
Eotaxin: A Potent Eosinophil Chemoattractant 
Cytokine Detected in a Guinea Pig Model of  Allergic 
Airways Inflammation 
By P. J. Jose, D. A. Grif~ths-Johnson, P. D. Collins, D. T. Walsh, 
R. Moqbel,* N. F. Totty,~ O. Truong,~ J. J. Hsuan,~ 
and T. J. Williams 

From the Departments of Applied Pharmacology and *Allergy and Clinical Immunology, 
National Heart and Lung Institute, London SW3 6L~ and IStructural Biology Group, Ludwig 
Institute for Cancer Research, London W1P 8BT, United Kingdom 

SllmmsLry 

Eosinophil accumulation is a prominent feature of allergic inflammatory reactions, such as those 
occurring in the lung of the allergic asthmatic, but the endogenous chemoattractants involved 
have not been identified. We have investigated this in an established model of allergic inflammation, 
using in vivo systems both to generate and assay relevant activity. Bronchoalveolar lavage (BAL) 
fluid was taken from sensitized guinea pigs at intervals after aerosol challenge with ovalbumin. 
BAL fluid was injected intradermally in unsensitized assay guinea pigs and the accumulation 
of intravenously injected 111In-eosinophils was measured. Activity was detected at 30 min after 
allergen challenge, peaking from 3 to 6 h and declining to low levels by 24 h. 3-h BAL fluid 
was purified using high performance liquid chromatography techniques in conjunction with the 
skin assay. Microsequencing revealed a novel protein from the C-C branch of the platelet factor 
4 superfamily of chemotactic cytokines. The protein, "eotaxin," exhibits homology of 53% with 
human MCP-1, 44% with guinea pig MCP-1, 31% with human MIP-loe, and 26% with human 
RANTES. Laser desorption time of flight mass analysis gave four different signals (8.15, 8.38, 
8.81, and 9.03 kD), probably reflecting differential O-glycosylation. Eotaxin was highly potent, 
inducing substantial 111In-eosinophil accumulation at a 1-2-pmol dose in the skin, but did not 
induce significant 111In-neutrophil accumulation. Eotaxin was a potent stimulator of both guinea 
pig and human eosinophils in vitro. Human recombinant RANTES, MIP-lcr, and MCP-1 were 
all inactive in inducing ~11In-eosinophil accumulation in guinea pig skin; however, evidence was 
obtained that eotaxin shares a binding site with P.ANTES on guinea pig eosinophils. This is 
the first description of a potent eosinophil chemoattractant cytokine generated in vivo and suggests 
the possibility that similar molecules may be important in the human asthmatic lung. 

T he accumulation of eosinophil leukocytes is a character- 
istic feature of IgE-mediated allergic reactions such as 

allergic asthma, rhinitis, and eczema. Eosinophil accumula- 
tion also occurs in nonallergic asthma. The immediate bron- 
choconstriction in response to a provoking stimulus in the 
asthmatic involves mast cell activation and the release of con- 
strictor mediators. This is followed after several hours in some 
individuals by a late bronchoconstrictor response associated 
with a massive influx of eosinophils (1). Repeated provoca- 
tion results in chronic inflammation in the airways and a 
marked hyperresponsiveness to constrictor mediators. The 
magnitude of both the late response and the chronic hyper- 
responsiveness correlates with the numbers of eosinophils 
present in the lung (2, 3). Further, in experimental studies 
in allergic monkeys, suppression of eosinophil accumulation 

in the lung by interference with adhesion mechanisms in- 
hibits bronchial hyperresponsiveness (4). 

