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Eighty percent of the populationwill experience some formof
backpain over their lifetime,with�10%of sufferers becoming
chronically disabled. Although there are numerous causes of
back pain, it is strongly associated with disk degeneration.1

The treatment strategies employed currently can be nonsur-
gical or surgical and are aimed at symptomatic relief rather
than repairing or reversing damage to the intervertebral disk
(IVD). In fact surgery involving spinal fusion may actually
accelerate disk degeneration at adjacent levels.

Normal Disk Function

It is possible to bend and twist the spine while resisting
compression from gravity and muscle action because of the
IVDs.2 They are formed of the peripheral collagen-rich annulus
fibrosus (AF) surrounding the proteoglycan-rich central nucle-
us pulposus (NP), sandwiched between cartilaginous end
plates (►Fig. 1).3 The function of the disk is to resist compres-
sion and permit limited movements in which loading forces
are spread evenly on the vertebral bodies. The AF consists
primarily of collagen type I fibers and is responsible for
resisting tensile forces, and the NP consists mainly of loosely
assembled collagen type II fibers and proteoglycan, mostly
aggrecan. The cell density in the human adult NP is 4 � 106

cells/cm3, and the AF has 9 � 106 cells/cm3, which is very low
when compared with other tissues such as cartilage.4 Most of
the disk nutrition is through the cartilage end plates, but with
age the vascularity decreases and the end plates become
calcified, which limit the disk’s nutrient supply.

Thus a sparse number of cells maintain homeostasis in an
abundant extracellular matrix (ECM) by balancing synthesis
and degradation (►Fig. 2). This is orchestrated through com-
plex anabolic (bone morphogenetic proteins [BMPs], trans-
forming growth factor-β [TGF-β], and insulin-like growth
factor [IGF]) and catabolic (matrix metalloproteinases, aggre-
canases, and inflammatory cytokines like interleukin 1 [IL-1]
and tumor necrosis factor-α [TNF-α]) processes, in addition to
tissue inhibitors of matrix metalloproteinases (TIMPs), which
control catabolic activities. The adult disk is the largest avas-
cular tissue in the body, which is a major determinant of its
metabolic functions. The main route for disk nutrition is
through the cartilaginous endplate and is adapted to anaerobic
metabolism because of a low oxygen tension.5,6 This results in
high concentrations of lactic acid and low pH,7 conditions that
are not conducive to high levels of protein synthesis required
during tissue repair or regeneration. It is possible that an
authentic disk cellmight be the only cell capable of functioning
under these adverse conditions.
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Abstract The nucleus pulposus of the intervertebral disk contains high amounts of the proteo-
glycan aggrecan, which confers the disk with a remarkable ability to resist compression.
Other molecules such as collagens and noncollagenous proteins in the extracellular
matrix are also essential for function. During disk degeneration, aggrecan and other
molecules are lost due to proteolysis. This can result in loss of disk height, which can
ultimately lead to pain. Biological therapy of intervertebral disk degeneration aims at
preventing or restoring primarily aggrecan content and other molecules using thera-
peutic molecules. The purpose of the article is to review recent advances in biological
repair of degenerate disks and pain.
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Aging and Disk Degeneration

Mechanisms that contribute to degenerative changes in the
disk include reduction in nutrient supply, diminished cell
viability, loss of notochordal cells, genetics, cell senescence,
and loading history.8,9 These lead to biochemical alterations
in composition and structure of the ECMdue to both depleted
synthesis and increased degradation, with aggrecan being
particularly susceptible to proteolytic damage and loss. Aging
of the IVD is associated with increased degeneration.10,11 The
disk has no endogenous repair activity. However, induced
repair of disk tissue may be possible, as chymopapain treat-

ment to degrade the degenerate NP stimulates new matrix
formation, although not consistently.12,13

During disk degeneration, the NP changes from a gelati-
nous structure to a more fibrous texture as fissures appear in
the NP and the AF. The proteoglycan-to-collagen ratio (mea-
sured as GAG-to-hydroxyproline ratio) is highest in patients
with grade 2 disks (� 23:1) and lowest in thosewith Thomson
grade 4 disks (� 5:1).11 In healthy juveniles (2 to 5 years old),
the GAG-to-hydroxyproline ratio in the NP is� 25:1. Similar-
ly, in young adult disk with no degeneration (15 to 25 years),
the GAG-to-hydroxyproline ratio within the NP is � 27:1.
With increasing age there is a marked drop in the GAG-to-
hydroxyproline ratio, which declines to � 5:1 in the elderly
(60 to 80 years). These processes may be the results of a
marked reduction of nutritional supply, due to regression of
blood vessels and calcification of the end plates.14,15

The focus of molecular therapy is to restore the juvenile
disk composition to degenerative disks by stimulating the
production of proteoglycan and other matrix components.
This article reviews the research on using molecular therapy
to treat disk degeneration and subsequently pain.

