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Abstract

Molecular imaging by definition is the visualization of molecular and cellular processes within a 

given system. The modalities and reagents described here represent a diverse array spanning both 

pre-clinical and clinical applications. Innovations in probe design and technologies would greatly 

benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. 

Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment 

strategies, which highlights the continued need for improved diagnostics. In this review, we 

present a summary of the current clinical protocol for the imaging of a suspected infection, 

methods currently in development to optimize this imaging process, and finally, insight into 

endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.

Keywords

Molecular Imaging; Endocarditis; Infection; Inflammation; Staphylococcus aureus

1. Clinical Approach to Identification of Infection

Identification of generalized infection with imaging modalities relies upon monitoring 

morphological changes with radiograph, ultrasonography, computed tomography (CT), and 

magnetic resonance imaging (MRI). CT and MRI provide particularly useful data in 

detecting organ and musculoskeletal infections; however, the data collected from these 

imaging modalities is often only attainable in late stages of infection and is further 

complicated by morphological distortion induced by post-surgical changes, scarring, and 

presence of foreign materials [1]. Most imaging modalities are further limited by their 

inability to distinguish (i) inflammation from infection, (ii) tumors from abscesses, and (iii) 

causative pathogens. There is a rich history of the use of radiolabeled markers (i.e. proteins 

and cells) for imaging infectious processes by either single-photon emission computed 

tomography (SPECT) or positron emission tomography (PET) as a complement to these 

aforementioned techniques for morphological imaging. Examples of radiolabelling isotopes 
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that are most common include 99mTechnetium (99mTc), 111Indium (111In), 68Gallium salts 

(68Ga), and 18Fluorine (18F), which have been applied to labeling leukocytes and their 

cellular products, in addition to labeling therapeutic molecules such as antibiotics, 

monoclonal antibodies, and experimental therapeutics by use of chelator such as diethylene 

triamine penta-acetic acid (DPTA), 1,4,7,10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic 

acid (DOTA), and hexamethylproplyleneamine oxime (HMPAO) [2]. The use of such 

chelators allows for consideration of multiple isotopes due to their ability to modulate the 

imaging window by compensating for differences in the half-life and function of the isotope 

(i.e. gamma emission). A summary of the currently available labeling methods and specific 

details related to their use can be found in Table 1. Other examples require the accumulation 

of patient derived leukocytes, labeled with 111Inoxine or 99mTc-HMPAO and re-injected 

into the donor patient, for the clinical detection of an underlying infection. The current 

clinical method utilizing labeled leukocytes is recommended for a range of inflammatory 

disorders and infections; the differentiation between sites of sterile inflammation and 

infection relies upon optimizing image acquisition and interpretation at predetermined time 

points [3, 4, 5]. The reliance upon the specificity of image acquisition and interpretation as 

opposed to the specificity of the reagent highlights the need for pathogen-specific probes as 

opposed to infection-associated inflammation.

2. Separating Inflammation from Infection

Discrimination of generalized inflammation from infection is not easily obtained, primarily 

due to similarities in immune response generated by tissue damage or chronic insult. As a 

result, currently employed imaging techniques rely largely on the detection of inflammation 

associated with infection. However, the potential inaccuracy of this assumption limits the 

efficacy of this approach, and necessitates additional confirmation of the underlying 

infection, by positive blood tests or biopsies and non-specific symptoms of the patients, such 

as fever and general malaise. It is important to note, however, that the identification of 

immune cells, their receptors, and products, which exhibit up-regulation or increased 

specificity in the infectious process may be utilized as molecular targets for the monitoring 

of inflammation associated with infection. Host responses to infectious stimuli trigger 

overlapping responses that include an initial release of histamines with concurrent 

elaboration of inflammatory cytokines, followed by a rapid neutrophil burst response to 

these triggers, prolonged splenic and tissue release of monocytes to the site of damage, 

tissue conversion of monocytes to macrophages to aid in engulfment and lysis of the foreign 

pathogens, and later followed by lymphoid generation of pathogen specific T cells and high 

affinity B cell antibodies. Therefore, we have outlined here a current summary of methods 

specifically used to detect these immune cell types and their distinguishing products.

2.1. Indirect Detection of Leukocytes

2.1.1. Integrins and Selectins—Although current clinical standards involve the ex vivo 

labeling of patient derived leukocytes, non-invasive methods have been developed to 

indirectly detect cells through the up regulation of selectin and integrin leukocyte receptors 

during inflammatory processes. Vascular cell adhesion molecule-1 (VCAM-1) expression is 

highly up-regulated on endothelial cells as a response to inflammatory cytokines to promote 
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the adhesion of leukocytes, particularly slowing cells rolling from the vasculature, by 

binding to very late antigen 4 (VLA-4) and subsequent participation in leukocyte-endothelial 

signal communication. VLA-4 conjugated to VCAM-1 encapsulated in a cross-linked iron 

oxide nanoparticles (CLIO) has been show to detect the VCAM-1 expression associated 

with atherosclerotic plaques [6, 7, 8]. A molecule similar to VCAM-1, Intercellular adhesion 

molecule 1 (ICAM-1) is displayed by the activated endothelium, macrophages, and 

lymphocytes upon exposure to the cytokines Interluekin-1 (IL-1) and tumor necrosis factor-

α (TNF-α), and allows for the transmigration of leukocytes through the endothelium. To 

detect relative ICAM-1 levels by MRI, Wong et al. developed a superparamagnetic iron 

oxide (SPIO)-based nanomicelle coated with lymphocyte function-associated antigen 1 

(LFA-1) that binds specifically to ICAM-1 and Choi et al. developed a Gd-DPTA-anti-

ICAM-1 antibody [9, 10].