As in allergic asthmatic patients, exposure of sensitized 
guinea pigs to aerosolized allergen results in an immediate 
phase of bronchoconstriction with associated mast cell de- 
granulation followed, in some individuals, by a late phase 
of bronchoconstriction and airway hyperresponsiveness (5-8). 
Although no one model mimics all the features of the human 
disease, the guinea pig model shares common features with 
the asthmatic response in humans and has been extensively 
used to investigate possible mechanisms (8). In particular, 
in both guinea pigs and humans, the immediate response to 
allergen triggers the subsequent accumulation in the lung 
of high numbers of eosinophils. The mediators inducing eo- 
sinophil accumulation in the lung are unknown. Experiments 
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were designed to detect the appearance of chemoattractants 
in the lung that may be responsible for the accumulation of 
eosinophils. A strategy was employed using a combination 
of in vivo generation and HPLC purification coupled with 
in vivo detection of eosinophil chemoattractant activity, as 
previously applied to the identification of neutrophil chemoat- 
tractants in inflammatory exudates (9-11). 

Materials and Methods 
Animals. Male Dunkin Hartley guinea pigs (300-400 g), pur- 

chased from Harlan Olac Ltd. (Bicester, Oxon, UK), were used 
for the in vivo generation and assay of eosinophil chemoattractant 
activity. Female exbreeder guinea pigs (600-800 g) from the same 
source were used as eosinophil and neutrophil donors. 

Materials. Human recombinant MCP-1, MIP-lo~, and RANTES 
were purchased from Pepro Tech Inc. (Rocky Hill, NJ). A generous 
gift of RANTES from Dr. T. J. Schall (Genentech Inc., South San 
Francisco, CA) was also used, which exhibited identical activity 
to the commercially obtained product. 

Generation of Eosinophil Chemoattractant Activity In Vivo: Time- 
Course Studies. Male Dunkin Hartley guinea pigs (300-400 g) were 
sensitized with intraperitoneal ovalbumin (1 rag) on day 1 followed 
by exposure to aerosolized antigen (2% OVA for 5 rain using an 
ultrasonic nebulizer) on day 8 (7). On days 15-21, animals were 
pretreated with an antihistamine to prevent acute fatality (pyrila- 
mine; 10 mg/kg i.p.) and challenged by exposure to aerosolized 
allergen (1% OVA for 20 rain). In a limited number of experi- 
ments the antihistamine was excluded and antigen challenge was 
stepwise (10-rain exposure to each of the following: 0.01, 0.1, 1.0, 
5.0, and 10.0 mg/ml OVA). At different times after allergen chal- 
lenge, animals were treated with atropine (0.06 mg/kg i.p.) to pre- 
vent bronchoconstriction and killed with a barbiturate overdose. 
Bronchoalveolar lavage (BAL) 1 was performed with 4 ml saline. 
Samples were centrifuged to remove cells and the supernatant stored 
at -20~ before assay. 

Bioassay of Chemoattractant Activity in Guinea Pig Skin. Eo- 
sinophils, recovered from the peritoneal cavity of donor guinea pigs 
given repeated intraperitoneal injections of horse serum, were 
purified (>94%) over discontinuous Percoll gradients and radiola- 
beled with rain as described previously (12, 13). tttln-eosinophils 
were injected (5 x 106 cells i.v.) into anesthetized bioassay animals 
and, after 30 rain, samples were injected (0.1 ml i.d.) into the shaved 
dorsal skin. Each animal received duplicate injections of test agents 
except for the HPLC profiles when single injections per guinea 
pig were used to allow up to 24 fractions, or pools of fractions, 
to be assayed. After a predetermined time period (2 or 4 h), assay 
animals were killed by anesthetic overdose, the dorsal skin was re- 
moved, and sites (17 mm diameter) were punched out for gamma 
counting. In one experiment, samples were injected into separate 
skin sites 4 or 0.5 h before death. Radiolabeled cell accumulation 
is expressed in all experiments as the mean number of mln- 
eosinophils per skin site _+ SEM in n animals. 

