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Abstract: Osteosarcoma (OS) is a rare form of cancer with high death rate but is one of the most
frequent forms of bone cancer in children and adolescents. MiRNAs are small endogenous RNAs
that regulate gene expression post-transcriptionally. The discovery of miRNAs could allow us to
obtain an earlier diagnosis, predict prognosis and chemoresistance, and lead to the discovery of new
treatments in different types of tumors, including OS. Despite the fact that there is currently only one
clinical trial being carried out on a single miRNA for solid tumors, it is very probable that the number
of clinical trials including miRNAs as prognostic and diagnostic biomarkers, as well as potential
therapeutic targets, will increase in the near future. This review summarizes the different miRNAs
related to OS and their possible therapeutic application.
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1. Introduction

Osteosarcoma (OS) is the most common primary bone tumor in children and adoles-
cents. Although advances made in chemotherapy, radiation therapy, and surgery have
improved survival rates in different cancers, little to no progress has been seen in re-
cent years for OS [1,2]. Unfortunately, in osteosarcoma, 15–20% of patients admitted for
treatment, already have an advanced form of the disease with metastases, that are most
commonly found in the lungs [3–5]. These lung metastases are what cause the death of the
patient in 30–40% of cases [6]. In patients without lung metastases, the 5-year survival rate
is 58–75% [7]. This prognosis is determined by the rate of occurrence of metastasis and the
appearance of chemoresistance [6]. Given the aggressiveness and high mortality rates of
OS, early detection is key to a successful treatment. Recent studies have shown that OS
is becoming increasingly resistant to chemotherapeutic agents. Therefore, understanding
the underlying molecular mechanisms causing the resistance, and the development of
novel and more successful treatments, has become a necessity. In fact, Basile et al. (2020)
published a meta-analysis in which they found different prognostic factors in patients
under the age of 40, enabling an accurate prediction of the risk a patient has of developing
lung metastasis. Optimizing the treatment of patients, based on these different prognostic
factors, could play an important role in increasing OS survival rates. [8]. In recent years,
microRNAs (miRNAs) have been presented as possible diagnostic and prognostic biomark-
ers, as modulators of chemoresistance and as a plausible new treatment option in the fight
against different tumors, including OS.

2. Human Osteosarcoma

Osteosarcoma (OS) is a high-grade malignant bone tumor composed of mesenchymal
stem cells (malignant osteoblasts). It is characterized by the deposition of an immature
osteoid matrix resulting in the formation of immature woven bone. The incidence of this
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tumor varies according to race, age, sex, and other factors. It is more frequent in males,
children aged 10–14, and in African Americans, suggesting that osteosarcoma may have
genetic predisposition [9]. Hereditary disorders such as retinoblastoma, the Li-Fraumeni
syndrome, Rothmund–Thomson syndrome, Bloom’s syndrome and Werner syndrome [10],
Paget’s disease, chromosomal abnormalities, ionizing radiation, and alkylating agents [11],
are risk factors related to the progress of the disease. Current treatment consists of pre-
operative chemotherapy to shrink the primary tumor and its posterior resection. For the
first step, a combination of drugs is commonly used in order to avoid chemoresistance and
increase the degree of tumor necrosis. The most common chemotherapeutic drugs include
DOX (doxorubicine), cisplatin, ifosfamide, and a high-dose of methotrexate associated
with leucovorin calcium as a rescue agent [12]. Three to four weeks after completion
of the latter treatment, surgical resection of the tumor is carried out, and 2 weeks after
surgery postoperative chemotherapy is administered [13]. Currently, other treatments
are in the clinical trial phase, and their results are not yet known. Treatments, currently
in phases II and III of clinical trials include, inhibitors of platelet-derived growth factor
(PDFG), RANKL and bisphosphonate, vascular endothelial growth factor (VEGF), mTOR,
immune checkpoints, antagonists of insulin growth factor 1 receptor (IGF-1R), Tyrosine
kinase Src, human epidermal growth factor receptor (HER2/Neu) blockers, cytokines,
immunomodulating agents, dendritic cell peptide vaccines, and chimeric antigen receptor
(CAR) T cells [14]. Despite advances in treatments, the 5-year survival rate in patients
with metastases—which is usually around 50% of patients initiating treatment—has not
improved in the last decade and remains below 30% [15,16]. In addition, the number of
patients that develop drug resistances are significant. This highlights the importance of
finding early diagnostic and prognostic markers and identifying new therapeutic targets in
the fight against OS [3].

In the last decade, a new group of molecules known as miRNAs, able to act as genetic
biomarkers in numerous diseases including OS, have emerged [17]. They are non-coding
RNA molecules of 20–24 base pairs in length, which are unable to code for proteins. They
are phylogenetically conserved and have a crucial role in the regulation of gene expression
and cellular processes [18–22].

