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Finkenstädt B. 2018 Hidden Markov models for

monitoring circadian rhythmicity in telemetric

activity data. J. R. Soc. Interface 15: 20170885.

http://dx.doi.org/10.1098/rsif.2017.0885
Received: 27 November 2017

Accepted: 11 January 2018
Subject Category:
Life Sciences – Mathematics interface

Subject Areas:
systems biology, biometrics, computational

biology

Keywords:
circadian rhythm in rest – activity, activity

counts, accelerometer data, hidden Markov

models
Author for correspondence:
Bärbel Finkenstädt
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Wearable computing devices allow collection of densely sampled real-time

information on movement enabling researchers and medical experts to

obtain objective and non-obtrusive records of actual activity of a subject in

the real world over many days. Our interest here is motivated by the use

of activity data for evaluating and monitoring the circadian rhythmicity of

subjects for research in chronobiology and chronotherapeutic healthcare.

In order to translate the information from such high-volume data arising

we propose the use of a Markov modelling approach which (i) naturally cap-

tures the notable square wave form observed in activity data along with

heterogeneous ultradian variances over the circadian cycle of human

activity, (ii) thresholds activity into different states in a probabilistic way

while respecting time dependence and (iii) gives rise to circadian rhythm

parameter estimates, based on probabilities of transitions between rest and

activity, that are interpretable and of interest to circadian research.
1. Introduction
Questions of interest regarding the research of sleep–wake cycles in humans

and mammals are commonly studied by measuring activity through gross

motor movement where accelerometers have become a feasible and affordable

way to obtain objective non-obtrusive recordings of rest–activity rhythms of

free living individuals over many days [1–3]. Accelerometers measure the

acceleration of the part of the body to which they are attached, often as part

of a small communicative wearable device. The signal is preprocessed by the

device to obtain physical activity (PA) time-series data accumulated over a

specified time interval, called epoch. Time-series PA data from such monitoring

devices are subject to circadian rhythms and are of interest to the circadian

research community.

Our current understanding of circadian rhythms as a network of molecular

clocks and their relevance for human health has quickly progressed [4,5] now

demanding their integration into medical and care decision processes [6–8].

The circadian timing system contains a network of molecular oscillators gener-

ated by a set of specific clock genes in almost each cell of the body [9–11]. This

network is coordinated by a hypothalamic pacemaker, the supra-chiasmatic

nuclei (SCN), the principal circadian clock in the brain of mammals which is

entrained by visual afferents and input from other brain and peripheral oscil-

lators. Regarding the molecular genetics of circadian rhythms it is now well

established that molecular clocks within the cell consist of transcriptional–

translational feedback loops involving about 15 clock genes, which generate

approximately 24-h oscillations in many cellular functions at cell population
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Figure 1. Example of raw accelerometer data: activity counts recorded per minute over 4 days with Move3 (Movisens GmbH, Germany) sensor with inbuilt
accelerator ADXL345 (Analog Devices, MA, USA) fixed to the chest of a healthy individual (subject 16).
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or whole-organism levels [12]. The master clock in the brain

synchronizes the cellular clocks in all the peripheral tissues

including eye, brain, heart, lung, gastrointestinal tract, liver,

kidney, bone marrow and immune system. The overall

system, referred to as the circadian timing system (CTS), con-

trols several critical molecular pathways which regulate cell

cycle. Mounting evidence supports a link between circadian

misalignment or disruption and increased risk for an array

of chronic diseases including cardiovascular disease, cancer

[6], metabolic syndrome (obesity, hypertension, arteriosclero-

sis, diabetes) and psychiatric disorders (depression, bipolar

disorder, schizophrenia, attention deficit) [13]. Circadian

rhythm alterations have also been consistently associated

with poor quality of life, more severe and frequent symptoms

and poor overall survival in large cohorts of cancer patients

[6]. Here, we are interested in modelling PA time series

with a view to evaluating and monitoring the circadian

rhythmicity of subjects for research in chronobiology and

chronotherapeutic healthcare, in particular cancer patients

receiving a chronomodulated chemotherapy while they are

in their own home and in their usual environment [14]. How-

ever, the development of relevant metrics and quantifiers of

circadian rhythm that can be passively obtained from

mobile sensing could potentially improve the efficacy of

chronotherapeutic methods applied to a wide variety of clini-

cal conditions including bipolar disorder, where the

interpersonal and social rhythm therapy (IPSRT) is designed

to help patients maintain a stable circadian rhythm and

sleep–wake cycle to prevent relapse [15], Parkinson’s disease,

stroke, epilepsy, anxiety disorders and other conditions

where treatment therapies involve monitoring patients’

rhythms of daily life [16].

