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The cytoplasmic dynein light chain 1 (DYNLL1) is an important constituent of motor proteins complex. In
human it is encoded by DYNLL1 gene. It is involved in cargo transport functions and interacts with many
viral proteins with the help of short linear consensus motif sequence (K/R) XTQT. Viral proteins bind to
DYNLL1 through its consensus short linear motif (SLiM) sequence to reach the target site in the cell and
cause different infections in the host. It is still unknown if bacterial proteins also contain the same con-
served SLiMs sequence through which they bind to this motor protein and cause infections. So, it is
important to investigate the role of DYNLL1 in human bacterial infections. The interaction partner pro-
teins of DYNLL1 against conserved viral motif sequences were predicted through PDBSum. Pairwise
sequence alignment, between viral motif sequence and that of predicted proteins, was performed to iden-
tify conserved region in predicted interaction partners. Docking between the DYNLL1 and new patho-
genic interaction partners was performed, by using PatchDock, to explore the protein-protein binding
quality. Interactions of docked complexes were visualized by DimPlot. Three pathogenic bacterial pro-
teins i.e., enterochelin esterase (3MGA), protective antigen (3J9C) and putative lipoprotein (4KT3) were
selected as candidate interaction partners of DYNLL1. The putative lipoprotein (4KT3) showed low quality
binding with DYNLL1. So, enterochelin esterase (3MGA) and protective antigen (3J9C) were speculated to
be involved in human bacterial infections by using DYNLL1 to reach their target sites.
� 2019 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dynein is a family of motor proteins in cell cytoplasm. These
proteins provide energy for cell transportation processes by con-
verting the chemical energy of ATP to mechanical energy. This fam-
ily is broadly classified into two main groups of proteins i.e.,
cytoplasmic and axonemal dyneins. Axonemal dynein is involved
in movement of cilia and flagella by sliding of axoneme. Cytoplas-
mic dynein is found in animal cells. It is the part of a large multi-
protein complex involved in transport of cargoes along
cytoplasmic microtubules. Dynein protein consists of three chains:
heavy, intermediate and light. Heavy chains are involved in ATP
hydrolysis while light and intermediate chains play important role
in cargo binding process (Bader and Vaughan, 2010). Among these
chains dynein light chain 1 (DYNLL1) is highly conserved and dis-
covered for the first time as a subunit of dynein of axoneme in
Chlamydomonas involved in diverse functions (Pfister et al., 1982).

The Cytoplasmic dynein light chain 1 (DYNLL1) is an important
constituent of motor proteins complex. In human it is encoded by
DYNLL1 gene (Pfister et al., 2005). Many viral proteins like Adenain,
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Fig. 1. 3D structure of human dynein light chain 1 (1CMI).
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p54, E4, P Protein and VP35 have been reported to travel in cells
with the help of DYNLL1 (Jacob et al., 2000; Mabit et al., 2002;
Jouvenet et al., 2004; Schneider et al., 2011). Binding motifs of
DYNLL1 have been divided into two classes: K/R-XTQT or (K)3 X)
2 T)1 Q0 T1 X2) and G-I/V-QVD or [X)3 G)2 (I/V))1 Q0 V1 D2]
(Döhner et al., 2005; Barbar, 2008; Rapali et al., 2011). The central
Gln residue present at 0 position covers N-terminal of the second
alpha helix in protein. The binding residues are present in side
chains at different positions, i.e., +1, 1 and 3 and interact with inner
side of binding groove. There are some DYNLL1 interaction part-
ners which contain non-consensus binding motif sequence and
do not contain conserved Gln residue. Generally the interaction
topology of these peptides is like those of the recognized ones.

Dynein light chain 1 consists of two b sheets which are antipar-
allel and play important role in dimerization. Each b sheet consists
of five strands, out of which four belong to one monomer and one
to other monomer. The b sheets are surrounded by four a helices at
opposite faces of dimer. The bound ligands of DYNLL1 lie in two
identical parallel grooves formed at the two edges of the dimeriza-
tion interface. The bound peptides form an extra antiparallel b
strand augment the central b sheets (Espindola et al., 2000;
Benison et al., 2007).

