservoir is implemented. Furthermore, ZVL
modeling studies in communities where such treatment is used may be over-estimating the disease burden if they fail
to explicitly incorporate the effect of such treatment (i.e., resulting in additional larval and adult sandfly mortality) in
the model formulation.

(iv) The reproduction number ℛ0 is more sensitive to increases in sandfly lifespan than that of the animal reservoir (so, a
strategy that focuses on reducing sandflies, rather than the animal reservoir (e.g., via culling), may be more effective in
reducing ZVL burden in the community).



N. Hussaini et al. / Infectious Disease Modelling 2 (2017) 455e474 469
Appendix A. Proof of Theorem 3.4

Proof. To apply this theory, it is convenient to let x1 ¼ SH , x2 ¼ EH , x3 ¼ IH , x4 ¼ RH , x5 ¼ EV , x6 ¼ LV , x7 ¼ PV , x8 ¼ SV ,
x9 ¼ IV , x10 ¼ SR, x11 ¼ EH , x12 ¼ IH and x13 ¼ RH . Furthermore, let f ¼ ½f1;…; f13� denote the vector field of the model (2.1).
Then the model (2.1) can be re-written as

dx1
dt

¼ f1 ¼ PH � bHbHx9
NH þ NR

x1 � mHx1;

dx2
dt

¼ f2 ¼ bHbHx9
NH þ NR

x1 � ðgH þ mHÞx2;

dx3
dt

¼ f3 ¼ gHx2 � ðtH þ mH þ dHÞx3;

dx4
dt

¼ f4 ¼ tHx3 � mHx4;

dx5
dt

¼ f5 ¼ jV

�
1� x8 þ x9

KM

�
ðx8 þ x9Þ � ðsE þ mEÞx5;

dx6
dt

¼ f6 ¼ sEx5 � ðsL þ mL þ xL þ rLLV Þx6;

dx7
dt

¼ f7 ¼ sLx6 � ðsP þ mPÞx7;

dx8
dt

¼ f8 ¼ sPf x7 �
bRbV ðhRx11 þ x12Þ

NH þ NR
x8 � ðmM þ xMÞx8;

dx9
dt

¼ f9 ¼ bRbV ðhRx11 þ x12Þ
NH þ NR

x8 � ðmM þ xMÞx9;

dx10
dt

¼ f10 ¼ PR �
bRbRx9
NH þ NR

x10 � mRx10;

dx11
dt

¼ f11 ¼ bRbRx9
NH þ NR

x10 � ðgR þ mRÞx11;

dx12
dt

¼ f12 ¼ gRx11 þ rRx13 � ðtR þ mR þ dRÞx12;

dx13
dt

¼ f13 ¼ tRx12 � ðrR þ mRÞx13:

(A-1)
The Jacobian of the transformed model (A-1), evaluated at the non-trivial equilibrium point ðT 0Þ, is given by

JðE 0Þ ¼
�
A B
0 C

�

where,

A ¼

2
66666666666666666664

�mH 0 0 0 0 0 0 0

0 �g4 0 0 0 0 0

0 gH �g5 0 0 0 0 0

0 0 tH �mH 0 0 0 0

0 0 0 0 �gE 0 0 jV

�
1� 2S⋄V

KM

�

0 0 0 0 sE �gL 0 0

0 0 0 0 0 sL �gP 0

0 0 0 0 0 0 fsP �gM

3
77777777777777777775

;
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B ¼

2
666666666666666666666666664

�bHb
0
HS

⋄
H

S⋄H þ S⋄R
0 0 0 0

bHb
0
HS

⋄
H

S⋄H þ S⋄R
0 0 0 0

0 0 0 0 0

0 0 0 0 0

jV

�
1� 2S⋄V

KM

�
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 �bVbRhRS
⋄
V

S⋄H þ S⋄R
�bVbRS

⋄
V

S⋄H þ S⋄R
0

3
777777777777777777777777775

;