There has been a proliferation towards a multitude of

wearable computing devices at increasing commercial avail-

ability and popularity. Today, activity tracking is

omnipresent, usually in wrist worn devices, such as smart

watches, bracelets or smart phones. The fact that they can

provide frequent and non-obtrusive recording of PA in a
real-world environment offers tremendous opportunities for

health and makes them ideal instruments in a large variety

of applications including mobile health monitoring (mhealth)

[16], e.g. of chronically ill or elderly patients [17], sensing be-

havioural symptoms of mental health [18], self-monitoring

for promoting PA levels [19,20] or studies of sentinel behav-

iour [21]. Wearable devices usually contain an accelerometer

and, with increased computing power, more functions may

be included such as heart rate sensors, ambient light sensors,

temperature sensors, altimeters, etc., potentially providing

very rich and complex data scenarios. Accelerometers them-

selves have experienced development, in particular as in

2009 the leading brand ActiGraph developed the detection

of acceleration from uniaxial to triaxial. PA can now be col-

lected at short epoch lengths, such as every minute or

every 15 s, over many days. The sensor used in our study

(Move3, Movisens GmbH, Germany) is fixed to the chest

and contains a triaxial accelerator model (ADXL345, Analog

Devices, MA, USA). The device produces activity counts

defined as the number of times an accelerometer waveform

computed by the device, according to specifications of the

frequency and filters that are specific to the manufacturer,

crosses zero over the epoch length of 1 min. Figure 1 gives

an example of PA counts recorded every minute for a healthy

individual over 4 days. Translating information from such

high volume and complex data into interpretable and

useful statistics is a challenging task, in particular if the aim

is to perform long term, i.e. over many days and weeks,

monitoring of an individual.

Apart from visually inspecting time plots, the data are

generally analysed by deriving statistics, termed non-
parametric variables [22,23], to quantify characteristics of

interest to clinicians, sleep researchers and chronobiologists.

These are generally focussed around the intradaily variability,

which measures the disruption of the rhythm, and interdaily
variability which quantifies the entrainment to the 24-h

light/dark cycle. An R-package to compute these alongside

other statistics, such as relative amplitude of activity, average
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activity values of the 10 h with maximal activity and the 5 h

with least activity, is provided by [24]. Evidence exists in

the literature [25,26] for hourly PA count data that the intra-
daily variability is a particularly important variable that is

correlated with decreased sleep quality and cognitive func-

tions as patients with Alzheimer’s disease were found to

have higher intradaily variability values [27]. In a clinical con-

text, a series of studies [28–31] found that the dichotomy
index I , O, which reports the percentage of epochs during

the rest span when activity is lower than the median activity

during wakefulness, was the most relevant statistic in pre-

dicting survival rates in cancer patients. An I , O value of

100% corresponds to a non-disrupted rest pattern and the

lower the I , O value the more severe the disruption of

the rest–activity rhythm. Lévi et al. [32] found that median

survival was nearly twice as high in patients with metastatic

colorectal cancer whose baseline I , O exceeded 97.5%

when compared with those with a lower I , O before

chemotherapy delivery [33].

While there exist numerous non-parametric variables to

quantify the (mis)timing of sleep–wake rhythms, and new

ones continue to be proposed [34], it is a challenging task

to quantify their variability, which is important, in particular

if such variables are used in assisting with the decision-

making process of a health expert about an individual’s

therapy. An additional complication arises because most non-

parametric variables discussed above rely on being able to

mark the beginning and end of prolonged rest periods

which, in many cases, cannot be determined unequivocally.

Fourier based methods such as the Lomb–Scargle periodo-

gram [35], the fast Fourier transform-nonlinear least squares

(FFT-NLLS) algorithm [36], harmonic regression [37] and the

spectrum resampling method [38] can be used to extract further

parameters, namely acrophase, amplitude and period, that are

typically of interest to studies of circadian rhythmicity. Spectral

estimation using the methods proposed in [38] confirms that

the activity data for healthy individuals usually exhibit a

strong 24-h periodicity (see electronic supplementary material,

figure S1) as can be expected due the entrained endogenous cir-

cadian rhythmicity endorsed by the timing of the work and

social environment. Although spectral analysis is well able to

extract the circadian period, smooth functional forms, such as

harmonic functions or splines, are not ideal for modelling the

abrupt appearance of the transitions between the active and

inactive states and will not detect short bouts of transitions

caused, e.g. by daytime naps or active behaviour during night-

time. The data also show time changing variances in that PA

values during the day show a markedly larger variability

than over the prolonged rest period. The marginal histogram

(see electronic supplementary material, figure S2 (b) for an

example) displays two modes, namely a sharp peak around

zero, which corresponds to the non-active period, and a

wider second mode corresponding to the active period. Here

we shall propose the use of hidden Markov models (HMMs),

a class of time-series models that are essentially an extension

of mixture models by taking into account temporal dependencies,

to analyse such PA time series.

HMMs are now a well-developed area of statistics with

books and papers such as [39,40] providing in-depth expla-

nations of the models, from basic definitions to estimation

to results. These processes, also known as probabilistic func-

tions of Markov chains and hidden Markov processes, came

into prominence in the 1960s by the work of Baum & Petrie
[41] and 1970s where [42,43] developed the Baum–Welch

algorithm for estimation. Earlier applications of HMMs

were in character and speech recognition [44–46], and

HMMs have since been used in many different areas such

as biology and engineering (see, e.g. [47] for an application

in genome sequencing). Regarding accelerometer data,

HMMs have been used, among other methods such as Gaus-

sian mixture models and K-means clustering, as an

unsupervised machine learning technique for the task of rec-

ognition and classification of specific human activity modes

such as standing, walking, running, ascending/descending,

sitting, cycling etc. This scenario is different to ours, in par-

ticular as data acquisition in these cases is much denser at

epoch lengths in units of small fractions of a second over a

short time span of typically less than an hour, and the

research questions is aimed at being able to recognize a

specific kind of activity (see, e.g. [48–51] and review in

[52]). Similarly, HMMs have been applied to other physio-

logical data acquired at high frequency, in particular the

applications to polysomnographic (PSG) recordings, includ-

ing electroencephalogram (EEG), electrooculogram (EOG)