Human cytoplasmic dynein light chain 1 homodimers are found
to bind with other proteins through conserved motif sequence
KETQTP. Most of its interacting viral and cellular proteins generally
display related recognition amino acid sequences in the form of
short linear motifs (Merino-Gracia et al., 2011).

Usually viruses use active transport for movement through
cytoplasm but most of the viral particles are too large to diffuse
freely in the crowded cytoplasm environment. The viral particles
with more than 50 mm diameter prefer to use microtubules for
movements in a retrograde manner by using cell dynein or some
of its components (Merino-Gracia et al., 2011). It has been experi-
mentally proved that the compatibility of microtubules and viral
proteins is necessary for causing infection. Most of the human
pathogenic viruses like herpes virus (Mabit et al., 2002), Mokola
virus, Papilloma virus (Schneider et al., 2011), Adenovirus
(Mabitet al., 2002) and African swine fever virus (Jouvenet et al.,
2004) use microtubules for reaching their target to cause infection.
Viruses use two approaches for intracellular transport: (a) hijack
cytoplasmic membrane traffic (b) interact directly with the
cytoskeletal transport machinery (Döhner et al., 2005). Most of
the viruses utilize cell cytoskeletal transport machinery to facili-
tate virions nucleoprotein complexes to travel long distances in
cytoplasm from cell surface to replication and transcription site
of viral DNA and induce infection.

On the basis of already reported viral interaction partners of
DYNLL1 we identified some new pathogenic bacterial proteins as
potential interaction partners. We predicted computationally that
the bacterial proteins can also interact with DYNLL1 and cause
infections in humans. The findings of present study provide direc-
tions to identify new drug targets against pathogenic bacterial dis-
eases. Thus, our study highlighted a unique and revolutionary area
of medical research by predicting important role of dynein light
chain 1 in bacterial infections. These findings can be used in further
research works.
2. Materials and methods

2.1. Data set

The experimentally determined three dimensional structure of
the human cytoplasmic dynein light chain 1 (DYNLL1) was
retrieved from PDB (Protein Data Bank) under PDB ID: 1CMI
(Bernstein et al., 1977) (Fig. 1). Binding motifs of its interaction
partner proteins were selected through extensive literature search
(Jacob et al., 2000; Raux et al., 2000; Alonso et al., 2001; Rodriguez-
Crespo et al., 2001; Mar -Moreno et al., 2003; Kubota et al., 2009;
García-Mayoral et al., 2011) (Table1).

2.2. Identification of human cytoplasmic dynein light chain
1interaction proteins

Homology search, on the basis of particular consensus short lin-
ear motifs (SLiMs) sequence (K/R) XTQT for DYNLL1 interaction
partners, was done against an online available database, PDBsum
(Laskowski et al., 1997). The viral DYNLL1 SLiMs sequences, i.e.,
KSTQT, TASQT and SQTQT were used as query sequence to search
the identical SLiMs sequences. The SLiMs sequences showing more
than 65% sequence identity with the query sequence were selected
as interaction partners of DYNLL1. The SLiMs from previously
reported proteins were excluded from data set while those from
new proteins were selected for further analysis.

2.3. Pairwise sequence alignment

The SLiMs of new selected interaction proteins of DYNLL1 were
retrieved from UniProt. Pairwise sequence alignment was per-
formed, between the query virus SLiMs sequence and those of
new interaction proteins, using EMBOSS water tool. The purpose
of performing pairwise sequence alignment was to identify the
regions with high similarity which show structural, functional or
evolutionary relationship between query protein and predicted
interaction partners.

2.4. Selection of candidate proteins

From the results of pairwise sequence alignment proteins with
highest motif residual contribution were short listed. The interac-
tion partner proteins of pathogenic organism were selected as can-
didate proteins for further study.

2.5. Candidate protein structure retrieval

Three dimensional structures of candidate proteins: protective
antigen (PDB ID: 3J9C), enterochelin esterase (PDB ID: 3MGA)
and putative lipoprotein (PDB ID: 4KT3) were retrieved from pro-
tein data bank (Bernstein et al., 1977).