Molecular Therapy

Concepts in Tissue Engineering of IVD
There is growing evidence that laboratory-grown tissues or
organs can be used to support the function of defective or
injured body parts, and these tissue-engineering procedures
have recently been applied to the disk.16–19 Such advances in

Fig. 1 Schematic views of the human intervertebral disk, vertebrae, and vasculature in the fetal (26 weeks), juvenile (10 years), and adult (50
years) human. The figure shows the disk with the nucleus pulposus (NP) surrounded by the annulus fibrosus (AF) and separated from the vertebral
bodies by the end plate (EP). The thickness and diameter of the end plate, the vascularity of the disk, and the abundance of notochordal cells in the
nucleus pulposus decline with age. Mesenchymal cells gradually replace notochordal cells in the nucleus pulposus, and the consistency of the
nucleus pulposus changes from fluid to more gelatinous because of decreased proteoglycan content.

Fig. 2 The disk cell is a master of its destiny. The figure depicts the disk
cell responsible for synthesizing matrix molecules such as aggrecan
and collagen as well as degrading the matrix through the action of
proteases. In a healthy disk there is a balance between synthesis and
degradation.
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regenerativemedicine have led to promising newapproaches
for the biological treatment of disk degeneration. Disk repair
can be facilitated by the injection of growth factors, cell
supplementation, gene therapy, and the introduction of bio-
materials. Several recent investigations showed in rabbit
models or in cell culture models of differentiation that it
may be possible to use mesenchymal stem cells for IVD repair
and regeneration, avoiding the need to harvest autologous
disk cells.20,21

Growth Factors
Growth factors are usually polypeptides that are involved
in stimulation and maintenance of the integrity of the disk
ECM. Typically, they bind to receptors resulting in signaling
cascades between cells and communicate their effects
through endocrine, paracrine, and autocrine mechanisms.
The endocrine signaling mechanism involves the release of
a growth factor from a specialized group of cells in the
kidney, liver, heart, or other organs into the circulation and
acting on a distant target tissue. In a paracrine mechanism,
growth factor communication occurs between neighboring
cells that have specific receptors within a tissue or organ.
Autocrine signals, on the other hand, are those in which a
growth factor acts on the same cell, and an intracrine
signal is produced by growth factor acting within the
same cell.

Growth factors, such as IGFs, TGF-β, epidermal growth
factors (EGFs), and fibroblast growth factor (FGF), are known
to stimulate new disk matrix formation (►Fig. 3).22,23 Other
therapeutic molecules, such as anticatabolics (TIMP-1 and
TIMP-2) and intracellular regulators (Smad proteins, Sox 9),
are being used (reviewed by Yoon and Patel24; ►Fig. 4).

Insulin-Like Growth Factors
IGFs (IGF-1 and IGF-2) are polypeptides whose sequence is
similar to insulin, and IGFs bind their receptors, IGF1R and
IGF2R, forming a complex system termed the IGF axis. IGF-1
controls matrix synthesis and mitotic activity. It stimulated
proteoglycan synthesis in cells of the bovine NP.25 Further,
Osada et al demonstrated the expression of IGF-1 mRNA and
IGF-1 in cultured bovine IVD cells and proposed an autocrine/
paracrine loop in the IVD. The effect of various growth factors
on protein and proteoglycan synthesis on canine disk cells
was dependent on the region of the disk fromwhere the cells
were derived.23 TGF-β1 and EGF produced better responses
than FGF, and IGF-I had no effect on cells from the AF.22

However, IGF-I increased proteoglycan synthesis in monolay-
er cultures of bovine disk cells.11 In rat disks, during the late
stages of aging, IGF-1 receptors are downregulated in addi-
tion to an increase in IGF binding proteins, leading to a
decreased IGF-1 response.26 In a free-swelling explant culture
model, IGF-I produced marginal synthetic response in the NP
and none in the AF.27

Fibroblast Growth Factor
There are 22 members of the FGF family in humans. Although
FGF-1 is acidic, FGF-2 is basic and is the most studied. FGFs
from 1 to 10 all bind to FGF receptors. Others such as FGF11 to
FGF14 do not, and apart from possessing similar sequence
homology, they function differently to the FGFs. FGF-3 recep-
tors are expressed in disk cells.28 Adding FGF-2 during culture
expansion of NP cells in monolayer was found to sustain a
differentiated cell phenotype by maintaining responsiveness
to TGF-β1.29 However, FGF-1 supplementation to degenerated
murine caudal disks had little or no effect on aggrecan and type
II collagen mRNA expression.30 The authors concluded that AF
cells in degenerated disks are responsive to some growth
factors like TGF-β and not others in vivo.