and electromyogram (EMG) signals, by [53–55] to classify

and score stages of (rapid eye movement) REM and non-

REM sleep, although it is not foreseen that such measurements

can be taken for the purpose of long-term monitoring. We

shall show that HMMs naturally provide the necessary tools

to model the features observed in the type of data we are inter-

ested in, and can be further extended toward a dynamic

Markov process which is influenced by a circadian oscillator,

the strength and nature of which can be inferred from an indi-

vidual’s PA data from a sensing device, that can be

unobtrusively worn over many days/weeks.
2. Model and inference
Let Y(T ) ¼ fY1, . . ., Yt21, Yt, . . ., YTg denote the observations

on activity where t [ f1, . . ., Tg and T is the sample size.

Let St [ f1, . . ., mg denote the unobserved activity state at

time t. The notation P( . ) stands for the probability mass func-

tion or density function, whichever appropriate. We shall use

the short notation X(t) ¼ fX1, . . ., Xtg for arbitrary variable X.

The probabilistic structure of a HMM is represented by the

well-known conditional independence graph seen in figure

2, which is a special case of a directed acyclic graph (DAG),

and is based on the following two assumptions:

(A1) the sequence of states St is a Markov chain satisfying

the Markov property: P(St j S(t21)) ¼ P(St j St21),

(A2) conditionally on St, the Yt’s are independent and Yt

depends on St only: P(Y t j S(t), Y(t21)) ¼ P(Y t j St).

It is straightforward to see that the joint distribution of the

observations and the hidden states of the DAG is

PðYðTÞ, SðTÞÞ ¼ PðS1Þ
YT
t¼2

PðSt jSt�1Þ
YT
t¼1

PðYt j StÞ, ð2:1Þ

from which the data likelihood can be obtained by summing

over the possible combination of states (see [39])

PðYðTÞÞ ¼
Xm

s1,...,sT¼1

PðS1Þ
YT
t¼2

PðSt jSt�1Þ
YT
t¼1

PðYt j StÞ

¼ dPðY1 j S1ÞGPðY2 j S2ÞG . . .GPðYT jSTÞ10, ð2:2Þ
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Figure 2. Directed acyclic graph of a hidden Markov model where St is the unobservable states and Yt represents the observable time series.
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where P(Yt jSt) [ Rm�m is the conditional probability

matrix with j’th diagonal entries P(Yt j St)j,j ¼ P(Yt j St ¼ j ),
G [ Rm�m is the Markov chain transition matrix with

elements Gj,k ¼ P(St ¼ k j St21 ¼ j ) and whose rows sum to

one, d [ R1�m is the initial state distribution and 10 [ Rm�1

is a vector of ones.

The HMM is hence parametrized by the non-zero entries

in d, P(Yt j St) and G which are unknown. Given the output

observation sequence Y(T ), the maximum-likelihood estima-

tor of the unknown parameters can be efficiently found,

either through direct maximization or based on an expec-

tation maximization (EM) algorithm, called the Baum–

Welch algorithm [39], for which closed-form expressions

and computationally fast steps exist when the observational

distribution P(Yt j St) is Gaussian. However, caution is necess-

ary as the likelihood may have local maxima and it is advised

to test different starting values for the parameters.
3. Application to activity data from healthy
subjects

3.1. Data and data pre-processing
We shall show results of fitting HMMs to PA count data

recorded by the Move3 sensor for 46 healthy individuals

(19 male, 27 female; aged 21–75 years, median 35 years)

from two countries (UK and France) who volunteered to

wear the sensor over a period of 4–7 days. All subjects

were asked to keep their usual daily routines, besides carry-

ing the sensor day and night for the whole monitoring

duration. In addition to activity, this device also provides

5-min recordings of the skin temperature. Missing values

occur as the individuals remove the device to avoid contact

with water—typically this happens once a day for around

20 min. The missing values can be marked retrospectively

by noting that the contemporaneous temperature records

show a sudden decrease towards room temperature. Gener-

ally the missing data ratio is around 1%–3% in this dataset.

The estimation algorithm is adapted in a straightforward

way by propagating the transition matrix corresponding to

the last time point preceding the missing values [48].

Collected over many days the data are of considerable

size and it is desirable to be able to apply computationally

efficient methodologies. In this study, we will assume Gaus-

sianity of the observational densities of the square root

transformed 5-min averaged PA count data (see electronic

supplementary material, figure S2). We note that the assump-

tion of Gaussianity for the observational densities of the

square root transformation corresponds to the assumption

of a mixture of non-central chi-square distributions which
can account for both, non-negative domain and positive

skewness, on the original scale of averaged PA counts.