P-selectin and E-selectin are integrins that are commonly upregulated as a result of 

inflammation. Imaging of P-selectin has been achieved by several methods: 99m Tc-

labeled, 111In-labeled-, and Cy7-labeled-anti-P-selectin monoclonal antibody; fucoidan, a 

ligand of P-selectin with an affinity in the nanomolar range, has been labeled with 99mTc; 

FITC labeled monoclonal antibody, anti-humanCD62P (P-selectin); the development of 

versatile ultra-small paramagnetic iron oxide nanoparticles (VUSPIO) consisting of PEG 

and dextran coated iron oxide nanoparticles conjugated with an anti-human-P-selectin 

monoclonal antibody for MRI; and microparticles of iron oxide with dual ligands of 

VCAM-1 and P-selectin, also for MRI [11, 12, 13, 14, 15]. 111-In-labeled and 99mTc-labeled 

monoclonal antibodies of E-selectin allow for detection of E-selectin positive immune cells 

in the inflammatory microenvironment; a comparison of the two methods in a clinical trial 

of 10 patients with rheumatoid arthritis demonstrated 111In-labeled and 99mTc-labeled anti-

E-selectin monoclonal antibody have equivalent efficacy in the detection of active 

inflammation within joints, but 99mTc is a more readily available radioisotope with a 

preferred imaging time of four hours [16, 17, 18]. A Gd- DPTA nanoparticle with a Sialyl-

Lewisx motif that binds E-selectin was shown to localize to endothelial activation within the 

brain [19].

2.1.2. Myeloperoxidase—Reporters directed at products elaborated by these immune 

cells can also be target to assess inflammation that may exist as a result of underlying 

infection. A central enzyme in inflammatory immune response, myeloperoxidase (MPO) is 

produced by myeloid cells and generates reactive species, such as hypochlorous acid and 

oxygen radicals that damage tissues and pathogens. Several agents have been developed that 

detect MPO and its byproducts; for example, standard hydrogen peroxidase or hydrogen 

peroxide sensing reagents can be used in vivo for this goal. This is typified by the use of 

luminol as a chemiluminescent light reporter by two MPO dependent mechanisms: the 

luminol reacts with a radical oxygen produced by NADPH oxidase, and is subsequently 

oxidized by MPO, or it reacts with the hypochlorous acid produced by the reaction of MPO 

with hydrogen peroxide; each reaction results in the chemiluminescent molecule 3-

aminophthalate [22]. A comparable substrate, pholasin, a glycoprotein that reacts with 

reactive oxygen species (ROS), may be superior to luminol in its method of action due to its 

increased sensitivity and accelerated degradation [23]. Utilizing two substrates, (DOTA)-Gd 
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and bis-5-HT-DOTA-Gd, that form radicals and oligomers in the presence of MPO, MPO 

can be detected by MRI as an increase in the relaxivity of the tissue [24]. 

Sulfonaphthoaminophenyl fluorescein (SNAPF) is a fluorescein probe that responds to the 

hypochlorous acid produced when MPO catalyzes the oxidation of hydrogen peroxide in the 

presence of chloride ions in murine and human tissue [25]. Non-specific fluorescein based 

probes developed for ROS detection include: a napthofluorescein-based near-infrared 

fluorescent probe, Naphtho-Peroxyfluor-1 (NPF1), which indicates hydrogen peroxide 

levels within macrophages as measured by flow cytometry [26]; 2-[6-(4_-

hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF) and 2-[6-(4-

amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF) auto-oxidation resistant probes 

which produce fluorescein upon reaction with specific ROS, and in combination, can 

discriminate between highly reactive oxygen species and hypochlorite [27]. 5-(and-6)-

chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) is a reduced 

fluorescein probe that permeates the cell, reacts with intracellular ROS, and is retained 

within the cell (LifeTechnologies).

Potential clinically applicable ROS sensitive probes include antioxidant nanoparticles that 

degrade into non-toxic and anti-inflammatory components upon exposure to hydrogen 

peroxide, and then inhibit the generation of ROS by in vivo macrophages [28], and a 

biocompatible nanoparticle coated with 400 quenched oxazine molecules, which are 

activated upon interaction with peroxynitrite and hypochlorous acid produced by MPO [29]. 

The advantage of imaging MPO reaction products based on the nanoparticle scaffold is that 

the nanoprobe has a half-life conducive to in vivo imaging. In development of the probe, we 

tested the ability of the MPO sensor to signal inflammatory response in a myocardial 

infraction model based on permanent ligation of the descending coronary artery. The MPO 

sensor was given via tail-vein injection at the height of the myeloid inflammatory response 

and, as the monocytes and neutrophils were recruited to the damaged myocardial, the probe 

was oxidized by peroxynitrite and hypochlorous acid generated in the cells and released into 

the environment (i.e. oxazine was liberated from the MPO sensor). Although only tested by 

flow cytometry using neutrophils isolated from splenocytes, this MPO sensor has the ability 

to respond to hydrazine-based inhibition and may be of use in the evaluation of the in vivo 

efficacy of MPO-based cleavage and heme liberation caused by various hydrazine analogs 

[21]. MPO is an excellent inflammatory target but would have no ability to discriminate 

types of pathogens.