Neutrophil chemoattractant activity was assessed using the same 
technique described above for measurement of mln-eosinophil ac- 
cumulation in guinea pig skin. Neutrophils were recovered from 
the peritoneal cavity of animals 16-20 h after a single intraperitoneal 
injection of casein (5% wt/vol; 15 ml), purified (3,99%) over a 
discontinuous Percoll gradient and radiolabeled with rain as de- 

1 Abbreviation used in this paper: BAL, bronchoalveolar lavage. 

scribed above, mln-neutrophils were injected (5 x 106 i.v.) and 
accumulation into skin sites measured over 2 h. 

Purification of Eosinophil Chemoattractant Activity. BAL fluid col- 
lected from 25 sensitized guinea pigs (each lavaged with 4 ml, fol- 
lowed by 2 x 10 ml, saline) 3 h after allergen challenge (1% OVA, 
5 rain exposure) was adjusted to pH 5.5 and applied to a cation 
exchange HPLC column (Ultropac TSK535CM 7.5 x 150 mm; 
Pharmacia Fine Chemicals, Piscataway, NJ). The column was eluted 
with a linear gradient of 0.3-2.0 M ammonium acetate, pH 5.5. 
Eosinophil chemoattractant activity eluted as a single peak at '-1.4 
M ammonium acetate, pH 5.5. After lyophilization, the active frac- 
tions were applied to size exclusion HPLC (Ultropac TSK columns 
SWP, 7.5 x 75 ram; G4000SW, 7.5 x 600 ram; and G2000SW, 
7.5 x 600 mm, in series, equilibrated in 0.08% TFA). Activity 
eluted at ~7-14 kD. This was applied to a wide pore (300 ~ ) 
Vydac C18 reversed phase column (4 x 250 mm; HPLC Technology, 
Cheshire, UK) in 0.08% TFA, eluted with a linear gradient of 
acetonitrile (ACN; 0-80% ACN in 0.08% TFA, over 80 min, at 
1 ml/min) and 0.5-min fractions were collected. The in vivo bio- 
assay was used throughout to localize chemoattractant activity. Ali- 
quots of each fraction were lyophilized in the presence of carrier 
protein (BSA, <0.1 ng endotoxin/mg) and redissolved in saline for 
testing in the skin bioassays for mln-eosinophil and tnln- 
neutrophil accumulation over 2 h (n = 4 assay guinea pigs). 

SDS-PAGE Analysis. 2% aliquots of each fraction from reversed 
phase HPLC were lyophilized, redissolved in 10 #1 SDS buffer, heated 
(95~ 5 rain), and 0.3 #1 was run on 8-25% gradient gels in a 
Phast System (Pharmacia Fine Chemicals). Gels were visualized with 
silver staining. 

Laser Desorption Mass Analysis. Mass analysis was performed 
on reversed phase fractions 51, 52, and 54 using a lasermat (Fin- 
nigan MAT, San Jose, CA) with ot-cyano-4-hydroxycynnamic acid 
and sinapinic acid matrices. Mass measurements were calibrated 
internally using protein standards. 

Microsequencing. 5% aliquots of each bioactive fraction (51, 52, 
and 54 shown in Fig. 2) were applied directly to automated NH2- 
terminal sequence analysis using fast cycles on a pulsed liquid auto- 
mated Edman sequencer (model 477A; Applied Biosystems Inc., 
Foster City, CA) containing a microcartridge essentially as described 
(14). The NH~-terminal 37, 35, and 29 residues were obtained for 
fractions 51, 52, and 54, respectively. No differences between cor- 
responding positions were found. The apparent initial yields of these 
three analyses were all "-7-8 pmol. Thus, fractions 51, 52, and 54 
contained "-200 pmol each, assuming 70-80% sequencing yields. 
Gaps were found at positions 8, 9, and 33, consistent with the 
presence of cysteine residues at these positions. Approximately 30 
pmol of fraction 54 was reduced and alkylated by sequential treat- 
ment with 1 mM dithiothreitol for 5 rain at 50~ and then 10 
mM acrylamide for 30 rain at 37~ before digestion with alkylated 
trypsin (Promega Biotec, Madison, WI) in 20 mM Tris/HC1, pH 
8.8 containing 0.5% thesit. Peptides were separated using a Reliasil 
C18 (300 A ,  5 /~m) column (1 x 150 ram) developed with a 
linear acetonitrile concentration gradient in 0.08% TFA at 50 
#l/rain on a Michrom HPLC system (Michrom Bioresources Inc., 
Pleasanton, CA). Purified peptides were subjected to NH2- 
terminal sequence analysis as above, but all four cysteine residues 
were positively identified as the phenylthiohydantoin-cys-S-/3-pro- 
pionamide derivative (15). 