3. MicroRNAs: Biogenesis and Biological Functions
3.1. Biogenesis of miRNAs

Biogenesis of miRNAs begins in the cell nucleus, where miRNAs are transcribed by
RNA polymerase II or III as primary transcripts (pri-mRNA) to specific genes. Later, the
enzyme Drosha and its cofactor DGCR8/Pasha cut this pri-miRNA to form a pre-miRNA
(70–90 nucleotides long in the shape of a stem-loop). The nuclear transport receptor
Exportin 5 (XPO5), that plays an important role in various cancers, then actively transports
the pre-miRNA from the nucleus to the cytoplasm. In the cytoplasm, the pre-miRNA is
cut by a Dicer enzyme (regulated by XPO5), to form a mature and short double-stranded
miRNA molecule and, after the degradation of one of the two chains, a single strand of
miRNA is incorporated into the RISC (RNA-induced silencing complex) protein complex.
The RISC protein complex is responsible for directing the silencing of messenger RNA and
regulating post transcriptional gene expression, via the inhibition of protein translation or
destabilization of target transcripts [23–31] (Figure 1).
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Figure 1. Diagram of miRNA biogenesis. In the nucleus, miRNA that are transcribed by RNA polymerase II or III as 
primary transcripts (pri-miRNA). The enzyme Drosha and its cofactor DGCR8/Pasha then cut the pri-miRNA molecule to 
form a pre-miRNA. This pre-miRNA is actively transported from the nucleus to the cytoplasm by the nuclear transport 
receptor Exportin 5 (XPO5) in a Ran-GTP (guanosine triphosphate) protein dependent manner by XPO5. In the cytoplasm, 
the pre-miRNA is cut by a second enzyme called Dicer, to form a mature and short double-stranded miRNA molecule. 
The miRNA duplex unwinds and is incorporated into the RISC protein complex [17]. 

3.2. Biological Functions of miRNAs 
MiRNAs are distributed in the intragenic and intergenic regions of the genome. 

miRNA genes are observed in defined units or clusters [32], containing two or more adja-
cent sequences with a common transcriptional triggering mechanism. These clusters are 
involved in different biological functions, as regulators of biological events such as cellu-
lar homeostasis, and their aberrant expression has been associated with pathophysiologi-
cal events [33]. 

Biological events regulated by miRNAs include differentiation and development, 
nervous system regulation, immunity, viral infection, DNA repair, cell junctions and cell 
to cell communication, cellular reprogramming, and metabolism, among others [33]. For 
example, miR-17/92 is highly expressed in embryonic stem cells and is related to skeletal 
development, lung morphogenesis, cardiomyocyte and epithelial proliferation, pre-ec-
lampsia and reduction of trophoblast differentiation, and early embryonic lethality [34–
37]. Furthermore, this cluster is associated with B-cell apoptosis, [38] T-cell proliferation 
[39], DNA repair, post-natal neovascularization [40], mitochondrial metabolism [41], and 
DNA repair via deacetylation activity of sirtuin 1 (SIRT1) [42]. Other miRNA clusters with 
different functions include miR-106b/25, related to spermatogonial differentiation [43], 
generation of new neurons [44], early embryonic lethality [37], coronary artery disease 
[45], or control of Ca2+ accumulation in the mitochondrial matrix [46]. Kabekkodu et al. 
(2018) published a relevant review of these miRNA clusters among others, and their roles 
in biological functions [33]. 

Regarding cancer, the main hallmarks are cell cycle control, apoptosis and senes-
cence, autophagy, cell proliferation and growth, angiogenesis, and metastasis. miRNA 
clusters play a crucial role in these steps, and their role and type can differ depending on 
the type of cancer. More specifically, the miR-17/92 and miR106b/25 clusters are related to 
proliferation, tumor initiation, metastasis, senescence, cell cycle regulation, apoptosis, and 
autophagy [47–57]. Other miRNA clusters, their pathways, and related cancer hallmarks 
are shown in Figure 2. 

Figure 1. Diagram of miRNA biogenesis. In the nucleus, miRNA that are transcribed by RNA polymerase II or III as
primary transcripts (pri-miRNA). The enzyme Drosha and its cofactor DGCR8/Pasha then cut the pri-miRNA molecule to
form a pre-miRNA. This pre-miRNA is actively transported from the nucleus to the cytoplasm by the nuclear transport
receptor Exportin 5 (XPO5) in a Ran-GTP (guanosine triphosphate) protein dependent manner by XPO5. In the cytoplasm,
the pre-miRNA is cut by a second enzyme called Dicer, to form a mature and short double-stranded miRNA molecule. The
miRNA duplex unwinds and is incorporated into the RISC protein complex [17].

3.2. Biological Functions of miRNAs

MiRNAs are distributed in the intragenic and intergenic regions of the genome.
miRNA genes are observed in defined units or clusters [32], containing two or more
adjacent sequences with a common transcriptional triggering mechanism. These clusters
are involved in different biological functions, as regulators of biological events such as cellu-
lar homeostasis, and their aberrant expression has been associated with pathophysiological
events [33].