Epidermal Growth Factor
EGF is a low-molecular-weight polypeptide that stimulates
cell proliferation, growth, and differentiation of cells by
binding to its receptor and stimulating protein tyrosine
kinase activity. As discussed previously, EGF stimulated pro-
teoglycan synthesis in the organ culture of dog IVD tissues.31

TGF-β Superfamily
All immune cell lineages, including B cells, T cells, and
dendritic cells as well as macrophages, secrete TGF-β, which
negatively regulates their proliferation, differentiation, and
activation by other cytokines. Thus, TGF-β is a potent immu-
nosuppressant, and perturbation of TGF-β signaling is linked
to autoimmunity, inflammation, and cancer.32

TGF-β pathway starts at the GS domain where TGF-β is
activated and the ligand binding to the type II receptor (TGF-
ßRII) leads to recruitment of type I receptor (TGF-ßRI). Then it
phosphorylates the SMAD2 and SMAD3 family of signal
transducers.33

With SMAD4 they form hetero-oligomeric complexes (also
phosphorylation) and translocate to the nucleus, where they
interact at the promoter with other transcription factors at

Fig. 3 Therapeutic molecules used in disk repair: transforming growth
factor (TGF), bone morphogenetic protein (BMP), growth differenti-
ation factor (GDF), cartilage-derived morphogenetic protein (CDMP),
Sma-Mad (Smad) proteins, Sox 9, LIM mineralization protein-1 (LMP-1),
tissue inhibitor of matrix metalloproteinase (TIMP), insulin-like growth
factor-1 (IGF-1), platelet-derived growth factor-1 (PDGF), epidermal
growth factor (EGF), fibroblast growth factor (FGF), and Link N.
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DNA sequence-specific binding.33 TGF-β regulates cell prolif-
eration and ECM synthesis. TGF-β is stored in a latent form and
very little is active. Disk cell proliferation and proteoglycan
synthesis is stimulated by several growth factors that including
TGF-β, IGF-1, platelet-derived growth factor, BMP-2, EGF, and
BMP-7, also referred to as OP-1.25,31,34,35 These data suggest
that using growth factors or growth factor genes may improve
the success of a cellular approach to disk tissue engineering.
TGF-β exists in three isoforms and is part of a superfamily that
includes BMPs. TGF-β was shown to be better at stimulating
proteoglycan synthesis in disk cells than EGF, IGF-1, platelet-
derived growth factor, and FGF.31 Using adenovirus-mediated
transfer of the TGF-β gene into normal rabbit disks in vivo,
enhanced proteoglycan synthesis was demonstrated.36 Others
have showed increased collagen and proteoglycan synthesis by
cells from degenerated human disks.37

The signaling nodes, while repressing Smad, may be also
responsible for interference in multiple pathways, which in
turn will produce various pathophysiologic outcomes and
may be also be linked to pain.

Bone Morphogenetic Proteins
BMPs were originally discovered by their ability to induce
the formation of bone and cartilage, and the BMP pathway

is paramount in the development of the dorsoventral axis
in both vertebrates and invertebrates. Like TGF-β, BMPs are
normally present in low amounts in healthy disk where
they play a role in repair and maintenance of disk integrity.
The receptors of BMP-2 and -4 were first found in hyaline
cartilaginous cells within the end plate of young mice. The
important functioning of BMP signals in disk degeneration
was suggested by the fact that with age these BMPs and
their receptors moved to the annulus and to the calcified
cartilage at the site of enthesis.38 Recombinant BMP-2 can
stimulate proteoglycan synthesis without expression of
osteogenic phenotype intervertebral disk cells.39 Others
have found that TGF-β and BMP-2 can induced disk calcifi-
cation.40 Finally, LIM mineralization protein-1 can stimu-
late proteoglycan synthesis through its action on BMP. BMP
pathway consists of BMP dimers binding to a membrane
complex composed of BMP receptors 1 and 2 (serine/
threonine kinases). Regulatory Smad1/Smad5 through
phosphorylation with Smad 4 (co-Smad) form a Smad1/
5 þ 4 complex that enters the nucleus. Inside, the nucleus
regulates gene expression after it associates with transcrip-
tion factors. Nakase et al reported the localization of tran-
scripts for BMP-4, -6, and growth differentiation factor-5 as
well as BMP receptors in the outer layer of the anterior