Table 1
Experimentally verified binding motifs (bold and underlined) of human cytoplasmic dynein light chain 1 interaction partners.

No. Protein Name Uniprot ID Organism Sequences

1. Adenain P11826 Adenovirus CITLVKSTQTV
2. P54 Q4TWM2 ASFvirus VTTQNTASQTM
3. E4 P06425 Papilloma virus DHHQDKQTQTP
4. P protein P15198 Rabies virus RSSEDKSTQTT
5. P protein O56780 Mokola virus KSTEDKSTQTP
6. VP35 Q05127 Ebola virus PKTRNSQTQTD
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2.6. Motif structure

The structures of candidate proteins were opened in UCSF chi-
mera (Pettersen et al., 2004). Structure of SLiMs residues was cut
from the original structure and saved. The resulted small motif
structure was used for molecular docking.

2.7. Molecular docking analysis of human cytoplasmic dynein light
chain1 with new interaction partners

Molecular docking analysis of DYNLL1 with selected interaction
partner proteins i.e., protective antigen, enterochelin esterase and
putative lipoprotein, was performed using PatchDock. FireDock
was used for rescoring and refinement (Schneidman-Duhovny
et al., 2005; Andrusier et al., 2007). The input for PatchDock con-
sisted of PDB files of DYNLL1 and respective candidate proteins
with set default parameters. This process was repeated for each
candidate protein. Geometric fit, atomic desolvation energy, and
scoring functions were used for the evaluation of candidate pro-
teintrans formations.

2.8. Protein-protein interactions

Protein-protein interaction was calculated using Ligplus
(Laskowski et al., 2011). The selected models of DYNLL1- Ente-
rochelin esterase, DYNLL1-Putative lipoprotein and DYNLL1- Pro-
tective antigen were opened in DIMPLOT (Laskowski et al., 2011)
and their interactions were viewed.

3. Results

3.1. Selection of candidate interaction partner proteins of human
cytoplasmic dynein light chain 1

The proteins having maximum motif residues in alignment
were short listed on the basis of pairwise sequence alignment
scores. Previously reported interaction partners of DYNLL1 were
excluded while new and pathogenic interaction partners, Putative
lipoprotein (Pseudomonas fluorescens: 4KT3), Enterochelin esterase
(Salmonella typhimurium: 3MGA) and Protective Antigen (Bacillus
anthracis: 3J9C), were selected as candidate proteins (Table 2).

3.2. Structure and motif retrieval of candidateproteins

The structures of selected proteins were retrieved from PDB
(Figs. 2a, 3a, 4a). The motif structure was cut upto11 residues to
extend the binding pockets for docking by using UCSF Chimera
(Figs. 2b, 3b, 4b).

3.3. Molecular docking analysis of candidate proteins withhuman
cytoplasmic dynein light chain 1

PatchDock was used for performing molecular docking between
candidate protein and DYNLL1. The results produced near native
conformation of DYNLL1-candidate protein complexes which
assured the reliability on the interaction mode. Ten best solutions
from the results of PatchDock were screened for further refinement
and rescoring by using FireDock algorithm. Final results of selected
candidate proteins are presented in Table 3. In case of Enterochelin
esterase (3MGA) global energy for the best docking model was
�32.18 kcal/mol with atomic contact energy �6.19 kcal/mol which
showed good binding quality.

The global energy for the best docking model DYNLL1-
Protective antigen (3J9C) was �25.75 kcal/mol with atomic contact
energy of �5.78 kcal/mol, which depicted good feasibility of bind-
ing. The best docking model DYNLL1-Putative lipoprotein (4KT3)
had �0.58 kcal/mol global energy and �0.38 kcal/mol atomic con-
tact energy which reflects weaker binding quality. The interacting
residues of the representative docking models out of the largest
clusters were analyzed by DIMPLOT (Laskowski et al., 2011)
(Figs. 5–7).
4. Discussion

