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Abstract

Aging is a complex biological process, which determines the life span of an organism. Insu-

lin-like growth factor (IGF) and Wnt signaling pathways govern the process of aging. Both

pathways share common downstream targets that allow competitive crosstalk between

these branches. Of note, a shift from IGF to Wnt signaling has been observed during aging

of satellite cells. Biological regulatory networks necessary to recreate aging have not yet

been discovered. Here, we established a mathematical in silico model that robustly recapitu-

lates the crosstalk between IGF and Wnt signaling. Strikingly, it predicts critical nodes fol-

lowing a shift from IGF to Wnt signaling. These findings indicate that this shift might cause

age-related diseases.

Introduction

Aging is a highly complex biological process, which impacts health-related quality of life and

life expectancy. The underlying mechanisms of aging are still poorly understood. Several

theories have been postulated concerning the cause of aging. On a cellular level aging is, for

instance, provoked by DNA damage, protein aggregation or cellular dysdifferentiation [1–5].

As a consequence, aging is commonly accompanied by a plethora of aging-related diseases

such as cancer, neurodegenerative diseases, diabetes, osteoporosis and cardiovascular diseases

[6]. Thus, a better understanding of the underlying pathways regulating life span serves as a

basis to establish age-related therapy concepts.

IGF and Wnt signaling pathways have been linked to aging [7–10] and both signaling cas-

cades share common downstream effectors. Wnt genes encode a highly conserved family of

extracellular ligands. In vertebrates Wnt ligands form a family of 19 secreted glycoproteins

which act either directly on the secreting cell (autocrine signaling) or indirectly on surround-

ing cells (paracrine signaling) [11–13].

Wnt molecules bind to seven-pass transmembrane Frizzled receptors and different co-

receptors. Depending on the involved Wnt ligand, receptors and co-receptors, Wnt pathways
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are sub-divided into the canonical Wnt/β-catenin signaling cascade and the two non-canonical

signaling branches Wnt/c-Jun N-terminal kinase (JNK) and Wnt/calcium pathway. Each Wnt

pathway leads to distinct cellular responses. However, in satellite cells it could be shown that

some Wnt ligands can regulate parts of canonical as well as non-canonical Wnt signaling

[14,15]. Canonical Wnt/ β-catenin signaling induces β-catenin dependent transcription of

pro-proliferative and pro-survival target genes. Non-canonical Wnt/JNK signaling modulates

Ras-related C3 botolinum toxin substrate (Rac)- and small GTPase Rho (Rho)-mediated cyto-

skeletal rearrangements, thereby determining cell polarity and motility [11,16–20]. In contrast,

non-canonical Wnt/calcium signaling activates calcium-dependent enzymes, thereby influenc-

ing gene expression, histone modification and cellular senescence together with their down-

stream targets [11,12,20,21].

Wnt signaling was shown to be deregulated during aging in diverse cell populations. For

instance, in intestinal and hematopoetic stem cells a downregulation of canonical β-catenin

signaling has been observed in aging [22,23]. In contrast, in a mouse-model of accelerated

aging it was demonstrated that a loss of the Wnt antagonist Klotho increases Wnt signaling

and triggers premature aging [8]. Moreover, satellite cell aging is accelerated by increased Wnt

signaling whereas Wnt inhibitors revert the aged phenotype [5].

IGF signaling regulates growth, differentiation, survival and the metabolism of carbohy-

drates, proteins and lipids [10]. IGF initiates the PI3K-Akt-mammalian Target of Rapamycin

(mTOR) pathway as well as the Rat sarcoma (Ras)-rapidly accelerated fibrosarcoma (Raf)-

Mitogen-activated protein kinase (MAPK) signaling cascade. Protein Kinase B (Akt) and its

downstream substrates inhibit pro-apoptotic molecules such as cyclin-dependent kinase inhib-

itors and Bad, thereby promoting cell survival [24–29]. In line with their pro-survival and pro-

proliferative role in the Ras-Raf-extracellular signal-related kinase (ERK) cascade they are

commonly up-regulated in several types of cancer [27,30,31]. As mTOR complexes 1 and 2

(mTORC1, mTORC2) influence cellular metabolism, a misregulation is associated with meta-

bolic disorders such as diabetes and obesity [24,29,32–34].