3.2. Number of states
An obvious question is how many states m should the model

have? The Bayesian information criterion (BIC) suggested

models with 2–5 states, with four being chosen in about

two thirds of the cases, while Akaike’s information criterion

(AIC), known to be less parsimonious, tended to generally

prefer one more state than the BIC. We speculate that some

inter-individual variation in the number of states may be

due to the fact that some individuals have a larger range of

types of activities than others, however such deductions

will largely depend on the measurement process, i.e. the spe-

cifications and positions of the accelerometer used, and a

controlled study would be needed to substantiate this. Our

results on the range of the number of states are in broad

agreement with an extensive review [56] which compiled

results from more than 40 studies on PA data, covering differ-

ent types of accelerometers and their position on the body1.

The majority of these studies developed cut-off points to

achieve 2–3 states for adults and older adults. However,

one major difference to studies, which derive general cut-

off points for PA classification, is that in our study the

HMMs produce an individual-specific probabilistic classifi-

cation of PA. This is in line with our interest in identifying

and monitoring the personal long-term circadian rhythm of

subjects whose individual lifestyles may be heterogeneous

covering a range from sedentary to active. We note that the

estimated conditional means and duration of the states can

however be used to quantify how active a lifestyle a person

leads in comparison to others.

While one needs at least two states to distinguish between

rest and activity, the results here consistently indicate that

better model fits are achieved if more than two states are

assumed. On the other hand, choosing a parsimonious

number of states will be more robust to the fact that the

day-to-day variability of different particular activities may

be substantial and may appear non-circadian despite the

presence of a regular circadian rest–activity rhythm. For the

purpose of our study, we specified m ¼ 3 for all individuals,

which not only addresses this compromise in complexity but

also achieves a consistent interpretation across all individuals

in the sample in that for each individual the lowest activity

state corresponds to the prolonged rest period, which nor-

mally occurs at nighttime, while the other two stages are

predominantly associated with the active daytime.

3.3. Parameter estimates
The parameter estimates contain useful interpretable infor-

mation about the individual’s sleep–wake behaviour. We
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shall discuss typical results of fitting a HMM for two example

subjects, 16 and 18, with m ¼ 3 states that can be interpreted

as inactive (IA) for St ¼ 1, moderately active (MA) for St ¼ 2

and highly active (HA) for St ¼ 3, where St ¼ j;j ¼ 1, 2, 3

also denotes the entry number of the corresponding state in

all vectors and matrices.

The estimated model parameters for subject 16 are as

follows: the transition probabilities are

Ĝ ¼
0:980 0:007 0:013
0:025 0:907 0:069
0:000 0:116 0:884

0
@

1
A

with conditional observation densities for IA state: Yt j (St ¼

1)�N(0.92, 0.682), for MA state: Yt j (St ¼ 2)�N(3.1, 1.112)

and Yt j (St ¼ 3)�N(5.37, 0.742) for HA state. The initial state

distribution is d̂ ¼ (0,1,0), i.e. the initial state is estimated to

be MA. For subject 18 the estimated model parameters are:

Ĝ ¼
0:945 0:055 0:000
0:065 0:859 0:076
0:000 0:140 0:860

0
@

1
A

with conditional observation densities for IA state: Yt j (St ¼

1) � N(1.25, 1.262), for MA state Yt j (St ¼ 2) � N(6.98, 2.232)

and for HA state Ytj(St ¼ 3) � N(12.06, 0.922). The initial

state distribution is d̂ ¼ (0,0,1), i.e. the initial state is estimated

to be HA.

The results for the probabilities in the transition matrix for

all 46 individuals are plotted in figure 3. The high probabil-

ities along the diagonal suggest a high chance of staying in

the current state which highlights the dependence between

successive observations and clearly justifies the use of a

time-series modelling approach such as provided by the

HMM. The probability is highest for the IA state, as estimated

by Ĝ1,1, due to the prolonged period of rest at night. The

slightly lower values for Ĝ2,2 and Ĝ3,3, together with the elev-

ated off-diagonal values for Ĝ2,3 and Ĝ3,2, indicate that there is

a higher chance of switching between the two active states. In

fact, it is these transitions that account for the high variability
observed in the data during the day and is due to the fact that

people undertake different physical actions in their wake

period. The transition from the two active states, HA and

MA, to rest is found to happen almost exclusively via the

MA state as Ĝ3,1 is estimated to be zero, or very close to

zero, for all individuals in the sample. A particular transition

of interest is from IA to either of the active states with esti-

mated probability (Ĝ1,2 þ Ĝ1,3), where high values indicate

many episodes where the person is likely to have interrupted

sleep and one can hence assume that the estimated transition

probability from IA to any active state contains information

about the quality of sleep of a person. For example, it is esti-

mated to be 0.02 for subject 16 and 0.055 for subject 18, which

suggests that subject 18 has experienced about twice as many

sleep interruptions as subject 16 during the study time. We

found a pronounced positive correlation (0.86 for Spearman

rank correlation) between (Ĝ1,2 þ Ĝ1,3) and Ĝ2,1, i.e. the tran-

sitions into and out of the IA state, due to the fact that

subjects who often interrupt their IA state also often attempt

to get back into it.