2 3
C ¼

666666666666666664

0 0
bVbRhRS

⋄
V

S⋄H þ S⋄R

bVbRS
⋄
V

S⋄H þ S⋄R
0

�bRbRS
⋄
R

S⋄H þ S⋄R
0 0 0 0

bRbRS
⋄
R

S⋄H þ S⋄R
0 �g1 0 0

0 0 gR �g2 rR

0 0 0 tR �g3

777777777777777775

;

with g1 ¼ gR þ mR, g2 ¼ tR þ mR þ dR, g3 ¼ rR þ mR, g4 ¼ gH þ mH , g5 ¼ tH þ mH þ dH , gE ¼ sE þ mE , gL ¼ sL þ mL þ xL, gP ¼ sP þ

mP and 0 is a 5� 8 zeromatrix. Consider the case of the model (2.1) (with dH ¼ rL ¼ 0) whenℛ1 ¼ 1. Suppose, further bR ¼ b�R
is chosen as a bifurcation parameter. Solving for bR from ℛ1 ¼ 1 gives

bR ¼ b�R ¼ g1gM
�
N�
H þ N�

R

	2ðg2g3 � tRrRÞ
ðbRÞ2bVS⋄VS⋄R½hRðg2g3 � tRrRÞ þ gRg3�

:

The right eigenvector of JðE 0ÞjbR¼b
�
R
is given by w ¼ ðw1;w2;w3;w4;w5;w6;w7;w8;w9;w10;w11;w12;w13Þ, where,

w1 ¼ �bHb
0
Hg1S

⋄
Hw11

mHbRb
�
RS

⋄
R

<0;w2 ¼ �mHw1

g4
>0;w3 ¼ gHw2

g5
>0;w4 ¼ tHw3

mH
>0;

w5 ¼ w6 ¼ w7 ¼ 0;w8 ¼ �mH
�
S⋄H þ S⋄R

	
w1

bHb
0
HS

�
H

>0;w9 ¼ �w8 <0;w10 ¼ �g1bRw11

b�RmR
<0;

w11 ¼ w11 >0;w12 ¼ gRg3w11

g2g3 � tRrR
>0;w13 ¼ tRw12

g3
>0:
Similarly, JðE 0ÞjbR¼b
�
R
has a left eigenvector v ¼ ðv1; v2; v3; v4; v5; v6; v7; v8; v9; v10; v11; v12; v13Þ, where

v1 ¼ v2 ¼ … ¼ v8 ¼ v10 ¼ 0; v9 ¼ bRb
0
RS

⋄
Rv11

gM
�
S⋄H þ S⋄R

	>0; v11 ¼ v11 >0;

v12 ¼ bVbRrRS
⋄
V v9�

S⋄H þ S⋄R
	ðg2g3 � tRrRÞ

>0; v13 ¼ rRv12
g3

>0:
The eigenvectors v11 and w11 are chosen so that v,w ¼ 1 (in line with (Castillo-Chavez & Song, 2004)).
The transformed model (A-1), with bR ¼ b�R, has a simple eigenvalue with zero real part (and all other eigenvalues have

negative real part). Hence, the Centre Manifold theory (Carr, 1981; Castillo-Chavez & Song, 2004; Van den Driessche &

Watmough, 2002) can be used to analyze the dynamics of themodel (A-1) near bR ¼ b�R (Carr,1981). In particular, Theorem 4.1
in (Castillo-Chavez & Song, 2004) will be used. It can be shown, by computing the non-zero partial derivatives of the right-
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hand side functions, fi ði ¼ 1;…;13, that the associated backward bifurcation coefficients, denoted by a1 and b1 (for all pa-
rameters f of model (2.1)), are given, respectively, by (see Theorem 4.1 in (Castillo-Chavez & Song, 2004)):

a1 ¼
X

k;i;j¼1

13
vkwiwj

v2fk
vxivxj

ð0;0Þ

¼ 2M1v13w11

S⋄H þ S⋄R
½ðg2g3 � tRrRÞðM2 �M3Þ � 2w11M4� þM5;