There is extensive crosstalk between both IGF and Wnt signaling. The canonical Wnt sig-

naling mediator β-catenin not only interacts with TCF/LEF transcription factors but also with

FoxO, which is regulated by IGF signaling [7,11,12,16,17,21,25,35–37]. The important negative

regulator of Wnt signaling, axin 2, has also been shown to be a target gene of IGF signaling

[38]. On the other hand, components of IGF induced Ras-Raf-MAPK signaling can be induced

by Dishevelled (Dvl), a component of Wnt signaling. This suggests a complex cross regulatory

network between IGF and Wnt signaling [39–41]. Interestingly, in satellite cells and muscle

cells Wnt signaling increases with aging [5], while IGF signaling decreases [42] and the cross-

talk of both pathways influences aging and aging related diseases [43,44].

This raises the questions whether the known interactions between both pathways can be

represented in a mathematical model and whether this model subsequently can represent

changes during aging of satellite cells. Such a model of the dynamics and cross regulation of

IGF and Wnt signaling might be beneficial for a better understanding of the mechanisms

underlying aging.

Boolean networks are a powerful tool to model dynamic cellular signaling pathways. They

make use of the assumption that a gene is either expressed or not, resulting in two states: ON

and OFF [45–51].

All activating and repressing influences on a molecule are abstracted and summarized in its

Boolean function. This Boolean function is then used to determine the subsequent state of all

molecules of the model. To simulate a Boolean model usually an initial state is either given or

randomly generated. Starting from this initial state, the states of the molecules are updated via

the Boolean function creating a sequence of states until the model enters a circle of recurring
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states. Recurring states are called attractors and may represent known stable states. They are

linked to biological phenotypes. Attractors may either consist of a series of states or just one

single recurring state [45–47].

The aim of this work was to create a Boolean network model, which accurately describes

the crosstalk between IGF and Wnt signaling as it was observed in satellite cells. The knowl-

edge incorporated into this model originates from extensive literature research. The model

was then used to simulate the interaction of both IGF and Wnt signaling in the context of

aging.

Materials and methods

Boolean networks

Boolean networks were introduced as dynamic mathematical models to simulate gene regula-

tory processes by Stuart Kauffman in 1969 [52]. In Boolean networks only two states are dis-

criminated for each regulatory factor—active (1/TRUE/ON) or inactive (0/FALSE/OFF).

Additionally, a Boolean transition function (using operators like AND/OR/NOT) is specified

for each regulatory factor. These functions describe the dynamics of the network. Whether a

regulatory factor is active or not can be determined by applying the corresponding activation

function. The state of the Boolean network at a specific time point t is specified by a binary

string containing the value of each regulatory factor at that specific time point. In synchronous

Boolean networks the state of each regulatory factor is updated at the same time. Conse-

quently, a state transition is performed by synchronously applying all Boolean functions. A

Boolean network with n regulatory factors has 2n possible states—one state for each possible

combination of gene values. The state space can be depicted as a directed graph with one node

for each state in the network. In this graph called state graph the transition from one state to

another is represented by directed edges between the nodes.

The state space of a Boolean network is finite. Consequently, consecutive state transitions

irrespective of the initial state eventually converge to a single state or a cycle of states called

attractor. Attractors describe the long-term behavior of a Boolean network and can be associ-

ated with biological phenotypes [53]. Each of the states has to be examined to exhaustively

search for all attractors in the state space. Albeit their simplicity, Boolean networks have

proven to be valid models for regulatory processes such as human oncogenic pathways [49],

embryonic cardiac development [48], mammalian cell cycle [54] and cholesterol regulatory

signaling [55].