Fig. 4 Signal transduction pathways in the disk cell by the TGF-β superfamily of ligands, Link N and Wnt. TGF-β superfamily includes BMPs.
Typically, TGF-β superfamily activates its type II receptor, which recruits and phosphorylates a type I receptor. TGF-ßs are mediated by SMAD2 and
SMAD3 that form complexes with SMAD4 and translocate to the nucleus, and BMPs and Link N are mediated by SMAD1 and SMAD5. The canonical
Wnt pathways are initiated whenWnt protein bind to receptors of the Frizzled family and the LRP5/6 co-receptor. The signal is further mediated by
Dishevelled family of proteins and leads to β � catenin cytoplasm accumulation followed by entering in the nucleus where it modulates gene
expression. Abbreviations: BMP, bone morphogenetic protein; EGF, epidermal growth factor; FGF, fibroblast growth factor; GDF-5, growth
differentiation factor 5; IGF, insulin-like growth factor; IL-1, interleukin-1; LMP-1, LIM mineralization protein-1; TGF, transforming growth factor;
TIMP-1, tissue inhibitors of matrix metalloproteinase-1; Wnt, Wnt/b-catenin.
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annulus at an early stage of experimental cervical spondy-
losis, suggesting that BMPs are involved in chondrogenesis
in spondylosis.41

Recombinant human BMP-7 (OP-1), a member of the
TGF-β family of proteins, stimulated the synthesis of pro-
teoglycans and collagens when added to rabbit disk cells
cultured in alginate beads, after depletion of the matrix by
IL-1 or chondroitinase ABC.42,43 To expand on these in vitro
findings, the effects of BMP-7 were determined in vivo in a
rabbit model of intervertebral disk degeneration.44,45 BMP-
7 injection increased proteoglycan and collagen content
in the disk, reversing the decrease in disk height, which led
to restoration of the biomechanical properties. These
studies showed that BMP-7 could promote repair in disk
degeneration.

N-Terminus of Link Protein as an Endogenous Growth
Factor
Human articular cartilage aging is associated with proteo-
lytic degradation of its constituent proteoglycan aggre-
gates.46 Link protein is found in aggrecan/hyaluronan
aggregates, where it stabilizes the interaction between
the two. The peptide DHLSDNYTLDHDRAIH (Link N),
cleaved by stromelysin from the N-terminus of the Link
protein, can act as a growth factor and stimulate synthesis
of proteoglycans and collagens in articular cartilage.47–50

Link N is conserved between rabbits and humans. It could
represent an endogenous growth factor in the disk as it can
stimulate the synthesis of both proteoglycan and collagen
by disk cells in vitro,51,52 increase proteoglycan levels in
vivo53 in a rabbit model of disk degeneration, and down-
regulate hypertrophic and osteogenic differentiation of
human mesenchymal stem cells.54 We also showed that
the effects of this peptide could last for 12 weeks in the
rabbit and for more than a week in human explant cultures
(Gawri et al, in press, European Cells and Materials). We
have recently shown that Link N activates Smad1/5 signal-
ing similar to that used by BMPs (►Fig. 4), Thus, Link N
could represent a potential growth factor able to stimulate
the production of an NP-like phenotype.

Gene Therapy
One of the limitations of growth factors is that they have short
half-lives, transiently increasing matrix synthesis. Thus, a
method is needed that can provide sustained growth factor
concentrations within the IVD. Gene therapy offers that
potential as it can direct a target cell to synthesize a desired
substance by delivering a corresponding DNA or RNA using a
viral or nonviral vector. Viral vectors and biocompatible
materials, such as cationic liposomes, DNA–ligand complexes,
and gene gun techniques, have been developed as vehicles to
introduce potentially therapeutic genes into mammalian
cells. Wehling et al first demonstrated gene transfer to the
IVD.55 Later, the efficacy of cDNA for TGF-β,56 sox9,57 LIM
mineralization protein-1,58 and TIMP59 to upregulate synthe-
sis of matrix into the disk was shown. However, gene therapy,
although very promising for the treatment of disk degenera-
tion, is still in its infancy.