Binding Assays. Guinea pig eosinophils were prepared as above. 
Because red blood cells have been reported to bind related chemo- 
kines (16), the eosinophils were routinely subjected to a red blood 
cell lysis step (0.2% NaC1 for 30 s) to exclude any possible contam- 
ination before use. RANTES (2.5/zg) was iodinated with Naa2SI 
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(0.5 mCi) using Iodogen as described previously for Ib8 (9). Eo- 
sinophils (4 x 10 s) were incubated at 0~ for 2 h together with 
10-1~ M nsI-RANTES and various concentrations of cold ligand 
in a final volume of 50 #1 HBSS/30 mM Hepes/10 mM EDTA/0.1% 
NAN3/1% BSA, pH 7.5. After mixing, 40 #1 was removed and 
centrifuged through 100 #1 silicone oil. Cell-bound radioactivity 
was calculated initially as a percentage of the total bound + free 
counts and then expressed as B/B0 i.e., with respect to binding 
in the absence of unlabeled ligand. 

Elevation oflntracellular Calcium. Guinea pig eosinophils were 
prepared as above. Human peripheral eosinophils were prepared as 
described previously (17) by density centrifugation on Percoll fol- 
lowed by immunomagnetic removal of CD16* neutrophils using 
the MACS | system (Becton Dickinson & Co., Mountain View, 
CA). Human and guinea pig eosinophils (107 cells/ml in 
Ca2+/Mg2+-free PBS + 0.1% BSA) were loaded with fura-2- 
acetoxymethyl ester (2.5 #M, 30 min at 37~ After two washes, 
cells were resuspended at 106 cells/ml in Ca 2+/Mg 2+-free PBS con- 
taining 10 mM Hepes/0.25% BSA/10 mM glucose, pH 7.4. Ali- 
quots were dispensed into quartz cuvettes and the external [Ca 2+] 
adjusted to 1 mM with CaC12. Changes in fluorescence were 
monitored at 37~ using a spectrometer (LS50; Perkin-Elmer Corp., 
Beaconsfield, Bucks, UK) at excitation wavelengths 340 nm and 
380 nm and emission wavelength 510 nm. [Ca2+]i levels were cal- 
culated using the ratio of the two fluorescence readings and a Kd 
for Ca 2+ binding at 37~ of 224 nM (18). 

Eosinophil Chemotaxis. Human eosinoph~s were purified (>98%) 
as described above. Eosinophil locomotion was assessed using 48- 
well microchemotaxis chambers (Neuro Probe, Inc., Cabin John, 
MD) as previously described (19). Nitrocellulose membranes (8/~m 
pore size, Sartorius Instruments Ltd., Belmont, Surrey, UK) were 
fixed in saturated mercuric chloride/ethanol and stained with 
acidified hematoxylin (Chromotrope 2R). 

Histology. Guinea pigs (n = 3) were injected intradermally with 
purified eotaxin (2 pmol/100/~1) or saline/BSA. Skin sites were 
punched out and fixed in buffered neutral formalin. Hematoxylin 
and eosin stained sections (3/skin site) were examined. 

Statistical Analysis. Data are presented as the mean _+ SEM of 
n assay animals or, for in vitro experiments, cell preparations and 
were tested by analysis of variance, p <0.05 was considered statisti- 
cally significant. 