Biological systems are considered to be robust against perturbations [56]. Computer inten-

sive tests were performed to examine whether the attractors or Boolean functions in the cre-

ated model were significantly more stable than random networks.

Modeling and simulation setup

The Boolean network model for the IGF/Wnt crosstalk was derived from collecting literature

data. Modeling of the network functions was performed using ViSiBooL [57]. The exhaustive

attractor search simulation to analyze the network was carried out with the R-package BoolNet

[58].

To further analyze the effects of IGF/Wnt crosstalk in our network model, we divided the

model in its IGF and Wnt sub-networks. Therefore, we removed the crosstalk elements from

the Boolean functions. The attractors of the sub-networks were associated to those of the cross-

talk model. This was done by comparing the overlapping regulatory factors of the complete

network and the IGF and Wnt sub-network respectively in all the attractors. Two attractors
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are matched, if all overlapping factors are equal. The IGF/Wnt crosstalk model consists of 23

nodes. Therefore, there are 223 = 8,388,608 possible start states.

Results

A Boolean model of the IGF/Wnt crosstalk

To construct a regulatory network of the crosstalk between IGF and Wnt, we collected pub-

lished data of both pathways and incorporated the core molecules into our model. An overview

of this model and its internal interactions is given in Fig 1.

Cellular signaling pathways are tightly controlled and depend on external stimuli. IGF and

Wnt molecules can affect cells in a paracrine manner. Not necessarily being secreted by the

Wnt or IGF affected cells themselves, they cannot be activated within the network. Therefore,

in our model IGF and Wnt are considered inputs. Here, we briefly describe the rules imple-

mented to model IGF and Wnt signaling and list the simplifications made within our

approach.

Canonical Wnt signaling is activated by Wnt binding to a Frizzled receptor (Fzd) and the

co-receptor Lipoprotein receptor-related protein 5/6 (LRP5/6). This receptor complex in turn

activates Dishevelled (Dvl) [11,12,59]. In the non-canonical Wnt/JNK pathway, Dvl is acti-

vated in a similar manner, although a different co-receptor, the Receptor tyrosine kinase-like

orphan receptor (Ror), is used [17]. However, to simplify the model both Fzd/LRP5/6 and Dvl

are omitted and downstream targets of them are activated by Wnt itself. Wnts can also activate

the small GTPases Rac and Rho [12,16–18,60,61]. Rac is responsible for cell polarization and

the formation of lamellipodia, whereas Rho leads to cell contraction due to the phosphoryla-

tion of actomyosin and light-chain myosin [62]. Due to this contrary function of Rac and Rho

on the cytoskeleton, they cannot be active at the same time [19,63–65]. Both Rho and Rac can

further activate Mitogen activated protein kinase kinase kinase 1 (MEKK1) [30,66]. To activate

Wnt/calcium signaling a Wnt ligand activates a G-protein coupled to a Frizzled receptor and

Dvl in order to stimulate Phospholipase C (PLC), the latter of which hydrolyses Phosphatidyli-

nositol-(4,5)-bisphosphate into diacylglycerol (DAG) and Inositiol-(1,4,5)-trisphosphate

[12,17]. This facilitates calcium influx and in turn DAG can further activate Protein kinase C

(PKC) [25]. This step is simplified in our model in a manner that Wnt molecules can activate

PKC. Additionally, PKC can be activated downstream of Rho [24,32,67–69]. PKC is able to

inhibit Rho, thereby creating a negative feedback loop [70,71].

β-catenin, the key effector of canonical Wnt signaling, can be phosphorylated and primed

for proteasomal degradation by a destruction complex (DC) including the glykogen synthase

kinase 3 beta (GSK3β) and axin 2, which triggers β-catenin inactivation [11,12,59]. Dvl (here

via Wnt) inhibits GSK3β and consequently β-catenin is stabilized and can translocate into the

nucleus where it activates the transcription factors of the T-cell factor family (TCF) or Fork-

head Box-O (FoxO) [7,11,12,16,17,21,25,35–37].