2.2. Detection of Myeloid Cells

2.2.1. Monocytes and Macrophages—The differentiation of monocytes to tissue 

macrophages occurs in the presence of tissue damage or pathogens. Tissue macrophages 

phagocytose pathogens and apoptotic cells and generate signaling molecules to recruit 

additional immune cells [30]. Their phagocytic function enables the absorption of iron oxide 

nanoparticles (CLIO, SPIO, USPIO) [31] and 19F-labeled-perfluorotributylamine (PFTA) 

coated particles for MR imaging [32]; additional labeling methods include 89-Zr-dextran 

coated nanoparticles (DNP) [33] and 64Cu-DTPA-monocrystalline iron oxide nanoparticles 

(MION) [34], both of which are visualized by hybrid PET/MRI; Macrophage scavenger 

receptor (MSR) targeted-Gd containing immunomicelles [35] and Gd containing lipid based 
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nanoparticles targeted for the macrophage scavenger receptor-B (CD36) for MR imaging 

with enhanced macrophage specificity [31, 36]. In a comparison study of sterile 

inflammation and osteomyelitis, injection of USPIO and subsequent macrophage uptake 

resulted in USPIO-enhanced macrophage localization in infectious vertebral osteomyelitis as 

opposed to limited macrophage infiltration in sterile vertebral inflammation [37].

2.2.2. Neutrophils—Neutrophils function as key mediators of inflammation and infection 

due to their phagocytic function and production of ROS in a process termed respiratory 

burst. Several of the neutrophil specific agents developed utilize the PET 

agent 99mTc: 99mTc-hydrazinonicotinic acid (HYNIC)-Neutrophil activating peptide-2 

(NAP-2) [38]; 99mTc-IL-8 is a chemotactic cytokine secreted by macrophages which binds 

with strong affinity to receptors on neutrophils [39]; 99mTc-antiCD15-IgM monoclonal 

antibody (LeuTech) binds specifically to both circulating and sequestered neutrophils [40]; 

leukotriene B-4 (LTB4), a potent chemoattractant of neutrophils, targeted by 99mTc-labeled 

or 18F-HYNIC-labeled LTB4 antagonist [41]. In addition to these 99mTc-labeled targets, two 

probes have been developed for the formyl peptide receptor displayed by neutrophils: one 

contains cyanine7 (Cy7) dye conjugated to the formyl peptide mimetic, termed Cy7-PEG-

cFIFIFK for pre-clinical fluorescence imaging [42], as well as a cFLFLFK-PEG-64Cu-

DOTA for MRI [43]. Neutrophils exhibit increased rates of metabolic activity during active 

infection, and therefore exhibit a high uptake of 18F-FDG [44], 68Gallium salts [45], and 

indocyanine green (ICG) [46]. In addition, the previously mentioned applications of MPO 

may also be applied to neutrophils, as MPO constitutes the majority (5%) of their 

azurophilic granules.

2.3. Adaptive Immunity

The tracking of adaptive immune cells is not a new idea for imaging infection and 

inflammatory diseases; such studies include appreciation of in vivo dendritic cells [47], T 

cells [48], and B content [49], with recent advancements in the development of contrast 

agents for MRI [50].

2.3.1. Dendritic Cells—Dendritic cells are professional antigen presenting cells that are 

present at the initiation of sites of infection and inflammation, and then migrate to the lymph 

nodes and spleen to stimulate the differentiation of B and T cells. Methods developed for the 

labeling of dendritic cells include: perfluoropolyether labeled dendritic cells that can be 

detected of 19F by MRI [51]; a combination of furoxamide and 111In-labeled dendritic cells 

monitored by a combination of SPECT and MRI [52]; these methods have been developed 

for the noninvasive, long term monitoring of cellular therapy [53, 54, 55].

2.3.2. T cells—T cells are responsible for pathogen immunity by cytolysis of infected cells 

(CD8+) and activation of B cell affinity maturation (CD4+). Interleukin-2 (IL-2), produced 

by T cells, stimulates the proliferation of T cells into CD4+ and CD8+ cells; therefore, the 

detection of IL-2 denotes a pro-inflammatory environment as is consistent with acute 

infection and chronic inflammatory diseases. To this end, currently 3 PET agents have been 

developed: 99mTc-labeled IL-2 [56, 57], 18F-lableled-IL-2 [58], 35S-labeled IL-2, 

and 123 or 131-In-labeled IL-2 [59, 60] to detect human activated T lymphocytes [61]. Two 
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CD8+ T cell specific imaging agents have been developed; they each consist of “mini 

antibodies,” which are derived from parental antibodies specific to primary CD8+ T cells in 

the peripheral blood, spleen, and lymph nodes. The engineering of mAbs prevents the 

depletion of CD8+ T cells in vivo; these mAbs are then conjugated to S-2-(4-

isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid for 64Cu radiolabeling for 

immuno-PET imaging [62]. T cells and B cells are difficult to label with iron oxide 

nanoparticles, therefore manganese chloride, a contrast agent that enhances T1 relaxivity, 

may be utilized instead [63]. However, the internalization of the paramagnetic agent 

decreases the T1 relaxivity, reducing the detection strength by MRI.