Wnt Signaling
Wnt/b-catenin (hereafter called Wnt) signaling is involved in
development, degeneration, and regeneration of the
IVD.60–62 The signaling cascade is initiated at the cell mem-
brane by interaction between Wnt and the Frizzled receptors
plus LRP5/6 co-receptors and is not depending on phosphor-
ylation (►Fig. 4). Canonical Wnt signaling stabilizes cyto-
plasmic β-catenin and its translocation into the nucleus, to
regulate expression of Wnt-target genes.63 Noncanonical
Wnt signaling is independent of β-catenin signaling. They
involve the activation of protein kinase C, calmodulin-depen-
dent kinase II, and c-Jun N-terminal kinase.Wnt signaling has
also been associated with degenerative joint disease.64 Wnt
signaling suppresses proliferation of NP cells and induces cell
senescence of the IVDs.60,61 Upregulation of matrix metal-
loproteinases byWnt signaling causes dedifferentiation of NP
cells, promoting cellular senescence and possibly leading to
IVD degeneration.60,61 Members of the TGF-β superfamily
and Wnt signaling cascades have been shown to physically
interact in different tissues, suggesting new targets for
therapy.65,66

Pain and Innervations

Mechanisms of Axial Low Back Pain
Although disk degeneration does not necessarily correlate
with actual pain, disk degeneration can be found in most
patients suffering from back pain.1 Axial low back pain is
characterized by spontaneous or movement-evoked pain or
soreness. It is confined to the spine and low back region and
can be induced by disk degeneration. IVDs have a sensory
component that normally penetrates only the outer layers
of the disk.67 In patients with chronic low back pain,
increased nerve fibers and blood vessels that express
substance P into the AF and even penetrating the NP
were observed,68 which may be facilitated due to the loss
of aggrecan and hydrostatic pressure.9,69,70 Nociceptive
nerve ingrowth into painful IVD is linked with nerve
growth factor production by blood vessels growing into
the IVDs, from adjacent vertebral bodies,71 which can be
upregulated in disk cells by the proinflammatory cytokines
IL-1β and TNF-α (►Fig. 5).72

Mechanisms of Nonaxial Pain
Nonaxial pain (radicular pain or sciatica) in which the pain
radiates from the back down one or both legs following the
course of the sciatic nerve is thought to have two primary
mechanisms. The first mechanism is that proinflammatory
and pronociceptive mediators released from degenerating
disks may sensitize fibers that innervate the disk and
surrounding structures. The second mechanism is that
severe disk degeneration and herniation can result in
mechanical compression of the spinal nerve, resulting in
pain due to nerve damage. Proinflammatory substances
secreted by the NP may be involved in the etiology of
nonaxial low back pain by irritation of nerve roots even
in the absence of mechanical compression.73 Local epidural
application of NP or some of its constituent cytokines
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produces increased spinal nerve root excitability and
hypersensitivity to painful stimuli.74 Annular tears during
disk degeneration can therefore release its contents and
lead to nerve fiber irritation and back pain. Disk herniation
can also result in compression of spinal nerve roots or
dorsal root ganglia neurons.75

Pain Receptors
Pain receptors are found on nerve endings located in the disk.
Sensory fibers and their endings in the outer AF of lumbar
intervertebral disks werefirst demonstrated in a rat.32 The AF
of the adult human intervertebral disk is sparsely innervated,
with substance P localized on the endothelium of small blood
vessels in the AF of disks removed during anterior fusion for
back pain.33 Once there is a pain stimulus, which may be due
to tissue damage, activation of pain receptors takes place,
releasing neurotransmitters that send information to the
spinal cord and the brain. This process of pain transmission
is called nociception and the pain receptors are called noci-
ceptors. NK1 receptors through which vascular effects are
mediatedwere found onvessels in the AF, suggesting a role for
substance P in discogenic pain. Mechanoreceptors and noci-
ceptors have been documented in the spine,76,77 and they are
more extensive in degenerated disks where nerve fibers were
found in the anterior longitudinal ligament and in the outer
region of the disk.78 Apart from substance P-immunoreactive
nerve fibers found in the anterior longitudinal ligament and
the outer zone of the AF, fibers were also found in the inner
parts of the disk. Finally, pain is an extremely complex
process. Identification of the receptors and processes that
are involved in the transmission of pain should lead to
improved therapeutics in pain management.

Conclusion

Current biological repair approaches are exploring a combina-
tion of molecular, cellular, and tissue-engineering techniques
to restore the integrity of the intervertebral disk or at least
retard the further degeneration of NP. The target cohort of
patients is dependenton the stage ofdiskdegeneration. During
early degeneration, when the AF remains intact, injection of
therapeutic molecules such as growth factors, anabolic pep-
tides (as an alternative to recombinant growth factors), or gene
therapy (for prolonged delivery) to stimulate increasedmatrix
synthesis is feasible. Supplementing the disk with more cells
and/or scaffolds may be necessary in later stages of degenera-
tion. However, a way to improve disk nutrition is essential.
Maintaining disk height and improving the biological integrity
of the intervertebral disk may lead to relief in pain. However,
more research is needed to further establish the effects of these
potential therapeutic agents on pain.
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