Binding of IGF to its receptor IGFR1 results in its activation and creates a Src homology 2

(SH2) binding site for activators of Ras [10,27,30,72,73]. In the next step Ras, which can also

be activated by Dvl (here via Wnt) [39–41], activates Raf [27,30,73–76] and this then activates

ERK [30,31,73,77,78]. To facilitate the model, IGF can directly activate nodes downstream of

IGFR1.

In addition, activated IGFR1 (here via IGF) can also activate intracellular targets like Insulin

receptor substrate 1 (IRS) [10,71]. Phosphoinositide 3 kinase (PI3K) binds to IRS and recruits

Phosphoinositide-dependent kinase (PDK) [24,68,79,80]. The first link of IGF to a regulation

of lifespan was identified with the Caenorhabditis elegans gene age-1, being homologous to

PI3K [9,81]. PDK is required for the activation of Akt [24,68,79]. To simplify our model, we
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assumed that IRS activates PI3K and this further activates Akt. Another activator of PI3K is

Ras [26,63,82–84]. PI3K influences the cytoskeleton by activating Rho and Rac [84–89]. A

downstream target of Rho termed Rho-associated protein kinase (ROCK) activates phospha-

tase and tensin homolog (PTEN), which is an inhibitor of PI3K. As a consequence, a negative

feedback loop is created [20,24,26,27,80,82,90]. Here, we included this step by assuming that

Rho inhibits PI3K.

Fig 1. Crosstalk of IGF and Wnt signaling. IGF and Wnt signaling are simplified and reduced to their most important nodes. Signaling pathways are highlighted in

different colors and the IGF and Wnt sub-networks are depicted by the dashed boxes. Interactions between two molecules are symbolized as black lines. Activation is

represented by arrowheads, inhibition by bar-headed arrows. Cellular compartments are separated by grey bars.

https://doi.org/10.1371/journal.pone.0195126.g001
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Downstream of PI3K Akt inhibits Tuberous Sclerosis Factor 2 (TSC2) by phosphorylation

[24,80,91,92], thereby activating mTORC1, which is otherwise inhibited by TSC2

[24,68,79,91,92]. ERK can inhibit TSC2 as well [24,93]. The activated mTORC1 further acti-

vates p70-S6 kinase (S6K). To avoid excessive IGF signaling a feedback inhibition of IRS by

S6K is initiated [24,27,32,69,79,91]. Besides, S6K is an inhibitor of mTORC2 [24,27,32].

The conditions for mTORC2 activation are not yet completely understood. Association of

the complex with ribosomes through PI3K seems to be necessary [28,32,68,86,94] as well as

active TSC2 [68,79,86,92,95]. GSK3β is able to phosphorylate and thereby activate TSC2. This

is dependent on an adenosine monophosphate-activated protein lowering mTORC2 activity

when cellular energy is sparse [59,68,91–93,96]. This node is included in our model by assum-

ing that GSK3β inhibits mTORC2.

In addition, GSK3β activates S6K [24,33,68,79,80,91,97,98]. GSK3β can also be inhibited by

ERK or Akt [27,40,80,99–101]. Likewise, Raf can be inhibited by Akt. Another cross regulation

is the activation of axin 2 by ERK [38]. Besides the activation through PI3K, Akt can be acti-

vated by mTORC2 through phosphorylation [24,29,68,79,91]. Moreover, mTORC2 activates

PKC and thus is able to manipulate the cytoskeleton via Rho and Rac [68,69,88,95,98].

A very common interaction of the Wnt/calcium pathway and IGF signaling is the activation

of Raf by PKC [24,30,66,76,100,102,103] while Raf activation through canonical Wnt signaling

is assumed [40,72]. As part of non-canonical Wnt signaling Rac is able to activate JNK

[12,17,20,60,85,102]. Another way of activating JNK is mediated by MEKK1 [30,31,77,78]. By

inhibiting IRS JNK is able to reduce IGF signaling [24,33,96]. Both FoxO and JNK are part of

the cellular stress response. Hence, it is not surprising that JNK is a strong activator of FoxO

[7,25,35,99,104,105]. TCF requires β-catenin to function as a transcription activator [106].