2.3.3. B cells—Primary B cell labeling involves the labeling of their cell specific products, 

antibodies. Monoclonal antibodies have undergone optimization of the radionuclide, the 

chelating agent, and the antibody construct due to their dual diagnostic and therapeutic 

ability [64]. In addition to directly labeling antibodies, antibody pre-targeting has been 

developed. This method consists of an injection of an unlabeled artificial antibody conjugate 

which binds to a specific antibody, accumulates in the solid tumor (or other area of interest), 

and then is subsequently imaged by the addition of a high avidity effector molecule that 

binds to the antibody-conjugate pair. Although this method is currently optimized for 

oncologic application, the method has relevance to similar infectious disease processes, such 

as abscesses or other areas of localized infection [65]. Direct labeling of the B cells has been 

attempted with SPIO nanoparticles in conjugation with NIRF dyes for monitoring B cell 

dynamics within the spleen. However, the introduction of SPIO nanoparticles appeared to 

interfere with B cell function, therefore labeling methods require further optimization [66]. 

In general, the attempts to label a multiplicity of cell types, including B cells, T cells, and 

dendritic cells are limited to labeling with pre-clinical probes, such as NIRF, GFP, and 

quantum dots for detection by intravital microscopy or flow cytometry [49]. These methods, 

though valuable in pre-clinical experimentation, do not provide a promise of translation to 

clinical application.

2.4. Small Molecule Imaging

2.4.1. Chemokines—Chemokines are a subset of chemotactic cytokines that are secreted 

at the site of infection or inflammation for the recruitment of immune cells, and therefore 

have been explored as imaging targets for detection of cell specific immunity [67]. Notably, 

monocyte chemoattractant protein-1 (MCP-1) has been labeled with 125In allowing for 

imaging of inflammatory processes which involve monocytes as the primary mediators of 

inflammation [68]. Another 125In-labeled chemokine, platelet factor-4 (PF-4) synergizes 

with the interleukin-8 (IL-8) that binds with strong affinity to neutrophil receptors, therefore 

allowing the visualization of neutrophils in inflammatory processes [69].

2.4.2. Proteases—Imaging protease activity has key benefits to tracking inflammation 

and infectious disease. Arguably there are three families of proteases that are most often 

associated: matrix-metalloproteinase (MMP), cathepsins, and caspases. MMPs are zinc 

dependent proteases capable of degrading extracellular matrices, activating and inactivating 

chemokines and cytokines, and cleaving ligands and cell surface receptors during cell 

proliferation, angiogenesis, apoptosis, and cell migration [70]. Broadly, the MMPs family 
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members are classified as collagenase (MMP-1, −8, −13, and −18), gelatinase (MMP-2 and 

−9), stromelysin (MMP-3, −10, and −11), and matrilysin (MMP-7 and −26). To detect these 

various MMP subtypes, various probes have been developed: a highly lipophilic 111In 

or 99mTc-DTPA-Cys-Thr-Thr-His-Trp-Gly-Phe-Thr-leu-Cys-OH (111In or 99mTc-DTPA-

CTT) used to image and inhibit MMP-2 preferentially [71]; a conjugation of an MMP-2 

substrate with a quenched fluorophore released upon substrate recognition and cleavage 

[72]; a near infrared polymer-based proteolytic beacon “PB-M7NIR,” consisting of a 

pegylated dendrimer core covalently coupled to a Cy5.5 labeled MMP-7 specific peptide 

substrate, which preferentially fluoresces in in vivo MMP-7 positive tumors relative to a 

bilateral control tumor [73]. Bremer et al. developed a high-density probe conjugated 

polymer containing a MMP-2 specific substrate that is quenched prior to MMP-2 mediated 

protease release [74]; PerkinElmer now provides MMPsense, a probe with a broad range of 

fluorescent labels (AlexaFluor680, 750, etc.) and MMP specificity (MMP-2, 3, 7, 9, 12, and 

13). A similar method was employed by the group in the development of the Prosense 

reporter, a pan-cathepsin probe for the detection of cathepsin B, H, or L: PCG (protected 

graft co-polymer) is conjugated to Cy5.5, which allows the cathepsin to cleave the poly-L-

lysine backbone of PCG, releasing the quenched fluorophores of PCG and Cy5.5 [75]. This 

identical method has been applied to MMPs, caspase-1, cathepsin D, and urokinase 

plasminogen activator as well.

2.4.3. Caspases—In addition to their involvement in apoptosis, specific caspases, such as 

caspase-1, 3, and 8 have been identified as activated or inhibited in bacterial and viral 

infections [76, 77, 78]. Targeted photodynamic therapy induces the apoptosis cascade via 

caspase-9, caspase-8, and caspase-3, and when combined with a caspase-3 activated 

fluorescent substrate allows for the monitoring of therapeutics [79, 80, 81]. Weissleder et al. 

has developed a biocompatible NIR probe which is (ICE)-specific to cleavage by caspase-1 

and whose activity has been demonstrated with whole body NIRF imaging [82]. Each of 

these proteases is united in a common process, apoptosis, and therefore determining their 

activity provides additional knowledge about the initiation, progression, or cessation of cell 

death. The probes specifically developed for the detection of apoptotic cells focus on the 

abnormal cell morphology characteristic of these cells. For example, 99mTc-labeled 

bis(zinc(II)-dipicolylamine) (Zn-DPA), a mimetic of annexin V, and annexin V, labeled 

with one of a variety of reporters including Cy5.5, Gd-DPTA-quantum dot, 18F, fluorescein 

isothiocyanate (FITC), or 99mTc-HYNIC, specifically bind to the phosphatidyl serine 

exposed on the surface of an apoptotic cell, allowing for the detection of apoptotic cells with 

multiple imaging modalities [83, 84, 85, 86, 87, 88]. Additionally, 131Iodine labeled 

peptides are caspase substrates absorbed by apoptotic cells [89].