(A-2)
where,

M1 ¼ hRðg2g3 � tRrRÞ þ g3gR >0;M2 ¼ w3 �w10 >0;

M3 ¼
hR

h�
S⋄H

	2 þ �
S⋄R
	2iw11gMM1 þw9w12S

⋄
HS

⋄
R

S⋄V
�
S⋄H þ S⋄R

	 >0;

M4 ¼
�
S⋄H þ S⋄R

	2 þ 2S⋄HS
⋄
R�

S⋄H þ S⋄R
	2 þ gR

�
S⋄H þ S⋄R

	
S⋄H þ gH

�
S⋄H

	2
gM

�
S⋄H þ S⋄R

	2ðg2g3 � tRrRÞ
>0;

M5 ¼ 2hRw10w11v13�
S⋄H þ S⋄R

	
S⋄VS

⋄
R
<0;
and,

b1 ¼
X
k;i¼1

13
vkwi

v2fk
vxivb

�
R
ð0; 0Þ ¼ g1

b�R
v11w11 >0:
It follows from (A-2) that the bifurcation coefficient, a, is positive whenever,

2M1M2v13w11ðg2g3 � tRrRÞ>2M1v13w11½ðg2g3 � tRrRÞM3 þ 2w11M4� �M5
�
S⋄H þ S⋄R

	
: (A-3)
Thus, it follows from Theorem 4.1 of (Castillo-Chavez& Song, 2004) that the model (2.1) undergoes a backward bifurcation
at ℛ1 ¼ 1 whenever Inequality (A-3) holds.
Appendix B. Proof of Theorem 3.5

Proof. Consider the special case of the model (2.1) with dH ¼ dR ¼ 0 so that NHðtÞ/N�
H ¼ PH

mH
and NRðtÞ/N�

R ¼ PR
mR
, as t/∞.

Furthermore, let ℛEP >1 (so that E 0 exists) and ℛ2 <1. Define x ¼ ðSHðtÞ, RHðtÞ, EV ðtÞ, LV ðtÞ, PV ðtÞ, SV ðtÞ, SRðtÞ,0,0,EHðtÞ,
IHðtÞ,0,0, 0,IV ðtÞ, ERðtÞ, IRðtÞ,TRðtÞÞ. Following (Dumont & Chiroleu, 2010; Okuneye & Gumel, 2017), it is convenient to re-write
the model (2.1) (without the compartments for individuals with prior immunity and the sandfly compartments) in the
following form:

dxS
dt

¼ A1ðxÞ
�
xS � xNDFE;S

	þ A12ðxÞxI;

dxI
dt

¼ A2ðxÞxI ;
(B-1)

where,

xSðtÞ ¼ ðSHðtÞ;RHðtÞ; EV ðtÞ; LV ðtÞ; PV ðtÞ; SV ðtÞ; SRðtÞ;0;0ÞT ;
xIðtÞ ¼ ðEHðtÞ; IHðtÞ;0; 0;0; IV ðtÞ; ERðtÞ; IRðtÞ; TRðtÞÞT ;
xNDFE;S ¼

�
S⋄H; 0; E

⋄
V ; L

⋄
V ; P

⋄
V ; S

⋄
V ; S

⋄
R;0;0

	T
;

with,
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A1ðxÞ ¼

2
66666666666666666666664

�mH 0 0 0 0 0 0 0 0

0 �mH 0 0 0 0 0 0 0

0 0 �ðsE þ mEÞ 0 0 jV

�
1� SV þ S⋄V

KM

�
0 0 0

0 0 sE �ðsL þ mL þ xLÞ � rLLV 0 0 0 0 0

0 0 0 sL �ðsP þ mPÞ 0 0 0 0

0 0 0 0 fsP �ðmM þ xMÞ 0 0 0

0 0 0 0 0 0 �mR 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

3
77777777777777777777777775

;