Biological events regulated by miRNAs include differentiation and development, ner-
vous system regulation, immunity, viral infection, DNA repair, cell junctions and cell to cell
communication, cellular reprogramming, and metabolism, among others [33]. For example,
miR-17/92 is highly expressed in embryonic stem cells and is related to skeletal develop-
ment, lung morphogenesis, cardiomyocyte and epithelial proliferation, pre-eclampsia and
reduction of trophoblast differentiation, and early embryonic lethality [34–37]. Further-
more, this cluster is associated with B-cell apoptosis, [38] T-cell proliferation [39], DNA
repair, post-natal neovascularization [40], mitochondrial metabolism [41], and DNA repair
via deacetylation activity of sirtuin 1 (SIRT1) [42]. Other miRNA clusters with different
functions include miR-106b/25, related to spermatogonial differentiation [43], generation
of new neurons [44], early embryonic lethality [37], coronary artery disease [45], or control
of Ca2+ accumulation in the mitochondrial matrix [46]. Kabekkodu et al. (2018) published
a relevant review of these miRNA clusters among others, and their roles in biological
functions [33].

Regarding cancer, the main hallmarks are cell cycle control, apoptosis and senescence,
autophagy, cell proliferation and growth, angiogenesis, and metastasis. miRNA clusters
play a crucial role in these steps, and their role and type can differ depending on the
type of cancer. More specifically, the miR-17/92 and miR106b/25 clusters are related to
proliferation, tumor initiation, metastasis, senescence, cell cycle regulation, apoptosis, and
autophagy [47–57]. Other miRNA clusters, their pathways, and related cancer hallmarks
are shown in Figure 2.
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Figure 2. MiRNA clusters, their pathways and associated cancer hallmarks. AKT, AKT serine/threonine kinase; BH3, Bcl-
2 homology 3 domain; BIM, Bcl-2-like protein 11; EP300, E1A-asosciated protein p300; ETV1, Ets variant gene 1; KIT, proto-
oncogene tyrosine-protein kinase; MET, MET proto-oncogene receptor tyrosine kinase; mTOR, mammalian target of ra-
pamycin complex 1; p21, cyclin dependent kinase inhibitor 1A; PLCG1, phospholipase c gamma 1; PSAP, prosaposin; p53, 
tumor protein p53; PTEN, phosphatase and tensin homolog; RB1, RB transcriptional corepressor 1; RHO, ROCK Rho-
associated protein kinase; SLU7, pre-mRNA splicing factor SLU7; SMAD2, mothers against dpp homolog 2; TRCP2, F-box 
and WD repeat domain containing 11; TGF, transforming growth factor; WEE1, Wee1A kinase; Wnt, wingless-type mmtv 
integration site family. 
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and metastasis in osteosarcomas. More specifically, miR-17/92 is found to be abnormally 
regulated in human OS cell lines and is linked to cell cycle progression [58] and activation 
of migration and metastasis via the downregulation of the Quaking (QKI) and β-catenin 
pathways [59]. In fact, patients with a high expression of miR-17/92 presented poor recur-
rence-free and overall survival rates [60]. 
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Aurora-B Let-7 

ESR1 miR-1 
Bcl-2 miR-15a, miR-34a, miR-125b, miR-143, miR-190b, miR-326, miR-449a 

IGF system miR-16, miR-26a, miR-133a, miR-150, miR-497 
MED27 miR-18a 
TAK1 miR-20a 
VEGF miR20b, miR-29b, miR-205, miR-410 

HMG system miR-22, miR-106a-5p, miR-142-3p, miR-505 
SATB1 miR-23a, miR-376a-3p 

Figure 2. MiRNA clusters, their pathways and associated cancer hallmarks. AKT, AKT serine/threonine kinase; BH3,
Bcl-2 homology 3 domain; BIM, Bcl-2-like protein 11; EP300, E1A-asosciated protein p300; ETV1, Ets variant gene 1; KIT,
proto-oncogene tyrosine-protein kinase; MET, MET proto-oncogene receptor tyrosine kinase; mTOR, mammalian target of
rapamycin complex 1; p21, cyclin dependent kinase inhibitor 1A; PLCG1, phospholipase c gamma 1; PSAP, prosaposin;
p53, tumor protein p53; PTEN, phosphatase and tensin homolog; RB1, RB transcriptional corepressor 1; RHO, ROCK
Rho-associated protein kinase; SLU7, pre-mRNA splicing factor SLU7; SMAD2, mothers against dpp homolog 2; TRCP2,
F-box and WD repeat domain containing 11; TGF, transforming growth factor; WEE1, Wee1A kinase; Wnt, wingless-type
mmtv integration site family.