The estimated conditional observation densities confirm

our visual impression that the IA state has a relatively low

value. The MA state usually is characterized by a higher var-

iance also in comparison to the HA state. The latter may be

due to the dampening effect of the square root transform-

ation. Figure 4 hence plots the mean and central 90% range

of the three estimated observational densities for all 46 indi-

viduals, where the results are transformed to the non-

central x2 distribution on the original scale of the average

5-min PA counts. The mean of the HA state provides an

alternative estimator of the amplitude without having to rely

on Fourier methods. The three states identified by the

HMM are specific to the subject and we can see a large varia-

bility in the intensity of the three states between the

individuals. This may be due to heterogeneous lifestyles

regarding activity although it should be noted that such

interpretation is likely to also depend on the settings of the

accelerometer and where it is positioned on the body2.



0 40 80 120 160 200 240 280

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

accelerations/min

su
bj

ec
t I

D

inactive  state moderately active state

highly active state

Figure 4. Estimated conditional observation densities. Mean and central 90% range for three states: inactive (blue), medium active (light red) and highly active (red)
for 46 subjects. Values on X-axis refer to original scale of average PA counts.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170885

6

3.4. State estimation
Local decoding [39] can be used to estimate the predicted

state at time t by

Ŝt ¼ j¼1,...,m argmax P(St ¼ jjY(T)),

where the estimated conditional state probabilities P(St ¼ j j
Y(T )) are conveniently available as part of the inference
algorithm. The predicted sequence of the most likely states

for the two example individuals can be seen in figures 5a
and 6a, which show that for both individuals the IA state is

predominant at night and that during the day there are

many transitions between the MA and HA states. For a

more informative visualization, we propose to plot P(St ¼ j j
Y(T )) for j ¼ 1, 2, 3 (which add to 1) cumulatively for each t,
and associate with each state a different colour (blue for IA,
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light red for MA, dark red for HA). We shall refer to the

resulting plot as state probability (SP) plot. Figures 5b and 6b
show the SP plots for the example subjects. These diagrams

allow us to quickly assess how probable the most likely

state is and what other states have noticeable probability

and give us visual information on how well a person has

rested. In particular, if they have solid blue areas, i.e. rarely

move into the active states during night, then we might

deduce that the person has obtained a good night’s rest, as

the example subject 16 seems to have done. In contrast, sub-

ject 18 (figure 6) has experienced many interruptions at night

which may be indicative of relatively poor quality of sleep.

We may so far conclude that a homogeneous HMM

achieves satisfactory model fits (see electronic supplementary

material, §1 for details on analysis of pseudo residuals) where

estimation results of the parameters are interpretable and the

estimated state probabilities from the HMM provide a retro-

spective analysis of the time-varying characteristics of a

person’s sleep–wake cycle as they are locally decoded given

the observed data, and as such can be used to generate

stochastic simulations, e.g. to obtain approximate bootstrap

confidence intervals. However, in order to be able to explicitly

infer and quantify the circadian nature of the rest–activity

cycle we proceed by suggesting a circadian parametrization

of the HMM.
4. Circadian harmonic Markov model
As in mathematical modelling (see, e.g. [57]) the sleep–wake

behaviour is a result of the dynamic behaviour of the model,

here it would be natural to assume that the transition prob-

abilities of the dynamic Markov process are influenced by a
circadian oscillator where we are interested in estimating

the strength and nature of this influence from an individual’s

activity data. If one views the m possible outcomes of the

state as a multinomial variable, then the prediction of the

probabilities of the different possible outcomes, given a set

of independent variables Xt, is addressed by the standard

multinomial logistic link function. In the framework of

HMMs the logistic link between Xt and the entries of G is

given by (see [58])

P(St ¼ k j St�1 ¼ j,Xt) ¼
exp (g0

j,k þ g1
j,kXt)Pm

k¼1 exp (g0
j,k þ g1

j,kXt)
, ð4:1Þ

where g0
j,k, g

1
j,k are coefficients such that, for identification, one

of each per row k is fixed, e.g. we set g0
k,k ¼ 0, g1

k,k ¼ 0, k ¼ 1,

. . ., m. The entries of the transition matrix each follow a per-

iodic circadian rhythm if Xt is a circadian oscillator, where

here we chose the 24-h cosine function as a basis. We did

not include any further subharmonics as the number of par-

ameters increases quickly, i.e. proportionally with

dim(Xt)(m
2 2 m). We note that the functional form of

equation (4.1) is flexible in that even in the case of using

only the first harmonic the resulting oscillations in the tran-

sition probabilities can be polyphasic and markedly

different from simple sinusoidal curves. We shall refer to

this modelling approach as the harmonic HMM for short.