3. Imaging of Infectious Species

To increase the ease of pre-clinical experimentation many species of bacteria have been 

engineered to express a version of the luciferase enzymatic system for the generation of 

bioluminescence in pre-clinical studies of gene regulation and antibiotic efficacy [90, 91]. 

Standard protocol for clinical imaging of infection utilizes exogenously radiolabeled patient 

derived leukocytes, in addition to 99m Tc, 67Ga, and 18F-FDG tracers for PET imaging due 

to their absorbance by cells exhibiting high metabolic rates; each method therefore localizes 
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to sites of active bacterial infection with increased extravasation and diapedesis of 

leukocytes. However, these methods mentioned previously cannot differentiate between 

infection and inflammation, and therefore cannot separate post-operative inflammation or 

infection, a critical diagnostic difference for therapeutic efficacy.

3.1. Labeled Antimicrobials for Detection of Infection

3.1.1. Synthetic and Endogenous Antibiotics—Labeled antibiotics present a 

promising method as they localize specifically to the site of an infection, and depending 

upon their target, are able to identify specific microorganisms. Fluoroquinolones are a class 

of antibiotics known to intercalate into the DNA of most bacterial species, and therefore 

have been labeled with 99mTc and 18F for PET imaging [92, 93, 94]. Infecton©, a 99mTc-

labeled version of Ciprofloxacin, is a clinically approved agent that has been shown to have 

equivalent or greater efficacy in the detection of musculoskeletal bacterial infections as 

other clinical agents such as 18F-FDG and radiolabeled leukocytes. However, it is noted that 

Infecton© was removed from the market due to disagreement about the specificity of 

diagnosis due to incongruity of differentiation between sterile inflammation and infection at 

multiple time points [92, 93, 94, 95, 96, 97, 98, 99, 100, 101]. A specific diagnostic agent 

for the detection of Gram-positive bacteria utilizes magnetic nanoparticles derivatized with 

vancomycin to form CLIO-vanco nanoparticles. This method relies on the avidity of the 

pathogen binding to 10-100's of these iron oxide core sensors resulting in a T1-relaxivity 

change signaling the presence of Gram-positive bacteria. These nanoparticles have been 

specifically shown to identify the Gram-positive bacterium Staphylococcus aureus [102, 

103]. Naturally occurring antibiotic mechanisms, such as antimicrobial peptides and 

bacteriophages, have also been exploited for imaging by labeling with 99mTc: this includes 

the non-specific antimicrobial peptides lactoferrin, defensins, ubiquicidin, and human 

neutrophil peptide-1 (an α-defensin) and the M13 bacteriophage, which exhibited specificity 

for bacterial strains of Escherichia coli and Staphylococcus aureus, and when administered, 

reduced levels of live E. coli in a mouse thigh infection model [104, 105, 106, 107, 108, 

109, 110]. The high degree of specificity for an intended target and dual diagnostic and 

therapeutic ability of the 99mTc-labeled bacteriophage has encouraged the expansion to 

investigation other phage types [111]. There is a current controversy about the merits and 

demerits of radiolabeled synthetic antibiotics and endogenous antimicrobial peptides. 

Briefly, fluoroquinolone antibiotics currently optimized for imaging exhibit a non-preferred 

accumulation in sterile inflammatory sites, in addition to the concerns about the increasing 

rise of antibiotic resistance that may generate a false negative diagnosis; however, this 

method has exhibited a higher degree of specificity than ex vivo radiolabeled leukocytes and 

does not accumulate in the bone marrow, which are important distinctions in the detection of 

infections such as osteomyelitis, septic arthritis, and infection of orthopedic prostheses. 

Endogenous antimicrobial peptides exhibit comparable specificity and accuracy to 

fluoroquinolone antibiotics in the detection of extracellular bacteria, but exhibit none to 

minimal accumulation in sites of sterile inflammation; however, the greatest concern lies in 

the development of resistance and subsequent loss of the innate protective mechanism of 

antimicrobial peptides [112]. A promising antimicrobial peptide, UBI29-41, is a clinically 

tested agent derived from ubiquicidin, a defensin isolated from human airway epithelial 

cells. UBI29-41, labeled with 99mTc, was rigorously tested in animal models, and when 

Eggleston and Panizzi Page 8

Informatics (MDPI). Author manuscript; available in PMC 2016 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



translated into Phase I clinical trials showed overall sensitivity, specificity, and accuracy of 