Indeed, some of these clusters are associated with cell cycle progression, migration,
and metastasis in osteosarcomas. More specifically, miR-17/92 is found to be abnormally
regulated in human OS cell lines and is linked to cell cycle progression [58] and activation
of migration and metastasis via the downregulation of the Quaking (QKI) and β-catenin
pathways [59]. In fact, patients with a high expression of miR-17/92 presented poor
recurrence-free and overall survival rates [60].

3.3. MiRNAs and Human Osteosarcoma

Many studies reflect the important role that miRNAs play in the molecular regulation,
the appearance and the progression of human OS. Some of these miRNAs act as tumor
suppressors, whilst others act as oncogenes [61]. Different miRNAs will act on a diverse
range of molecular targets and pathways. Different tumor suppressing miRNAs and their
molecular targets in human OS are shown in Table 1.

The presence of onco-miRNAs affecting different targets in human osteosarcoma is
demonstrated in Table 2.
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Table 1. Different tumor suppressing miRNAs downregulated and their targets in human osteosar-
coma (OS) (data recovered by [61]).

Target miRNAs

Aurora-B Let-7

ESR1 miR-1

Bcl-2 miR-15a, miR-34a, miR-125b, miR-143, miR-190b,
miR-326, miR-449a

IGF system miR-16, miR-26a, miR-133a, miR-150, miR-497

MED27 miR-18a

TAK1 miR-20a

VEGF miR20b, miR-29b, miR-205, miR-410

HMG system miR-22, miR-106a-5p, miR-142-3p, miR-505

SATB1 miR-23a, miR-376a-3p

LPAATβ miR-24

SOX4, SOX9 or SOX2 miR-25, miR-25-3p, miR-132, miR-188, miR-212,
miR-32 (SOX9), miR-336 (SOX2)

PFKFB3 miR-26

PTEN miR-30a

HIF1 miR-33b, miR-20b, miR186

MARCKS miR-34c-3p

EZRIN miR-96, miR-144, miR-150

TNFAIP miR-15a, miR-99a,

PI3K-AKT miR-100, miR-497

mTOR miR-101

B-catenin miR-107, miR-184

TGF β miR-124, miR-153, miR-422a

TGF-α miR-205, miR-376a, miR-376c, miR-422a,

ANXA2 miR-206

ROR2 miR-208b

ROCK1 miR-129-5p, miR-139, miR-144, miR-145, miR-148a,
miR-150, miR-198, miR-214-5p

CDK14 miR-216a

CDK6 miR-377, miR-494, miR-3928, miR-494

PDK1 miR-379

LRH-1 miR-381, miR-451

ELF2 miR-409-3p

ZEB1 miR-126, miR-130a, miR-141, miR-200b,
miR-429, miR-643

SETD8 miR-127-3p

Sirt1 miR-133b, miR-138, miR-204

c-Myc miR-135b, miR-449c

MTDH miR-136

FXYD6 miR-137

HDAC4 miR-140

GLI2 miR-141-3p, miR-202
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Table 1. Cont.

Target miRNAs

FASN miR-142-3p

FOSL2 miR-143-3p

E2F1 miR-320

E2F3 miR-152, miR-874

Wnt system miR-154, miR-184, miR-217

TIAM1 miR-182

LRP6 miR-183

ZERB2 miR-187

TCF7 miR-192

CDH2 miR-194

NKD1 miR-195-5p

VANGL-2 miR-199-3p

PMP22 miR-200bc/429

RAB22A miR-203

ANXA2 miR-206

ROR2 miR-208b

Hsp90B1 miR-223

Ect-2 miR-223

Rac-1 miR-224

ADAM9 miR-302a

LDHA miR-323a-3p

Rab10 miR-329

Bmi-1 (or BMI1) miR-330-3p, miR-452

Survivin miR-335

AEG-1 miR-342-3p, miR-448, miR-506

KRAS miR-365

FOXM1 miR-370

FOXP4 miR-491-5p

SATB1 miR-376a-3p

LRH-1 miR-451

c-Met miR-454, miR-613

PKC miR-486

HMGA2 miR-490-3p

HMGB1 miR-505

HMGN5 miR-495

TSPAN1 miR-491-3p

PAK6 miR-492

ARL2 miR-497-5p

FGF2 miR-503

AKT-1 (or Akt) miR-520a-3p, miR-564

MMP8 miR-539
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Table 1. Cont.