Incorporating a harmonic into the transition probability

matrix makes inference a more challenging task as there are

no closed-form solutions for the EM algorithm. We pro-

ceeded by resorting to numerical optimization methods,

where we used the solnp routine provided by the R package

depmixS43.
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Figure 6. State estimation for example subject 18. (a) Time series of activity with yellow line indicating the mostly likely state using local decoding. (b) SP plot, i.e.
cumulative plot of P(St ¼ j j Y(T )) for j ¼ 1 (IA, blue), 2 (MA, light red), 3 (HA, dark red).
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While one can in principle study the estimated circadian

variation of each probability in the transition matrix,

we suggest that the information can be efficiently summar-

ized by plotting the 24-h periodic profile of the state

probabilities, which can be computed by applying

P(St ¼ k) ¼
Pm

i¼1 Gi,k(t)P(St ¼ i) for i ¼ 1, . . ., m from the esti-

mated initial state, in a manner analogous to the SP plots

above. Figure 7 gives four examples of the resulting plots

which give a precise summary of a subject’s typical daily

profiles of the circadian state probabilities:

The prolonged period of rest starts during 00.00–01.00

and finishes around 08.00 with no noticeable probability of

interruption for subject 9 (a). The sharp incline as well as

decline of the blue profile at the start and end of the rest

period are strongly indicative of the subject’s starting and fin-

ishing their rest at a regular time every day. Subject 42 (b) has

a less regular start of the resting time as the probability of rest

increases gradually after dinner time. This is in line with the

person having reported that she watched TV for several

hours every night. The subject has a probability of around

5% of interrupting their rest during the night. The subject is

also likely to have used an alarm clock, set at around 07.00,

when there is a sudden increase of the HA probability. How-

ever, one can also also discern a weekend effect where the

subject did not use the alarm clock and tended to sleep

longer. Subject 20 (c) has a substantial probability of 40–

50% of interrupting their night rest and obtains only an

amount of about 5.5 h of rest as can be estimated by the

size of the blue area. This subject reported to have taken anti-

depressant and anti-anxiety medication, and the profiles

indicate that this person is suffering from a highly inter-

rupted rest pattern at night and a lower total amount of

rest. Finally, subject 21 (d ) can be seen to have experienced
an extraordinary large amount of rest (over 11 h) which is

centred around 08.00 as the individual starts resting very

late and rises in the afternoon. This subject reported to have

taken an anti-depressant and a sleeping pill which is particu-

larly known in the press to leave people drowsy in the

morning. Generally, we can deduce from the more gradual

changes in the IA probability at the start and end of the

rest periods that subjects 42, 20 and 21 all start and finish

their rest period at more irregular times and have a more

interrupted resting pattern than subject 9. The circadian

probability profiles for all 46 individuals in the sample can

be inspected in the electronic supplementary material,

figure S5.
5. Circadian parameters
The harmonic HMM provides a model on the basis of which

statistics can be derived that quantify an individual’s rest–

activity rhythm. The amount of rest, a (hours) say, can be esti-

mated by the blue area or integral under the function P(St ¼

1), while the midpoint or centre of rest, c say, corresponds to

the gravity centre of the blue area. Furthermore, given a sub-

ject’s values for a and c, one can construct an index on the

unit interval, which assumes a value of 1 for the strongest cir-

cadian rhythm characterised by a rest period with no

interruptions, i.e. P(St ¼ 1) ¼ 1, and perfectly regular start

and end times at [c 2 a/2] and [c þ a/2], respectively,

as shown by the rectangular profile of width a, centred at c
in figure 8. On the other hand, a complete lack of circadian

rhythm refers to the case where the probability of rest is con-

stant and hence equal to a/24 (see black shaded profile in

figure 8). Typically an individual’s profile will lie between
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these two extreme cases, and we can therefore construct a

rest–activity rhythm index RI such that 0 � RI � 1 where

RI ¼ 24

24� a
1

a

ð
t[Ic

P(St ¼ 1) dt� a
24

� �
, ð5:1Þ
where Ic ¼ [c 2 a/2, c þ a/2]. It is easy to verify that RI
assumes a value of 1 when

Ð
t[Ic

P(St ¼ 1) dt ¼ a, i.e. the stron-

gest case of circadian rhythm, and a value of 0 whenÐ
t[Ic

P(St ¼ 1) dt ¼ a2=24, i.e. absence of circadian rhythm. In

our 46 healthy subjects, RI ranges from 0.47 to 0.96 with a
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Figure 9. Scatterplots and correlations between estimated parameters: for all individuals (excluding outliers): (a) transition probabilities of staying in IA and dichot-
omy index I , O; (b) transition probabilities of staying in IA and RI; (c) RI and I , O; (d ) rest amount per day and RI; (e) centre of rest and rest amount per day;
( f ) mean value of PA conditioned on HA state and age. Results of Spearman’s rank correlation are reported on each graph. Statistically significant correlations at
p-value � 0.1 are found for all relationships shown except (e).
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median of 0.78 (see electronic supplementary material, figure

S6 for a plot of RI values against each subject ID). Returning

to the four examples in figure 7 we note that subject 9 has an

RI of 0.96, the highest value in our sample, while subject 20,

has an RI of 0.53, the second lowest value in our sample.

We computed the various circadian parameters discussed

above, as well as the conditional mean value of the HA state,

which serves as an estimate of the amplitude, and the dichot-
omy index I , O for all 46 subjects and investigated simple

correlations (see figure 9) where five subjects were treated

as outliers due to their irregular rhythm and were omitted

from the correlation analysis4. Significant and interpretable

correlations are found between them. As can be expected

there is clear positive correlation between the probability of
staying in IA and the RI (figure 9b) as both measures decrease

when the subject suffers from sleep interruptions. They are

both positively correlated with the dichotomy index I , O

(figure 9a,c). The dichotomy index I , O is widely used,

but requires the PA data to be partitioned into prolonged

IA and active periods. Such a classification depends on the

clustering algorithm used, where we provide a clustering

algorithm for this in the electronic supplementary material,

§2. However, it is not rare that individuals have one or

more episodes of rest interrupted by activity at times that

are close to the main rest period (for instance, by sleeping

in front of TV in the evening). The question of whether or

not these episodes are part of the night rest is not clear-cut,

so that different values of the dichotomy index I , O may
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be obtained depending on the outcomes of hand-tuning the

clustering algorithm. The RI proposed here is similar in

spirit to the I , O but can be estimated in a more straightfor-

ward way on the basis of the harmonic HMM and we are

planning to compare both indices in future work.