100%, 80%, and 94.4%, respectively, in patients with soft tissue infections and osteomyelitis 

with an optimum time for imaging being 30 minutes after intravenous administration of the 

radiotracer. It was also determined that the detection of the radiotracer was dependent on the 

number of viable bacteria present, as determined after serial treatment with ciprofloxacin; 

this can be considered as an advantage in determining the efficacy of antibiotic treatment, 

but a disadvantage in detecting chronic infections with lower numbers of bacteria that may 

also be encased within biofilms [112, 113, 114, 115]. A study conducted compared the 

specificity of 99mTc labeled synthetic antimicrobial peptides (UBI 29-41, 18-35, 31-38 and 

hLf 1-11), human neutrophil peptides (defensins), and 99mTc-ciprofloxacin (Infecton) in 

differentiating sites of sterile inflammation and infection [106]. Infection was initiated by 

injection of multi-drug resistant Gram-positive bacteria (S. aureus), Gram-negative bacteria 

(Klebsiella pneumonia), or flucanzole resistant fungi (Candida albicans), while sterile 

inflammation was induced by injection of heat killed microorganisms or lipopolysaccharide 

(LPS). Results of this study indicated that antimicrobial peptides accumulate specifically in 

sites of infection; this is proposed to be due to the preferential binding of these peptides to 

live microorganisms, not activated host leukocytes. 99mTc-ciprofloxacin accumulated in 

sites of sterile inflammation and infection, therefore the authors concluded that 99mTc-UBI 

peptides exhibit preferable discrimination of infection from inflammation. This study 

reinforces the variable ability of 99mTc-ciprofloxacin to discriminate sterile inflammation 

from infection; 99mTc-ciprofloxacin has demonstrated interactions with mammalian cells, 

including mammalian DNA, DNA gyrase, topoisomerase II, and human leukocytes and 

endothelial cells, which contributes to the lack of specificity. In addition, the increasing 

prevalence of drug resistant microorganisms that either subvert the therapeutic mechanism 

or efflux the molecule limits the binding of labeled drug molecules [116, 117, 118, 119, 120, 

121, 122].

3.2. Pathogen Specific Targets

In order to optimize the accuracy of imaging clinical infections, targets should include 

components unique to the infectious species, preferably with species specificity, or specific 

to the host immune response to infection. Identifying components of the bacterium include 

the cell wall, bacterial specific enzymes, and specific host factors acquired for growth.

3.2.1 Cell Wall—The unique composition of the bacterial cell wall allows for the 

development of probes with high specificity. Wheat germ agglutinin, a lectin, conjugated to 

colloidal quantum dots allows for specific binding to the N-acetylglucosamine and sialic 

acid of Gram-positive, not Gram-negative, bacterial cell walls [123, 124]. Non-specific 

probes which label both Gram-positive and Gram-negative cell walls include fluorescently 

labeled D-isomer amino acids which are incorporated into newly synthesized peptidoglycan 

of bacterial cell walls [125]; 111In-Zn-DPTA and Cyanine-Zn-DPTA have both been shown 

to bind to bacterial cell walls, for PET and fluorescence imaging respectively [126, 127, 

128]. In addition, Perkin Elmer has developed Xenolight Rediject bacterial detection probe, 

a pre-clinical NIRF probe targeted for anionic phospholipids that binds with higher affinity 

to Gram-negative cell walls, but binds at a comparable concentration to Gram-positive cell 

walls. For a species-specific diagnostic, SPIO nanoparticles conjugated to an antibody for 
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the cell wall of Mycobacterium tuberculosis detect extra pulmonary M. tuberculosis 

infection [129].

3.2.2 Bacterial Specific Factors—Specific co-factors required for bacterial growth have 

also been exploited for pre-clinical imaging, including targets such as biotin and iron. 111-In-

DOTA-biotin and zinc-dipicolylamine analog (Zn-DPA)-biotin, non-covalently linked by 

streptavidin (SA) to form the complex 111In-DOTA-biotin-SA-Zn-DPA-biotin, has been 

developed for enhanced visualization upon bacterial absorption with SPECT-CT imaging 

[126]. Iron must be seized from the host environment; therefore quantum dots with human 

transferrin conjugates are internalized by, and therefore label the bacterium. However, these 

quantum dots have been shown to increase the survival of S. aureus in iron poor 

environments, and therefore are not applicable in pre-clinical applications [124]. Bacteria 

also express a thymidine kinase that differs from human thymidine kinase. The 

radiolabel, 124I-FIAU, is a substrate for the thymidine kinase of bacteria and therefore can 

be used as an agent to identify musculoskeletal infections by PET-CT [130]. A S. aureus 

specific probe composed of synthetic oligonucleotides flanked by a fluorophore and 

quencher molecule, termed the Cy5.5-TT probe, was activated upon interaction with the 

micrococcal nuclease secreted by S. aureus [131]. Labeled iron oxide or gold nanoparticles 

may be absorbed by the bacterium and therefore imaged with MRI, although it is necessary 

to note that macrophages phagocytosis these particles as well, decreasing the specificity of 

the diagnosis [132].

4. Endocarditis: A Model of Difficult Diagnosis

Endocarditis is an infection of the heart valve and early detection typifies the need for 

advancements to promote early diagnosis and assessment of causative microorganism [133]. 

Initial damage to the heart valve denudes the protective cardiac endothelium leading to a 

sterile clot, which consists of platelets, coagulation factors, fibrin and, in some areas, 

basement collagen and stroma. These initial sites of damage are often referred to as “sterile” 

vegetations. Concurrently, bacteremia by opportunistic pathogens such as S. aureus can lead 

to the formation of bacterial vegetations that weaken the valve, leading to regurgitation and 

ultimately, heart failure.