Results and Discussion 

BAL fluid was collected at different intervals after aerosol 
challenge of sensitized guinea pigs with allergen, and assayed 
in vivo for eosinophil chemoattractant activity after injec- 
tion into the skin of recipient assay animals. Fig. 1 shows 
the time-course of appearance of eosinophil chemoattractant 
activity in BAL fluid. Significant activity was observed 30 
min after allergen challenge. Activity increased up to 3 h, 
remained high at 6 h, but  was not significant in 24 h samples. 
Antihistamine pretreatment did not affect the generation of 
activity (legend to Fig. 1). Control  samples (BAL fluid from 
sham-sensitized/challenged, or sensitized/sham-challenged 
guinea pigs) taken at 3 h had no significant activity. 

Eosinophil chemoattractant activity, which we termed eo- 
taxin, was purified from 3-h BAL fluid by sequential cation 
exchange, size exclusion, and reversed phase HPLC steps, using 
the in vivo mln-eosinophil accumulation assay to measure 
the activity of fractions throughout.  The activity eluted as 
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Figure 1. Timecourseofgenerationofeosinophilchemoattractantac- 
tivity in lungs of sensitized guinea pigs after allergen challenge (1 ,  n = 
4-10). Activity was measured using an in vivo skin assay of mln-eosino- 
phil accumulation in unsensitized guinea pigs over 4 h (three test 
animals/BAL sample). Responses to control lavage samples obtained 3 h 
after sham (saline) challenge of sensitized animals ( 0 ,  n = 5) or allergen 
challenge of sham (saline)-sensitized animals (@, n = 5) are also shown. 
In separate experiments a similar amount of eosinophil chemoattractant 
activity was detected in 3-h BAL fluid from either animals treated with 
antihistamine before challenge (497 +_ 8.1% increase in mln-eosinophils/ 
skin site over intradermal saline controls, n = 3) or animals exposed to 
a stepped-dose antigen challenge in the absence of antihistamine cover 
(494 _+ 97% increase, n = 3). Responses to intradermal saline are shown 
as the dotted line. 

a single discreet peak of bioactivity from both the cation ex- 
change and the size exclusion steps, indicating a strongly cat- 
ionic protein of 7-14 kD (data not shown). A small amount 
of activity, three times the control in the skin assay, was de- 
tectable in the flow-through from the cation exchange step, 
but only when 50 ml was concentrated to 500/~1. In com- 
parison, 0.6% of  the most active fraction eluted from the 
column induced a response 31 times the control. Subsequent 
reversed phase chromatography separated eosinophil chemoat- 
tractant activity into two peaks (fractions 51 + 52 and frac- 
tion 54), which were associated with discreet peaks of pro- 
tein absorbance (Fig. 2, a and b). Selectivity for eosinophils 
was shown by the lack of significant neutrophil chemoat- 
tractant activity in these fractions as measured by the accumu- 
lation of mln-neutrophils in the skin assay (Fig. 2 c). C5a 
des Arg, used as a positive control, was highly active in both 
the eosinophil and neutrophil accumulation assays (legend 
to Fig. 2). Histological examination of skin injected with 
eotaxin (2 pmol) demonstrated that at both 4 and 24 h eo- 
sinophils were present particularly around small blood vessels 
(data not shown). No mononuclear cell infiltrate was observed 
at either time point. 