In the present study, we tried to find some novel and patho-
genic interaction partners of human cytoplasmic dynein light chain
1 (DYNLL1). Homology based search was performed, using viral
DYNLL1-binding short linear motif (K/R)XTQT, to find some new
interaction partner of DYNLL1 sharing closely related viral short
linear motifs (SLiMs) sequence. SLiMs are the short stretches of
amino acid sequences which facilitate the protein-protein interac-
tion (Neduva and Russell, 2006; Diella et al., 2008). Three patho-
genic bacterial proteins enterochelin esterase (Salmonella
typhimurium) putative lipoprotein (Pseudomonas fluorescens) and
protective antigen (Bacillus anthracis) showed good pairwise
sequence alignment with viral protein and were selected, as candi-
date interaction partners of DYNLL1, for further analysis. Short lin-
ear motifs (SLiMs) of candidate protein were docked to find the
interaction with DYNLL1 and their interactions were visualized.

Only one motif residue, Thr68, from enterochelin esterase (Sal-
monella typhimurium) made hydrogen bond with the DYNLL1 bind-
ing pocket residue, Gln80, with hydrogen donor and acceptor
distance of 2.28 Å. The preferred interaction region for a hydrogen
bond between carbonyl oxygen and amide nitrogen is 2.5–3.5 Å
(Hubbard et al., 2010), which confirms the strong interaction
between DYNLL1 and enterochelin esterase. Remaining motif resi-
dues were involved in hydrophobic interactions. Dashed lines rep-
resent the hydrogen bonding but residues shown as an arc with
spokes represent hydrophobic interactions (Liu et al., 2008). The
interaction between these hydrophobic regions of the binding site
with the ligand is responsible to provide the driving force for bind-
ing (Kelly and Mancera, 2005). It showed the lowest binding
energy (�32.18), which reflects the strong and stable interaction
(Ajay and Murko, 1995). All these factors contribute to select ente-
rochelin esterase of S. typhimurium as the best interaction partner
of human DYNLL1.

Salmonella typhimurium is a gram-negative, flagellated faculta-
tive anaerobic bacterium generally present in mammalian gas-



Table 2
Predicted interaction partners of human cytoplasmic dynein light chain 1.

Query Candidate

Organism Protein Motif
sequence*

Organism Protein** Conserved motif
sequence

Identity with query
sequence (%)

Adenovirus Adenain CITLVKSTQTV Bacillus anthracis Protective Antigen (3J9C) TDSQT 77.80

ASF virus p54 VTTQNTASQTM Homo Sapiens C-C motif chemokine7 (1BO0) KKTQT 77.80

Papillomavirus E4 DHHQDKQTQTP Salmonella
typhimurium

Enterochelin esterase (3MGA) AQPQT 70.00

Rabies Virus P
Protein

RSSEDKSTQTT Pseudomonas
fluorescens

Putative lipoprotein (4KT3) YQLQR 66.70

Mokola Virus P
Protein

KSTEDKSTQTP Helicobacter Pylori 2-dehydro-3-deoxyphosphooctonate
aldolase (4Z1D)

KSIQS 66.70

Ebola virus VP35 PKTRNSQTQTD Homo Sapiens C-C motif chemokine7 (1BO0) KKTQT 85.70

* Bold and underlined sequences are conserved.
** Bold candidate pathogenic proteins were selected for studies.

Fig. 2a. 3D structure of protective antigen (3J9C).

Fig. 3a. 3D structure of enterochelin esterase (3MGA).

Fig. 4a. 3D structure of putative lipoprotein (4KT3).

Fig. 2b. Motif structure of protective antigen3J9C).

Fig. 3b. Motif structure of enterochelin esterase (3MGA).
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trointestinal tract (Morpeth et al., 2009). It causes mucosal inflam-
mation in immune-compromised patients (Madi et al., 2010). The
infection occurs when high concentration of bacteria is ingested
through contaminated food, which results in food poisoning. Ente-
rochelin esterase is the virulence factor of S. typhimurium (Robert
and Shelly, 1979). The assimilation of protein bound iron in the cell
is the key source for multiplication of S. typhimurium (Bullen et al.,
1971). Enterochelin protein in enterobacterial pathogens act as
iron chelator and it is crucial for multiplication (Rogers, 1973;
Miles and Khimji, 1975). Outer membrane receptors of host cell
give entry to enterochelin to the cell (Braun, 1976) and TonB helps
for its translocation to the cytoplasmic membrane (Kadner and
McElhaney, 1978). The results of current study showed that this



Fig. 4b. Motif structure of putative lipoprotein (4KT3).
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pathogenic protein reaches its target site by binding with DYNLL1
and travel the long distance in cytoplasm.