Target miRNAs

ITGAV miR-548c-3p

KLF5 miR-590-5p

PDGFB miR-598

YAP-1 miR-625

PIM1 miR-638

CYC1 miR-661

RAB23 miR-665

BCL9 miR-1301

ERBB3 miR-3928
Abbreviations: ESR1 (Estrogen Receptor 1), Bcl-2 (B Cell Lymphoma), IGF (Insulin Growth Factor), MED27
(Mediator Complex subunit 27), TAK1 (Mitogen-activated protein 3 kinase 7), VEGF (Vascular Endothelial
Growth Factor), HMG (High Mobility Group), SATB1 (Special AT-rich sequence-binding protein 1), LPAATβ
(Lysophosphatidic acid acyltransferase β), SOX (Sex Determining region Y-box), PFKFB3 (6-phosphofructo-
2-kinase/fructuose-2,6-biphosphatase-3), PTEN (Phosphatase and Tensin homolog), HIF1 (Hypoxia-inducible
transcription factor-1), MARCKS (Myristoylated alanine-rich protein kinase C substrate), TNFAIP (Tumor Necrosis
Factor-α-induced protein), PI3K-AKT (Phosphatidil Inositol 3-Kinase), TGF (Transforming Growth Factor),
ANXA2 (Annexin 2), ROR2 (Receptor Tyrosine kinase-like Orphan Receptor 2), ROCK1 (Rho associated Coiled-
Coil containing protein Kinase 1), CDK (Cyclin-dependent kinase), PDK (Pyruvate Dehydrogenase Kinase),
LRH-1 (Liver Receptor Homolog-1), ELF2 (E74-Like Factor 2), ZEB1 (Zinc Finger E-box Homeobox 1), Sirt1
(Sirtuin 1), MTDH (Metadherin), FXYD6 (FXYD Domain containing Ion Transport Regulator 6), HDAC4 (Histone
Deacetylase 4), FASN (Fatty Acid Synthase), FOSL2 (FOS-Like antigen 2), TIAM1 (T-cell Lymphoma Invasion
and Metastasis-inducing protein 1), LRP6 (Lipoprotein Receptor-related Protein 6), ZERB2 (Zinc finger E-box
Binding Homeobox 2), TCF7 (T cell-specific transcription factor 7), CDH2 (Cadherin-2), NKD1 (Naked Cuticle
Homolog 1), VANGL-2 (Van Gogh-Like 2), PMP22 (Peripheral Myelin Protein 22), RAB22A (Ras-related protein
Rab-22A), Hsp90 (Heat Shock protein 90), Ect-2 (Epithelial Cell Transforming 2), LDHA (Lactate Dehydrogenase
A), AEG-1 (Astrocyte-Elevated Gene 1), KRAS (Kirsten Rat Sarcoma viral oncogene), FOX (Forkhead Box Protein),
PKC (Protein Kinase C), TSPAN1 (Tetraspanin 1), PAK6 (p-21 Activated Kinase 6), ARL2 (ADP Ribosylation
factor-Like protein 2), FGF2 (Fibroblast Growth Factor 2), MMP (Matrix Metalloproteinase), ITGAV (Integrin
Alpha V), KLF5 (Kruppel-Like Factor 5), PDGFB (Plateled Derived Growth Factor B), YAP-1 (Yes-associated
protein 1), PIM1 (Moloney murine Leukemia virus 1), CYC1 (Cyclin 1), RAB23 (Ras-related protein Rab-23), BCL9
(B-cell CLL/lymphoma 9), ERBB3 (erb-b2 receptor tyrosine kinase 3).

Table 2. Different onco-miRNAs upregulated and their targets in human OS (data recovered by [61]).

Target miRNAs

GCIP miR-9

KLF4 miR-10b

PTEN miR-17, miR-21, miR-23a, miR-92a, miR-93, miR-196a,
miR-214, miR-221, miR-1908

BRCC2 miR-17-5p, miR-603

SOCS6 miR-19

EGR2 miR-20a

ING5 miR-27-3p

TET1 miR-27a-3p

TGF-β miR-29

RASSF1A miR-81a

RECK miR-92b
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Table 2. Cont.

Target miRNAs

CDKN1 miR95-3p

VNN2 miR-106a

PI3K miR-106b

TPM1 miR-107

PPARγ miR-130b

CDC14A miR-131a

ROCK1 miR-138

BMP9 miR-149

HBP1 miR-155

RIPK1 miR-155-5p

CFIm25 miR-181a

Chk2 miR-191

p21 miR-93, miR-95-3p

p27 miR-199a-5p

BRD7 miR-300

DAB2IP miR-367

FOXO1 and FOXO4 miR-374a, miR-660, miR-664 (FOXO4)