SDS-PAGE analysis revealed a single protein band in each 
of fractions 51, 52, and 54 (Fig. 3 a). The protein in fractions 
51 and 52 was slightly larger than that in fraction 54. This 
was confirmed by mass analysis in which the major signals 
were at •8.81 and 8.38 kD, respectively (legend to Fig. 3). 
NH2-terminal sequencing of fractions 51, 52, and 54 re- 
vealed identical amino acid sequences (Fig. 3 b). The NH2- 
terminal 37 residue sequence of eotaxin showed closest hoo 
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mology (57%) with human monocyte chemotactic protein 
(MCP-1) (20), otherwise known as MCAF (21) andJE (22). 
Tryptic peptides of fraction 54 were also sequenced and readily 
aligned by comparison with human MCP-1 to give the vir- 
tually complete sequence of eotaxin with an overall homology 
of  53% (Fig. 3, b and c). While we cannot exclude differ- 
ences in the COOH-terminal  sequences of  fractions 51, 52, 
and 54, it is likely that the variations in molecular mass reflect 
differential glycosylation as the four mass signals obtained 
(two major: 8.38 and 8.81 kD, and two minor: 8.15 and 9.03 
kD, legend to Fig. 3) are all different from each other by mul- 
tiples of  ~220  mass units. The sequence contains no N-gly- 
cosylation sites, but a potential O-glycosylation at position 

Figure 2. Purification of eotaxin from BAL fluids. (a) Final reversed 
phase HPLC profile showing absorbance at 214 nm and the acetonitrile 
gradient. Eosinophil chemoattractant activity measured over 2 h in skin 
(b) was seen in two peaks, fractions 51 + 52 and fraction 54, which cor- 
responded to discreet peaks of absorbance. No significant neutrophil 
chemoattractant activity (c) was detected in these fractions. In contrast, 
guinea pig C5a des Arg (30% zymosan-activated plasma [12], "~10 
pmol/site) induced the accumulation of both 11qn-eosinophils (5,211 _+ 
893) and nxln-neutrophils (9,872 _+ 473). Fractions 50, 53, 55, and 56 
consistently gave little or no activity in the guinea pig skin bioassays of 
leukocyte accumulation. No protein was detected in the remainder of the 
gradient (up to 80% acetonitrile). In these assays, mln-eosinophils (99% 
pure, 0.5% neutrophils) or mln-neutrophils (99.4% pure, 0.6% eo- 
sinophils) were injected into n = 4 animals for each group. 

Figure 3. (a) SDS-PAGE analysis of 
fractions 50-56. For reference, human 
I1.-8 (72 amino acids, ~8 kD) was run 
in lanes A, B, and C (12, 2.4, and 0.5 
ng/0.3 #1 per lane, respectively). Laser 
desorption time of flight mass analysis 
gave signals at ~8.81 kD (major) and 
~9.03 kD (minor) for each of fractions 
51 and 52. Fraction 54 gave signals at 
,'o8.38 kD (major) and "~8.15 (minor). 
(b) The amino acid sequence of eotaxin 
was determined by sequencing the in- 
tact molecule as well as peptides derived 
from digestion with trypsin (7). NH2- 
terminal analyses showed the highest 
homology with human MCP-1 (57%) 
and the tryptic peptides were readily 
aligned by comparison with the human 
MCP-1 sequence. Position 70 gave no 
PTH derivative in peptides T6 and T7 
and is a probable position of O-glycosyl- 
ation. The COOH-terminus could 
not be unequivocally identified. (c) 
Comparison of the eotaxin sequence 
with human MCP-1, MCP-2, MCP-3 
(26), guinea pig MCP-1 (32), human 
MIP-lo6 MIP-1/3, and RANTES (25) 
showing conserved residues (shaded). 
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70 has been identified (legend to Fig. 3). Human MCP-1 
also exhibits heterogeneity on SDS-PAGE due to differences 
in the posttranslational modification of O-linked carbohy- 
drate (23). 