However, FoxO is also able to bind β-catenin and act as a transcription factor [35]. Thus, they

have to compete for binding of β-catenin and their activation is mutually exclusive. Conse-

quently, they inhibit each other [103,104].

JNK is a potent activator of FoxO and thus contributes to the inhibition of TCF via FoxO.

FoxO is a transcription factor for Rictor, which is a component of mTORC2. Since FoxO-

dependent transcription of Rictor only boosts mTORC2 activity but cannot activate mTORC2

itself we did not include FoxO in the regulation of mTORC2 and further activation of Akt.

However, Akt can phosphorylate FoxO and thus inhibit its function as a transcription factor.

Thereby, it is acting as a negative feedback regulator [25,26,29,80,99,107]. In the network, we

only included the inhibition of FoxO by Akt.

The Boolean functions corresponding to the previously described regulatory interactions

are depicted in Table 1.

Attractors of the IGF/Wnt crosstalk model

Once the model of the IGF/Wnt crosstalk was established by the transformation of literature

statements into Boolean functions we performed an exhaustive search to identify all attractors

of the model. Five attractors named attractor 1 to attractor 5 were identified with different

frequency (Fig 2). Four of these attractors were single-state attractors and one was a cyclic

attractor with three states.

Depending on the initial state the nodes representing the Wnt and IGF inputs stay active or

inactive over the entire time period. Thus, there are four possible combinations of external

input factors for our model: I) both IGF and Wnt are active (attractor 3), II) only IGF or only

Wnt is active (attractors 2 and 5, respectively attractor 4), or III) both are inactive (attractor 1).

Attractor 1 represents the state of an un-stimulated cell; neither IGF nor Wnt are active and

thus no input is given. During aging IGF signaling slowly declines while both canonical and
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non-canonical Wnt signaling increases [43]. Based on this we assumed a stimulation by IGF

only results in a young phenotype (attractors 2 and 5) and stimulation by Wnt an aged pheno-

type (attractor 4).

However, when starting a simulation from an initial state where all nodes except the input

factors are off, every attractor could be reached, except for attractor 5. Since attractor 5 could

not be reached starting from the chosen initial state it was excluded from further analysis.

Attractors 3 and 4 represent the age-related shift from IGF to Wnt signaling. Due to the slow

transformation process first both IGF and Wnt are active (attractor 3) and afterwards only

Wnt as external input is active (attractor 4).

Signaling cascade of an un-stimulated cell

Simulations of a biological network by computational Boolean models should resemble the in
vivo situation as closely as possible. Therefore, the created model is supposed to follow the

same temporal expression pattern as during biological IGF/Wnt crosstalk.

Table 1. Table of the Boolean functions of the IGF/Wnt crosstalk model.

Node Boolean function

Wnt Wnt

axin ERK | !Wnt

GSK3β !(Wnt | ERK | Akt)

DC axin & GSK3β

β-catenin !DC

TCF β-catenin & !(JNK & FoxO)

FoxO !Akt & β-catenin

Rho (Wnt | PI3K | mTORC2) & !(Rac | PKC)

Rac (Wnt | PI3K | mTORC2) & !Rho

MEKK1 Rac | Rho

JNK MEKK1 | Rac

PKC Rho | Wnt | mTORC2

IGF IGF

IRS IGF & !(S6K & JNK)

PI3K (IRS | Ras) & !Rho

Akt PI3K | mTORC2

TSC2 !(Akt | ERK) | GSK3β

mTORC1 !TSC2

S6K mTORC1 | GSK3β

Ras IGF | Wnt

Raf (Ras | PKC) & !Akt

ERK Raf

mTORC2 !(S6K | GSK3β) & (PI3K | TSC2)