Treatment options for patients diagnosed with endocarditis rely heavy on aggressive 

antibiotic therapy, often lasting up to 4-6 weeks. Although removal of the infected valve 

may prove necessary, this surgical intervention is complicated by the aforementioned 

difficulty of diagnosis. Therefore, more discriminatory imaging methods will greatly 

improve therapeutic efficacy and reduce patient morality. Guidelines for diagnosis of 

endocarditis rely on the modified Duke criteria including (i) a fever, (ii) a new heart 

mummer, (iii) a positive blood culture for Staphylococcus aureus, Streptococcus species 

typical of IE, including viridans streptococci and Streptococcus bovis, or other 

microorganisms from persistently positive blood cultures consistent with IE and (iv) a 

positive transthoracic or transesophageal echocardiogram (TEE or TTE, respectively) [134, 

135]. Often serial TEE and TTE are required to determine if there is growth of the fibrin-

bacterial-platelet vegetations. These echo-based methods depend on interpretation by a 

trained Radiologist, and do not inform on the causative pathogen [136, 137, 138]. Therefore, 
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confirmative PET, SPECT, and MRI agents have been developed to complement this 

traditional method. Table 2 contains a summary of both clinical and preclinical probes that 

have been studied for the detection of endocarditis along with useful parameters for 

discriminating the merit of these findings. The clinical PET agent 18F-FDG has been shown 

to identify cardiac vegetations, particularly in cases of prosthetic valve endocarditis (PVE), 

though high uptake of 18F-FDG in the physiologically normal myocardium remains a 

concern [139, 140, 141, 142]. MRI provides anatomical and functional imaging that allows 

for the detection of perivalvular abscesses and differentiation of pseudoaneurysms from 

infective endocarditis [143]. The majority of the newly developed techniques utilize the 

SPECT/CT imaging modality. The clinical agent 99mTc has been used as a label for 

HMPAO-WBC (white blood cells), anti-NCA-95, an anti-granulocyte antibody for 

immunoscintigraphy, stannous pyrophosphate in combination with cardiac scintigraphy, and 

Annexin V for detection by scintigraphy of platelet activation in experimental 

endocarditis; 111Indium has been utilized as a label for platelets and leukocytes with varying 

success in sensitivity [144, 145, 146, 147, 148]. Pre-clinical probes that could be applied for 

identification of bacteria within the vegetation of IE include synthetic complexes that target 

the anionic bacterial cell wall [149, 150]. The targeting of fibrin within the vegetation, in 

either non-infective or infective endocarditis, would aid in the detection of lesions missed 

during serial echocardiography. To this aim, Gd-DPTA nanoparticles coated with anti-fibrin 

monoclonal antibody were developed and tested in an in vivo canine thrombus model; it has 

also been shown that fibrin targeted antibodies labeled with either 111In or 99mTc detected 

and inhibited the vegetative growth of Streptococcus sanguinis. Monoclonal antibodies for 

fibrin termed GC4 and T2G1, developed by Rosebrough et.al, and D59A, developed by Hui 

et.al, labeled with131Iodine or 111Indium have been tested in pre-clinical animal studies; 

D59A has been clinically evaluated for detection for deep vein thrombosis (DVT) (Table 2). 

These antibodies has been shown to be specific for venous thrombi, due in part to the lack of 

cross-reactivity with fibrinogen [151, 152, 153, 154, 155, 156, 157, 158, 159]. A clinically 

approved agent, Thromboview©, is a 99m-Tc labeled humanized monoclonal antibody for 

the D dimer of cross-linked fibrin utilized for the detection of DVT and pulmonary emboli 

[160, 161]. Two pre-clinical probes specific to coagulase positive S. aureus, a major causal 

agent of infective endocarditis [162, 163, 164, 165, 166, 167, 168, 169, 170], have been 

developed: an AlexaFluor680-Prothrombin (AF680-ProT) analog for near infrared 

preclinical imaging and a 64Cu-DPTA-Prothrombin (64Cu-DPTA-ProT) analog for use in 

the more clinically-relevant PET-CT modality [171]. Prothrombin (ProT) is captured and 

activated by the S. aureus secreted proteins, staphylocoagulase and von Willebrand binding 

protein [172, 173, 174]. Staphylocoagulase is secreted into the circulation and also binds 

through the C-terminal domain to the fibrin deposited in vegetation, and therefore ProT and 

its analogs, are incorporated into the vegetation on the heart valve. The AF680-ProT analog 

can be visualized with FMT/CT, while the 64Cu-DPTA-ProT analog requires PET/CT for 

visualization. Both probes exhibited no effect on the host-clotting cascade while localizing 

to S. aureus vegetations present on heart valves and allowing the monitoring of antibiotic 

therapy in a murine model of IE. The visualization of a causative microorganism within the 

vegetation with modified antibiotics has been accomplished by two specific methods: by 

conjugating vancomycin, an antibiotic which forms hydrogen bonds with the D-alanine 

moieties present in the Gram-positive cell wall to a fluorochrome, resulting in a probe 
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termed vanco-CW800 for fluorescence imaging; the generation of 3H-spiramycin, a 

macrolide antibiotic that inhibits protein synthesis of the bacterium within the vegetation, 

providing dual diagnostic and therapeutic effect. In addition, Lee et.al has developed a 

miniaturized diagnostic magnetic resonance (DMR) system, containing magnetic 

nanoparticles conjugated to Vancomycin (CLIO-Vanco sensors), that is able to detect Gram 

positive bacteria in a small volume of unprocessed sample (10 μL) [103, 175, 176]. A 

recently developed probe for the detection of Enterococci within IE utilizes 64Cu-DOTA-

anti pili monoclonal antibody for detection of Entercocci in a model of rat endocarditis by 