The relationship between eotaxin and structurally related 
proteins of the platelet factor 4 superfamily is shown in Fig. 
3 c. The platelet factor 4 superfamily of chemotactic cytokines, 
or chemokines, is characterized by four conserved cysteines. 
The relative position of the two NH2-terminal cysteines 
allows the subdivision of this superfamily into the C-X-C 
chemokines (e.g., IL-8 [24]) that are predominantly neutro- 
phil chemoattractants and the C-C chemokines (e.g., MCP-1, 
RANTES, MIP-lot, and MIP-13 [25]) that are chemotactic 
for leukocytes other than neutrophils. Eotaxin is a member 
of the C-C branch of chemokines. Surprisingly, the greatest 
homology is with human MCP-1 (53%), MCP-2 (54%), 
and MCP-3 (51%) (26). MCP-1, in the limited in vitro studies 
to date, has been reported to be inactive on human eosinophils 
(27, 28). Homology with other human C-C chemokines (Fig. 
3 c) is: MIP-13 (37%), mlP-lot (31%), and R.ANTES (26%). 
The latter two proteins have recently been shown to be po- 
tent eosinophil activators in vitro (28-30) whereas MIP-13 
activates lymphocytes in vitro (31) but apparently not eo- 
sinophils (28). Although eotaxin shows the greatest struc- 
tural homology with human MCP-1, MCP-2, and MCP-3 
we cannot conclusively identify a human counterpart since 
eotaxin has functional similarities, but relatively low ho- 
mology, when compared with R.ANTES and MIP-I~. Eo- 
taxin is clearly a distinct molecule from guinea pig MCP-1; 
the latter has recently been cloned (32) and has only a 44% 
homology with the eotaxin sequence (Fig. 3 c). Eotaxin also 
has a 41% homology with a C-C protein whose gene is ex- 
pressed in mouse mast cells and upregulated 2 h after the 
interaction between IgE and antigen (33). No functional ac- 
tivity has been reported for this protein but it is distinct (51% 
homology) from mouse MCP-1/JE (33). 

The effects of pure eotaxin in vivo and in vitro are shown 
in Fig. 4. Eotaxin was a pool of both peaks of the protein 
from reversed phase HPLC (Fig. 2). Guinea pig eotaxin was 
potent as an inducer of eosinophil accumulation in vivo, 1.6 
pmolAkin site giving a significant response at 30 rain and 
4 h (Fig. 4 a). In contrast, recombinant human RANTES 
and MIP-lot, perhaps because of species specificity, did not 
induce eosinophil accumulation over 4 h at doses of 1-100 
pmol/site (Fig. 4 a). Recombinant human MCP-1 was also 
ineffective in inducing eosinophil accumulation at the same 
doses (Fig. 4 a). In all experiments in which pure eotaxin 
was tested, 1-2 pmol/skin site gave a 730 + 140% response 
(mean +_ SEM, n = 18 guinea pigs) compared with sa- 
line/BSA-injected sites. The rapid action of eotaxin (within 
30 min) suggests that it has a direct chemoattractant effect 
on eosinophils in vivo and does not depend on the synthesis 
of secondary cytokines (e.g., by monocytes) for activity. This 
is supported by experiments on guinea pig and human eo- 
sinophils in vitro. 