Second strongest interaction partner (�25.75 kJ/mol global
energy) of DYNLL1 was protective antigen of Bacillus anthracis.
Three motif residues, i.e., Thr282, Thr286 and Thr288 were
involved in hydrogen bonding with DYNLL1 binding pocket residue
Ser64, Tyr77 and Gln80. B. anthracis produces toxin called anthrax
which causes Anthrax, a serious bacterial infection in human. It is
an A-B type toxin consisting of A and B subunits. B subunit is called
protective antigen (PA), which is involved in cell and A subunit
binding. A subunits consists of two factors, i.e., lethal factor (LF)
and edema factor (EF), performing enzymatic toxic activities
Fig. 5. DYNLL1- protective ant

Table 3
Docking results of pathogenic bacterial proteins with human dynein light chain 1.

Candidate Protein Organism Global Energy (k

Enterochelin esterase (3MGA) Salmonella typhimurium �32.18
Protective Antigen (3J9C) Bacillus anthracis �25.75
Putative lipoprotein (4KT3) Pseudomonas fluorescens �0.58

* VDW = Vander Walls.
** ACE = Atomic contact energy.
(Collier and Young, 2003). PA undergoes heptamerization and con-
verted to a new complex called PAheptamer which is able to bind
three molecules of LF and/or EF (Collier and Young, 2003).
PAheptamer acquires some conformational changes and help LF and
EF to insert into endosomal and delivered to cytoplasm (Collier
and Young, 2003). The subsequent delivery of LF to the cytoplasm
occurs later in the endocytic pathway (Laurence et al., 2004). The
mechanism of movement of PA in the cytoplasm to reach its target
site is still unknown. The findings of current study showed that PA
gets attached to the DYNLL1 in the cytoplasm and travels to its tar-
get site.

Putative lipoprotein is a virulence factor of pathogenic bacteria,
Pseudomonas fluorescens. In Putative lipoprotein motif residues
Gln57, Leu58, Arg60 were involved in making interactions with
the DYNLL1binding pocket residues Tyr75 and Ser64. Although the
number of hydrogen bonds formed are highest but the global energy
(�0.58 kJ/mol) was very poor. So, we cannot claim putative lipopro-
tein of P. fluorescens as a strong interaction partner of DYNLL1. In a
previous study Kausar et al. (2013) found P. aeruginosa as the stron-
gest interaction partner of DYNLL1. P. aeruginosa is involved in life
threatening infections especially in pneumonia patients (Giantsou
and Manolas, 2011), but in current study we could not find good
interaction of P. fluorescenswith human DYNLL1.

Enterochelin esterase (Salmonella typhimurium) and protective
antigen (Bacillus anthraci) showed lower global energies.
Fernández-Recio et al. (2004) found that low energy regions in
the docked complex corresponded to actual binding sites of the
proteins. So we speculate that these two proteins could be the
potential interaction partners of DYNLL1. Enterochelin esterase
igen interaction complex.

cal/mol) Attractive VDW* Repulsive VDW* ACE** (kcal/mol)

�27.04 17.65 �6.19
�26.44 6.08 5.78
�3.90 1.46 �0.38



Fig. 7. DYNLL1- putative lipoprotein interaction complex.

Fig. 6. DYNLL1- enterochelin esterase interaction complex.
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(Salmonella typhimurium) and protective antigen (Bacillus anthraci)
might use this motor protein to reach their target sites in human
cell and result in severe bacterial infections. These results open
up an area of further research to study the role of DYNLL1 in bac-
terial infections mechanism.
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