KLF9 miR-378

MTSS1 miR-411

Bim miR-488

TP53INP1 miR-504

VANGL-2 miR-542-3p, miR-542-5p

MAP3K9 miR-1247

AGTR1 miR-1248

SRSF3 miR-1908-5p
Abbreviations: GCIP (Glutamate receptor-interacting protein), KLF4 (Kruppel-Like Factor 4), PTEN (Phosphatase
and Tensin homolog), BRCC2 (Breast Cancer Cell 2), SOCS6 (Suppressor of Cytokine Signaling 6), EGR2 (Early
Growth Response 2), ING5 (Inhibitor of Growth Family member 5), TET1 (Ten Eleven Translocation 1), TGF-β
(Transforming Growth Factor β), RASSF1A (Ras Association domain Family 1 isoform A), RECK (Reversion
inducing Cysteine Rich protein with Kazal motifs), CDKN1 (Cyclin Dependent Kinase inhibitor 1), VNN2 (Va-
nine 2), PI3K (Phosphatidil Inositol 3 Kinase), TPM1 (Tropomyosin 1), PPARγ (Peroxisome Proliferator-Activated
Receptor γ), CDC14A (Dual specificity protein phosphatase 14A), ROCK1 (Rho associated Coiled-Coil contain-
ing protein Kinase 1), BMP9 (Bone Morphogenetic Protein 9), HBP1 (HMG-Box Transcription Factor 1), RIPK1
(Receptor-Interacting serine/threonine-Protein Kinase 1), CFIm25 (Component of the Cleavage Factor Im25), Chk2
(Checkpoint Kinase 2), BRD7 (Bromodomain Containing 7), DAB2IP (Disable homolog 2-Interacting Protein),
FOXO (Forkhead box Protein O), KLF9 (Krueppel-Like Factor 9), MTSS1 (MTSS I-BAR Domain Containing 1), Bim
(Bcl-2-Like Protein 11), TP53INP1 (Tumor Protein p53-Inducible Nuclear Protein 1), VANGL-2 (VANGL Planar
Cell Polarity Protein 2), MAP3K9 (Mitogen-Activated Protein Kinase Kinase Kinase 9), AGTR1 (Angiotensin II
Receptor Type 1), SRSF3 (Serine and Arginine Rich Splicing Factor 3).

Interestingly, miRNAs can act as both tumor suppressors and as onco-miRNAs de-
pending on the target that they act upon. For example, miR-23a can act as tumor suppressor
in osteosarcomas, via the inhibition of the special AT-rich-binding protein 1 (SATB1), a gene
related to chromatin structure regulation [62]. This finding is supported by Wang et al. who
suggests that its role as a tumor suppressor could serve as a potential therapeutic target
to fight osteosarcoma. MiR-23a is frequently found to be downregulated in osteosarcoma
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specimens and cell lines in vitro, which contributes to the aggressiveness of this cancer [63].
Indeed, an experiment carried out by He et al. in an in vivo mice model showed that the
downregulation of miR-23a activates the transcription of its target mRNAs, RUNX2 and
CXCL12, which play an essential role in OS cellular growth, migration, and invasion [64].
On the contrary, other studies have shown miR-23a acting as an onco-miRNA, and in this
case, its downregulation could effectively reduce migration and invasion of osteosarcoma
cell lines. As a matter of fact, miR-23a specifically targets the 3′-untranslational regions
of PTEN (phosphatase and tensin homolog), lowering its expression. This enhances mi-
gration and invasion of osteosarcoma cell lines and might serve as a risk factor for cancer
patients [65]. Similar results have been found for miR-20a and miR-107. Depending on
which target they bind to, these miRNAs are able to act as both onco-genes or as tumor
suppressors. Indeed, the increased expression of miR-20a can reduce colony formation and
tumor growth in OS cells, by targeting and suppressing TAK1 expression [66], whereas
when this miRNA binds to early growth factor 2 (EGF2) mRNA, it promotes OS cell pro-
liferation and cell cycle [67]. Furthermore, miR-20a seems to participate in the regulation
of OS chemoresistance by modulating the activities of the MAPK/ERK and cAMP/PKA
signaling pathways [68]. Meanwhile, miR-107 is able to activate MEK/ERK and NF-κB
signaling pathways via downregulation of tropomyosin 1 (TPM1). This promotes cell
viability, migration, and invasion in human OS cells [69]. Conversely, in vitro studies have
demonstrated that miR-107 can inhibit the development of OS via the Wnt/β-catenin
signaling pathways, by downregulating Dickkopf-1 (Dkk-1) (Wnt inhibitory factor) [70,71].

4. Possible Applications of miRNAs in Human Osteosarcoma

As shown in the previous section, miRNAs have the capacity to act as tumor sup-
pressors and as onco-miRNAs in human osteosarcomas, by acting on different signaling
pathways. In fact, more than 177 different miRNAs are found to be differentially expressed
in osteosarcoma cell lines [72], and could serve as prognostic, diagnostic, and chemoresis-
tance biomarkers. MiRNAs could also act as possible therapeutic targets to treat human
OS. In the following section, the possible uses of certain relevant miRNAs are detailed.