Guinea pig eotaxin and human RANTES had similar ac- 
tivities on human eosinophils in vitro. Both elevated intra- 
cellular calcium levels (Fig. 4 b) and induced chemotactic re- 
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Figure 4. (a) Guinea pig eotaxin (1.6 pmol) induces significant 111In- 
eosinophil accumulation in vivo 30 rain ([], p <0.01) and 4 h (1, p <0.01) 
after intradermal injection. In contrast, the recombinant human proteins, 
RANTES, MIP-lcx, and MCP-1, at doses up to 100 pmol, were without 
effect over 4 h. Results are the mean +_ SEM for n = 4 assay animals. 
(Inset) Eotaxin and RANTES, but not the C-X-C chemokine I1,8, inhibit 
the binding of 12sI-KANTES (B0 = 14.4%) to guinea pig eosinophils 
in vitro. Results are the mean of two assays each carried out in triplicate. 
In two other assays 10 -7 M MCP-1 gave a small inhibition of 12Sl- 
RANTES binding (B/B0 = 0.87). (b) Eotaxin, RANTES, and, at high 
concentration only, MCP-1 induce elevation ofintracellular calcium levels 
in human eosinophils in vitro. Traces are with eosinophils from one donor. 
In two other donors, 2 nM eotaxin gave a mean calcium elevation of 61 
nM. In the three donors (97.3 • 1.2% eosinophils) responses to 10 nM 
RANTES were 194 + 74 nM [Ca2+]i and responses to 100 nM MCP-1 
were 93 -+ 38 nM [Ca2+]i. (c) Guinea pig eotaxin, but not human 
RANTES or MCP-1, elevates intracellular calcium levels in guinea pig 
eosinophils in vitro. Traces are with cells from one donor. In three donors 
(97.5 • 0.8% eosinophils) responses were: 2 nM eotaxin, 90 + 13 nM 
[Ca2+]i; 100 nM RANTES, 2.0 • 1.7 nM [Ca2+]i; 100 nM MCP-1, 
3.3 • 0.7 nM [Ca2+]i, 

sponses of similar magnitude (over the range of 0.1-3.0 nM, 
data not shown). In contrast, only eotaxin elevated intracel- 
lular calcium levels in guinea pig eosinophils (Fig. 4 c). Human 
RANTES, at doses up to 100 riM, did not elevate intracel- 
lular calcium levels in guinea pig eosinophils (Fig. 4 c) even 
though these cells bound 12sI-RANTES. This binding was 
inhibited by unlabeled RANTES and similar concentrations 
of eotaxin, suggesting that eotaxin and KANTES share a 
common binding site on guinea pig eosinophils (Fig. 4 a, 
inset). These results are consistent with the recent reports of 
receptor sharing by different C-C chemokines and the dis- 
sociation between receptor binding and the ability to elevate 



intracellular calcium levels (34-38). Our data suggest that 
eotaxin may have functional similarities to RANTES on 
human eosinophils in vitro whereas human RANTES binds 
to, but does not activate, guinea pig eosinophils. Human 
MCP-1, despite its sequence similarity with guinea pig eo- 
taxin, was only weakly active on human eosinophils in vitro 
(Fig. 4 b and legend) and did not induce 11qn-eosinophil ac- 
cumulation in vivo (Fig. 4 a), 

Eosinophils contain an armory of chemicals necessary for 
killing parasites. These chemicals have been implicated in the 
damage to airway epithelium that occurs in asthma and may 
relate to the observed changes in airway function (4, 19). Eo- 
taxin may be an important signal that induces eosinophil ac- 
cumulation in the lung. We do not yet know the source of 
eotaxin in the lung: macrophages, lymphocytes, mast cells, 
and airway epithelial cells are likely candidates. Platelets may 
also have a role as it has been shown that they can release 
C-C chemokines (29). Further, it has been suggested that 
an early platelet deposition may be involved in the subsequent 

eosinophil accumulation in vivo (39, 40) and there is evi- 
dence that platelet-activating factor induces the synthesis of 
an unidentified eosinophil chemoattractant protein in vivo 
(41). In addition, it is of interest that platelet-derived growth 
factor can induce gene expression ofC-C chemokines in fibro- 
blasts (42). The C-C chemokines have also been implicated 
in wound healing (25) which may be important in the 
subepithelial basement membrane fibrosis that is a promi- 
nent feature of the asthmatic lung. 

This is the first report of an eosinophil chemoattractant 
cytokine generated in vivo. Eotaxin is potent in vivo, having 
significant activity at doses of 1-2 pmol. Further, eotaxin 
exhibits selectivity, inducing eosinophil but not neutrophil 
accumulation. We suggest that eotaxin should be considered 
as a potentially important endogenous mediator of eosino- 
phil accumulation in vivo. In particular, eotaxin and related 
molecules may be involved in both eosinophil accumulation 
and in chronic structural changes in the asthmatic lung. 
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