A12ðxÞ ¼

2
66666666666666666666666666664

0 0 0 0 0
�bHbHSH
N�
H þ N�

R
0 0 0

0 tH 0 0 0 0 0 0 0

0 0 0 0 0 0 jV
SV
KM

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
�bRbVhRSV
N�
H þ N�

R

�bRbVSV
N�
H þ N�

R
0

0 0 0 0 0
�bRbRSR
N�
H þ N�

R
0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

3
7777777777777777777777777777775

;

and,

A2ðxÞ ¼

2
666666666666666666666666664

�ðgH þ mHÞ 0 0 0 0
bHbHSH
N�
H þ N�

R
0 0 0

gH �ðtH þ mHÞ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 �ðmM þ xMÞ bRbVhRSV
N�
H þ N�

R

bRbVSV
N�
H þ N�

R
0

0 0 0 0 0
bRbRSR
N�
H þ N�

R
�ðgR þ mRÞ 0 0

0 0 0 0 0 0 gR �ðtR þ mRÞ rR

0 0 0 0 0 0 0 tR �ðrR þ mRÞ

3
77777777777777777777777777777775

;

It can be verified that the eigenvalues of A1ðxÞ are real and non-positive. Hence, the system dxS
dt ¼ A1ðxÞðxS � xNDFE;SÞ is GAS

at xNDFE;S (Dumont & Chiroleu, 2010). It should be noted that the matrix A2ðxÞ is a Metzler irreducible. Consider, next, the
following bounded invariant set (Dumont & Chiroleu, 2010):
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B ¼
n
ðSH;RH ; EV ; LV ; PV ; SV ; SR;0;0; EH; IH;0;0;0; IV ; ER; IR; TRÞ2ℝ18

þ : SH � N�
H; EH � N�

H ; IH � N�
H;RH � N�

H ; SR

� N�
R; ER � N�

R; IR � N�
R; TR � N�

R; SV � KM ; IV � KM

o
;

It is convenient to define

ðℛGÞ2 ¼ N�
RKM

S⋄RS
⋄
V
ðℛ2Þ2 > ðℛ2Þ2:

Further, define a matrix A2ðxÞ ¼ A2, where A2 is an upper bound of the set (Elnaiem et al., 2001)

M ¼
n
A2ðxÞ2ℝ9�9 : xðtÞ2B

o
;

with x ¼ ðN�
H ;0; E

⋄
V ; L

⋄
V ðtÞ; P⋄V ;KM ;N�

R;0;0;0;0;0;0;0;0;0;0;0Þ2ℝ9þ � f0g. It can be verified that rðA2Þ � 0 if and only if
ℛG � 1. Thus, it follows from Theorem 2.7 in (Dumont & Chiroleu, 2010) that, for ℛEP >1 and ℛ2 <1,

ðSHðtÞ; EHðtÞ; IHðtÞ;RHðtÞ; EV ðtÞ; LV ðtÞ; PV ðtÞ; SV ðtÞ; IV ðtÞ; SRðtÞ; ERðtÞ; IRðtÞ; TRðtÞÞ

/

�
PH

mH
;0;0;0; E⋄V ; L

⋄
V ; P

⋄
V ; S

⋄
V ; 0;

PR

mR
;0;0;0

�
; as t/∞;

(B-2)

where,

E⋄V ¼ gL þ rLL⋄V
sE

L⋄V ; P
⋄
V ¼ sL

gP
L⋄V ; S

⋄
V ¼ sLfsP

gPgM
L⋄V ; L

⋄
V ¼ 1

Q

�
1� 1

ℛEP

�
;

with Q ¼ gEgPgMrL
sEsLfsP

þ jVsLfsP
gPgMKM

, where gE ¼ sE þ mE; gL ¼ sL þ mL þ xL; gP ¼ sP þ mP and gM ¼ mM þ xM . Hence, the NDFE (E 0) of

the model (2.1), with dH ¼ dR ¼ 0, is GAS in UyfT 0g whenever ℛEP >1 and ℛ2 <1.
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