4.1. MiRNAs as Potential Biomarkers

One of the most studied miRNAs in osteosarcoma is miR-9. Recently, Wu et al.
published a meta-analysis and concluded that a high expression of miR-9 was associated
with poor prognosis [73]. Patients with highly expressed levels of miR-9 in osteosarcoma
tissues present bigger tumor size, more advanced clinical stages, more frequent distant
metastasis, and lower survival rates [74]. The effect that miR-9 has on OS progression
seems to be related to it targeting p16 and mediating the activation of the ERK/p38/JNK
pathways [75]. Interestingly, the high expression of miR-9, occurs not only in OS tissues,
but also in the serum of patients [76]. Similar results have been obtained for the miR-29
family (miR-29a, miR-29b, and miR-29c) [77]. In this case, the underlying mechanism seems
to be that miR-29 inhibits the expression of PTEN, thus promoting OS cell proliferation,
migration, and metastasis formation [78]. With regards to metastasis occurrence, high
circulating levels of miR-21 in patients’ blood sera have been positively correlated with
the presence of metastasis and lower 5-year survival rates [79,80]. MiR-95 promotes OS
growth by targeting the sodium channel epithelial 1α subunit (SCNN1A) and hepatoma-
derived growth factor (HDGF) [81,82]. Other circulating miRNAs found in patients’ sera
include miR-95 and miR-194. The higher expression of miR-95 and the lower expression
of miR-194 in patients’ sera, contributes to higher metastasis formation and leads to a
poorer prognosis in patients with OS [83,84]. These results suggest that altered serum
levels of miR-9, miR-21, miR-29, miR-95, and miR-194 have great potential to serve as
novel, non-invasive prognostic or diagnostic biomarkers.

Some miRNAs are related to p53, a known oncogene found in many cancers. One
of these miRNAs is miR-34a, who’s downregulation in human OS tissues is associated
with an unfavorable prognosis [85]. In fact, Xi et al. demonstrated that the downregulation
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of miR-34 in the tissues of OS patients, inhibited apoptosis through targeting regulated
transforming growth factor-β-induced factor homeobox 2s’ (TGIF2) expression [86]. An-
other miRNA whose expression is lower in OS tissues is miR-126. This miRNA is able
to downregulate metalloprotease 9 (ADAM-9), a protease that plays a role in promoting
tumorigenesis, cell invasion, and metastasis [87]. Therefore, lower levels of miR-126 could
potentially be associated with faster tumor progression, more advanced cancer stages, and
shorter overall survival times [88].

MultimiRNA signature for prediction of prognosis of OS patients, has been studied,
and three miRNAs (miR-153, miR-212, and miR-591) were used to generate a classified
prognosis and prediction signature for OS patients [89]. It was found that miR-153 could
potentially act as a tumor suppressor, as high levels of the latter decrease SMAD2, SMAD3,
EGFR, and IGFBP-3 expressions, which in turn negatively regulates TGF-β [90]. On the
contrary, miR-212 has been seen to inhibit apoptosis and promotes cell proliferation, by
upregulating the hedgehog signaling pathway [91]. As for miR-591, although its presence
in osteosarcoma has not yet been studied, its function as a tumor suppressor in breast cancer
has been suggested, via the inhibition of the Hippo-YAP/TAZ signaling pathway [92]. In
addition, miR-591 upregulation has been seen to confer resistance to paclitaxel, a medication
used to treat a number of cancers including ovarian cancer. To date however, no research
has been carried out on the effects of miR-591 on cisplatin or methotrexate resistance (the
most common drugs used to treat OS) [93].

4.2. MiRNAs and OS Chemoresistance

One of the most important steps in the human OS is the patient’s response to treatment.
The presence of certain miRNAs seems to affect tumor cell chemoresistance. Curiously, high
levels of the miR-29 family, which are related to a poor prognosis (see Section 4.1), sensitizes
tumor cells against methotrexate and increases the effect of carbon ion radiotherapy [94,95].
The combined use of cisplatin in addition to methotrexate is common when trying to treat
osteosarcoma. In a study carried out by Jiang L et al., these two chemotherapy drugs were
seen to promote apoptosis in cells that overexpressed miR-126, but not in the silenced
osteosarcoma cells [96]. This suggests that the differential expression of miRNAs may
play an important role in chemotherapy resistance. Finally, high levels of miR-34a-5p
were seen to affect the expression of the tyrosine kinase receptor CD117, thus promoting
osteosarcoma’s multidrug resistance via the mTOR pathway [97,98].