PET/CT. The probe, termed MAb 69, is specific for EbpC region of pili. Pili are implicated 

in biofilm formation and initiation of endocarditis; therefore, the addition of MAb 69 

significantly attenuates the pathogenicity of the Enterococci, coupled with high-density 

labeling of Enterococci in vivo [177]. Those probes described here that have been developed 

for clinical imaging modalities (i.e MRI, SPECT, and PET) achieve the high specificity 

necessary for proper diagnosis of IE, but currently have not been translated to clinical 

application.

4. Conclusions

Molecular imaging advancements in technology and targeting have revolutionized pre-

clinical discoveries and led to clinical advancements in patient diagnostics. All major 

disease types have benefited from this revolution or more appropriately evolution of the 

imaging arts including development of new ways to monitor the pathogenesis of cancer and 

chronic inflammatory diseases, such as atherosclerosis, diabetes, and autoimmune disorders; 

application of such advancements to infectious disease would lend an increased specificity 

to diagnosis that would greatly benefit treatment. Currently, the clinical application of 

molecular imaging to infection is limited to indirect measurement of enhanced localization 

and metabolic activity of leukocytes via radiotracers for PET or SPECT modalities. The 

development of diagnostics targeted to the pathogen or disease state would allow the non-

invasive identification of the causative microorganism and monitoring of antibiotic therapy 

for early recognition and eradication of infection. Recently developed diagnostics that 

satisfy this aim are summarized in Figure 2; 99mTc-labeled-Ciprofloxacin (a fluoroquinolone 

antibiotic) intercalates into bacterial DNA, and as a pathogen targeted detection method 

demonstrated initial clinical success; however, variability in discrimination between 

infection and inflammation initiated its removal from market consideration. The synthetic 

antimicrobial peptide, UBI 29-41, has demonstrated promising specificity in discriminating 

infection from inflammation in early clinical trials [105, 107, 108, 109, 113, 114, 115]. 

However, the continued paucity of FDA approved infection specific agents highlights the 

difficulty of translating pre-clinical to clinical application due to surmounting the barriers of 

cost, toxicity, and off-target labeling. Therefore, the application of FDA approved materials 

in a manner specific to the disease state or pathogen will aid in bypassing the barriers of 

clinical translation in order to expedite the process of developing infectious disease specific 

probes. This accelerated method of development is exemplified by the application of USPIO 

to the diagnosis of vertebral osteomyelitis; it was observed by Bierry et al. that two different 

populations of macrophages infiltrated vertebral osteomyelitis than are found in sterile 

spinal bone marrow and that injection of USPIO resulted in macrophage uptake and 
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infiltration specific to vertebral osteomyelitis [37]. Targeted methods for specific pathogens 

would be the most useful for clinical application; however, they are difficult to develop and 

translate, therefore the novel combination of modalities or probes that are FDA approved 

may provide a straightforward path for the development of new infectious disease detection 

agents.
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Figure 1. 
(a) Illustrated within each circle “Inflammation,” “Disease State,” and “Pathogen” are 

markers that can be utilized as molecular targets in the diagnosis of infection. The 

identification of general inflammatory markers, depicted in the “Inflammation” circle, 

indicate the inflammation surrounding an infection, but increased specificity of diagnosis 

can be gained by focusing on targets associated with a disease state or pathogen. 

Endocarditis and Staphylococcus aureus are depicted here as representative of a disease 

state and associated pathogen of interest, respectively, with current pre-clinical (*) or 

clinical (#) applications noted.
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Table 1

Labeling Agent Modality Half-Life Pre-Clinical Clinical (FDA approved)

99Technetium SPECT 6 hours ✓ ✓

89Zirconium PET 3.3 days ✓ ✓

67 or 68Gallium salts PET, SPECT 3.26 days; 68 minutes ✓ ✓

111Indium SPECT 2.8 days ✓ ✓

64Copper PET 12.7 hours ✓ ✓

18Fluorine PET 109.8 minutes ✓ ✓

123, 124, 125,131Iodine PET, SPECT 13.3 hours; 4.18 days; 59.4 days; 8 
days

✓ ✓

Superparamagnetic iron oxide 
nanoparticles (SPIO)

MRI NA ✓ ✓

Cross linked iron oxide nanoparticles 
(CLIO)

MRI NA ✓ ✓

Monocrystalline iron oxide nanoparticles 
(MION)

MRI NA ✓ ✓

Gadolinium-Chelator (DOTA, DPTA, 
etc.)

MRI 1.5 hours ✓ ✓

Colloidal Quantum Dots Optical NA ✓ ×

Near Infrared Fluorophore (NIRF) 
(Indocyanine green)

Optical 150-180 seconds (blood) ✓ ✓

NIRF (Cyanine5,5.5,7; AlexaFluor dyes) Optical NA ✓ ×

Bioluminescence Optical NA ✓ ×
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