An interesting negative correlation was found between

the amount of rest and the RI index (figure 9d ) which indi-

cates that a person with a good rest–activity rhythm seems

to require less rest. Figure 9e indicates that the rest amount is

negatively correlated with the centre of the rest time. How-

ever, the latter correlation is not significant and a larger

sample size would be needed to substantiate this trend.

We also found that the mean of HA state is negatively cor-

related with age, as shown in figure 9f which is in line

with elderly people being less active. An emerging corre-

lation was detected between the RI and the mean of the

HA state, or amplitude of activity, with ( p-value 0.09, plot

not shown here) and between the RI and amount of HA,

as estimated by the size of the dark red area scaled by the

expected HA counts ( p-value 0.06, plot not shown) indicat-

ing that more physical exercise might lead to a better rest,

but again a larger sample size would be needed to substanti-

ate this. We also considered differences in sex (figure 10)

between our rest–activity rhythm related parameters,

using simple two-sample t-tests, but did not find significant

differences although it should be noted that some lower

p-values were found indicating that females tend to have a

slightly larger amount of rest with a slightly earlier mid-

point. A larger sample size would be needed to investigate

this further.
6. Cancer patients on chronotherapy
We are interested in the circadian rhythm of cancer patients and

how it is affected by the administration of anticancer drugs

which are characterized by a high degree of toxicity [59]. In a

clinical context, the European project inCASA [14] obtained,

amongst other variables, recordings of rest–activity of cancer

patients receiving a multidrug chemotherapy at home [60,61]

where the activity of patients with any cancer requiring che-

motherapy was recorded every minute with a wrist-watch

accelerometer (ActiGraph, Micro MotionLogger, Ambulatory

Monitoring Inc, Ardsley, NY, USA), and data were transmitted

daily to a server via a dedicated platform installed in the home

of the patient. The patients were subject to a chronotherapy, i.e.

a chronomodulated delivery of chemotherapeutic agents, while

in their own environment.

We fitted a circadian harmonic HMM with m ¼ 3 to

the square root of the 5-min averaged PA counts, which

was extended by adding, subject to an indicator function

It[ Tchemo
that equals one during the time of the chemotherapy

treatment Tchemo, a second circadian harmonic whose Fourier

coefficients, and hence amplitude and phase, may assume

different values during Tchemo, i.e. we set

Xt ¼ sin
2pt
P

� �
þ cos

2pt
P

� �

þ It[Tchemo
a sin

2pt
P

� �
þ b cos

2pt
P

� �� �
, ð6:1Þ

where P ¼ 24 h and a and b are arbitrary coefficients that

capture changes in the associated g coefficients in equation
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Figure 11. Data and Results for fitting circadian harmonic HMM for three cancer patients (a-b). Coefficients for the circadian transition probabilities are assumed to
be shifted during chemotherapy as in equation (5). For each patient: (a(i) – c(i)) time series of activity with yellow line indicating the mostly likely state using local
decoding. The highlighted pink section indicates when the chemotherapy was administered. (a(ii) – c(ii)) SP plot. (c) Circadian profile of state probabilities during
non-chemo time (a(iii) – c(iii)) and chemo time (a(iv) – c(iv)). The estimated values for rest amount, centre of rest and RI are stated in the heading of each panel.
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(4.1) for the time of the chemotherapy. Figure 11 gives results

for three patients, A, B and C, on chronotherapy each with

over 2 weeks of PA recordings from a wristwatch. We can

see that, before the chemotherapy, the circadian rhythm for

patients A and C is relatively regular and their baseline

values for RI are well compatible with the healthy individuals
above. There is evidence of a more sedentary behaviour

during the treatment in that patients tend to replace higher

by lower activity levels along with elevated probabilities of

daytime rest. All three patients have a decline in their RI
although this is least pronounced for patient C who has the

highest baseline RI value among the three patients and
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whose RI decreases from 0.78 to 0.70 which is due to some

deterioration occurring during the later phase of the chemo.

Patient B, whose baseline RI of 0.59 is already low in com-

parison to our healthy individuals, experiences the most

pronounced decrease towards an RI of 0.44 which is predo-

minantly due to a more interrupted night rest. The SP plots

for A and B indicate that the circadian interruption might

last until several days after the chemotherapy and future

work of ours will consider how to assess whether a patient

returns to their baseline circadian rhythm and the length of

time that this may take.