4.3. MiRNAs as Targets for OS Therapy

Different roles of miR-1 have been studied in diseases such as cardiac diseases, scle-
rosis, pulmonary arterial hypertension, non-alcoholic fatty liver disease, and cerebral
palsy [99–102]. Furthermore, miR-1 has been related to different types of human cancers
such as medulloblastoma, breast cancer, colorectal cancer, and lung cancer [103–106]. In
osteosarcoma, some studies reveal its potential as a therapeutic target; for example, miR-1
is able to suppress growth, proliferation, migration, and invasion of OS cells. In an ex-
periment carried out by Fujii et al., overexpression of miR-1 downregulated PAX3 (and
increased p21 levels), and induced arrest in the G0/G1 phase both in vitro and in vivo [107].
In addition, in vitro studies have shown that miR-1 inhibits the protein expression of vas-
cular endothelial growth factor A (VEGFA), a necessary factor for the vascularization of
tumors [108]. These results suggest that miR-1 could be a potential therapeutic target, via
the p21 or VEGFA pathways. Regarding the latter pathway, miR-134 (a miRNA of the 14q32
locus) is capable of decreasing VEGFA and VEGFR1 expression in vivo [109], and inhibiting
osteosarcoma angiogenesis and proliferation. Moreover, when this microRNA binds to the
3′-UTRs of metalloproteinases 1 and 3 (MMP1 and MMP3), it reduces tumor invasion and
metastasis [110]. Therefore, miR-134 could also act as a possible therapeutic target. Other
members of the 14q32 locus, such as miR-382, miR-369-3p and miR-544, suppress the ex-
pression of the c-MYC (oncogene) in human OS cells [111]. Studies in patient OS cells have
demonstrated that another MMP, more precisely MMP16, is upregulated by miR-145 [112].
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However, MMP16 is not miR-154′s only target. Other molecules, such as ROCK1, VEGF,
and HDAC4 are also targets of this miRNA [113–115]. High levels of miR-145 are seen to
inhibit cell proliferation, invasion, and metastasis in OS. A recent meta-analysis carried
out by Xu et al. [116] showed that the level at which miR-145 was expressed in different
tumors was correlated with patient prognosis, however this was not shown in patients
with OS. Nevertheless, other studies related the downregulation of miR-145 with advanced
tumor progression and poor prognosis in OS [117]. Another microRNA, miR-21, has been
put forward as alternative possible therapeutic target. Indeed, miR-21 suppresses PTEN
expression, and induces apoptosis in human osteosarcoma cells [118].

There are a large number of studies providing relevant information about the possible
functions of microRNAs as potential biomarkers for prognosis, diagnosis and resistance
to chemotherapy or as possible therapeutic targets in different cancers. Despite the good
potential OS has, as a target of future clinical trials based on miRNA therapy, the truth is
that there are actually only very few clinical trials based on miRNAs in this cancer to date.
Possible explanations for this are that as a rare form cancer, there are only very few patients
and therefore the recruitment potential for clinical trials is lower than it is in other cancer
types. In addition, obtaining miRNAs from a bone microenvironment requires complicated
procedures. Finally, the complexity of the human genome makes it difficult to interpret
the results obtained from miRNA trials. We are still uncertain of the effects each miRNA
may exert on the rest of the genome, and resistance mechanisms are likely. As a matter
of fact, some clinical trials for solid tumors based on miRNA have been carried out. One
of them was based on the therapeutic molecule MRX34, whose target is miR-34a. The
results of MRX34 treatment with dexamethasone premedication did show some clinical
activity without serious toxicity. However, some patients presented severe cytokine release
syndrome, and the trial was terminated [119]. The final results of this clinical trial are not
published yet. Another clinical trial, based on miR-16 (a tumor suppressor miRNA), has
been carried out in lung cancer and mesothelioma, and included 27 patients. Although
the safety of the trial was acceptable, twenty of patients died during the clinical trial due
to tumor progression [120]. The results found in these different clinical trials indicate the
amount of knowledge that still needs to be acquired on miRNAs before they can be used
as biomarkers or as cancer therapies, including data on their safety and effectiveness.

Currently, there are a total of 334 clinical trials addressing miRNAs as possible biomark-
ers or therapeutic targets in different types of cancer. However, only one of them is for
osteosarcoma (NCT01190943). This clinical trial is studying DNA biomarkers, including
miRNAs, in tissue samples from patients with osteosarcoma. Other clinical trials, based on
different miRNAs in the hope of treating further pathologies are currently being carried
out. More specifically, currently, two clinical trials with therapeutic molecules targeting
miRNAs in other pathologies are being carried out, and they are showing promising results.
These molecules target miR-122 for the treatment of the hepatitis C viral infection and are
in phases 1 and 2 of clinical trials [121,122].

5. Conclusions

OSs are a rare form of cancer with high death rates in humans, mainly children. The
discovery of miRNAs marked a new era in molecular biology and their presence can
give valuable information about the physiopathology of osteosarcoma. The relationship
between different miRNAs and patient prognosis, cancer diagnosis, cancer progression,
chemotherapy resistance, and their use as possible new drug targets have been demon-
strated. However, there is currently only one clinical trial related to the inhibition of miRNA
in solid tumors; this miRNA is miR-34a. It seems that one of the issues is the delivery
system of the therapies. Another issue is the localized delivery of miRNA therapeutics.
The hope is that in the near future these drawbacks will be overcome, and anti-cancer
therapy based on miRNAs will be a reality, especially for solid tumors such as OS, with
poor prognosis and high mortality rates.
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