These examples show that the harmonic HMM can be

extended to quantify changes in the spectral behaviour of

the circadian rhythm in PA due to external covariates such

as treatment time. Although we have not demonstrated this

here, an analogous approach as above may be taken to draw

inference about a weekend effect. One can hence further envi-

sage that, on the basis of such a routinely estimated circadian

HMM, it will be possible to construct a system that can moni-

tor, in real time, the patient’s circadian rhythm during and

in-between chemotherapeutic courses taken in the patient’s

home or own environment. Such a monitoring system could

be instructed to issue warning signals to a health expert if

the patient drastically changes rhythm or does not return to

the baseline rhythm after a treatment course.
7. Summary and discussion
In this paper we propose the use of a HMM approach which

can address the challenges of modelling activity data, and

provides a natural framework for extracting information

from them. The model can capture the characteristic features

discernible in time series of activity measured over days, such

as the notable square wave form with heterogeneous ultra-

dian variances over the circadian cycle of human activity.

The estimated parameters can be used to characterize the

individual of rest–activity pattern and to study the inter-

individual variability. We have further proposed a circadian

harmonic HMM which incorporates a circadian oscillator,

the nature and strength of which can be quantified from an

individual’s observed PA data, and plots and parameters,

in particular a novel RI, that are of interest and relevant to cir-

cadian monitoring of human activity over many days. The

possibility of assuming that the state transition probabilities

may change over time according to covariate information

and that the response may be multidimensional allows for

a wide range of further modelling approaches with a poten-

tial to deal with the multivariate complex and large

physiological data sets that may in the near future be

acquired regularly and cheaply due to the rapidly developing

technology of wearable devices [20]. Parameter inference via

maximum likelihood requires the use of optimization

procedures for which computationally accessible method-

ologies exist at least for some standard distributional

choices. We note that we have assumed Gaussianity for a

suitable transformation of the data and hence our HMMs

were relatively easy to implement in particular since some

R packages such as (HiddenMarkov and depmixS4) are already

available.

Activity counts taken at very short lengths of epochs dis-

play a large proportion of zero and low integer counts during

the prolonged IA states. Hence the development of
estimation algorithms for mixtures of zero-inflated discrete

distributions and Gaussian distributions for the active states

may provide an interesting avenue to pursue in order to

deal with shorter epoch lengths. However, as Bai et al. [21]

point out, there are also significant differences in the compu-

tation of PA counts between manufacturers and even for new

devices from the same manufacturer. Wearable devices are

developing rapidly gaining increasing market attention via

smart watches, mobile phones and bracelets where there is

currently no consensus about their quality in assessing

activity duration and sleep quality [62]. Activity recordings

mark the beginning of sleep periods by immobility of the

subject and therefore tend to overestimate sleep and underes-

timate wake time [2,63] in comparison to polysomnography

(PSG), the current gold standard for measuring sleep, which

will mark the onset of sleep through changes of electrical

activity patterns in the brain. Hence, the accuracy of activity

recordings obtained by accelerometers in measuring actual

sleep continues to be investigated [64,65]. Migueles et al.
[56] uncover significant effects on data comparability with

respect to placement, epoch length, sampling frequency, fre-

quency setting of the filtering process that selects the

acceleration measured and treatment of missing data (usually

due to removal to avoid contact with water) for different gen-

erations of accelerometer devices. Although it cannot address

differences in the quality of data resulting from different

types of measuring devices, an advantage of the HMM

approach lies in its ability to translate the information from

the observed data into probabilities of being in, and transfer-

ring between, different activity states allowing, in principle,

for a comparison between studies that may be based

on fundamentally different ways of measuring activity. Fur-

thermore, the HMM approach solves the problem of

‘thresholding’ activity into different states in an appropriate

way through a probabilistic model whilst respecting the

dependencies in time which is a fundamental property of

the observed time-series data.

Although we have not discussed this in detail here, it is

important to note that the HMM provides a model on the

basis of which one can compute theoretically justified confi-

dence intervals which quantify the individual-specific

variability of estimated model parameters. Moreover, the esti-

mated harmonic HMM provides a simulation model for

realistic data that can, for instance, be used to compute

approximate confidence intervals for any non-parametric

statistics of interest, such as the I , O or the RI developed

here. This is an important task essential to evaluating the

risk associated with the use of any such statistics for thera-

peutic treatment decisions in clinic. Such appropriate

statistical modelling approaches are needed and the whole

approach has the potential to serve as routine model in an

online monitoring system that could be implemented to

monitor, in real time, the daily rhythm of a cancer patient

during chronotherapy in their own home.

Further data are foreseen to be collected as part of an

e-health circadian platform created by the French project

PiCADo which allows automatic and non-invasive monitor-

ing of circadian biomarkers in cancer patients receiving

treatment in their own environment. The platform and the

HMM modelling approach suggested here are currently

being used and further developed by us in two projects

namely to investigate circadian rhythm in cancer patients

and in night-shift working individuals.
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Endnotes
1The majority of accelerometers in these studies were positioned on
the hip, four studies used the non-dominant wrist.
2For example, a person who often moves their wrist rather than
the central body will appear more active if the accelerometer is
positioned on the wrist.
3Convergence should be assessed for different starting values.
4The five outliers are subjects 2 (travelled between Europe and US), 8
(suffered from insomnia), 20 (suffered from depression and anxiety),
21 (suffered from insomnia and depression) and 29 (student working
at night).
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