Abbreviations used: DC, destruction complex; GSK3β, Glycogen synthase kinase 3 beta; TCF, T-cell specific

transcription factor; FoxO, Forkhead Box-O; Rho, small GTPase Rho; Rac, Ras-releated C3 botulinum toxin

substrate; MEKK1, Mitogen activated protein kinase kinase kinase 1; JNK, c-Jun N-terminal kinase; PKC, Protein

kinase C; IGF, insulin-like growth factor; IRS, Insulin receptor substrate 1; PI3K, Phospahtidyl-inositide 3 kinase;

Akt, Protein kinase B; TSC2, Tuberous Sclerosis Complex 2; mTORC1, mammalian target of rapamycin complex 1;

S6K, p70-S6 kinase; Ras, Rat sarcoma; Raf, rapidly accelerated fibrosarcoma; ERK, the Ras-Raf-extracellular signal-

related kinase; mTORC2, mammalian target of rapamycin complex 2; &, and; |, or; !, not

https://doi.org/10.1371/journal.pone.0195126.t001
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IGF and Wnt are extracellular signaling molecules and thus cannot be activated from

within the network. If the simulation of the signaling cascade starts with an initial state where

all nodes are inactive (Fig 3A), the network reaches a single-state attractor (attractor 1). This

attractor represents an un-stimulated cell. Here, GSK3β is active because it is ubiquitously

expressed and stays active if not otherwise inhibited. Downstream targets of GSK3β are S6K

and TSC2 which both can be activated by GSK3β resulting in an active state in this attractor.

Signaling cascade of IGF—A young phenotype

Starting from an initial state in which all nodes are inactive expect the external input IGF, the

simulation of a signaling cascade reaches the three-states attractor 2 (Fig 3B). Here, IGF initi-

ates the Ras-Raf-MAPK-cascade leading to ERK activation. Though PI3K-Akt cascade is ini-

tially inactivated due to a negative feedback, it is partially active in the attractor. Influence of

the crosstalk on Wnt signaling is among others the activation β-catenin and TCF as well as

Rho, Rac, PKC and JNK.

As this attractor consists of three states, it probably does not represent any fixed state of a

cell but rather the transition from one cellular state to another. Here, IGF and Ras as well as

Fig 2. Attractors of the IGF/Wnt crosstalk model. Exhaustive attractor search of the IGF/Wnt crosstalk model yielded four single state attractors and one three-states

attractor. The frequency of occurrence of each attractor is given as percentage below each column. Each block represents an attractor. The nodes are listed on the y-

axis. Each rectangle symbolizes the state of a node: red stands for inactive, green for active.

https://doi.org/10.1371/journal.pone.0195126.g002
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Fig 3. Effects of input factors in signaling cascade. (A) Based on an initial state where all nodes are inactive, a

simulation of a signaling cascade was performed. The model results in an attractor representing an un-stimulated cell.

(B) Simulation from an initial state with IGF as single active node results in an attractor representing the young

phenotype. (C) In contrast, a simulation of signaling cascade with IGF and Wnt as single active nodes results in an

attractor representing a mid-aged phenotype. (D) Simulation of the signaling cascade with Wnt as single active node

results in an attractor representing an aged phenotype. Nodes are listed on the y-axis. Time is plotted on the x-axis.

Every rectangle represents the state of a node at a specific time: red stands for inactive, green for active.

https://doi.org/10.1371/journal.pone.0195126.g003
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the canonical Wnt antagonist axin 2 are the only nodes that are active in all three states. All

other nodes switch between their active and inactive state during iterations. This represents

crosstalk and internal regulations of the signaling pathways too avoid permanent activation of

signaling cascades. For instance it was previously demonstrated that IRS is inhibited by S6K to

avoid an excess of IGF signaling [24,27,32,69,79,91].

As mentioned before, IGF signaling is more active at the beginning of a lifespan and

declines with time [43]. Therefore, this attractor represents a young phenotype.

Signaling cascade of the of IGF and Wnt—A mid-aged phenotype

Simulation of a signaling cascade starting from an initial state in which only the two external

input factors IGF and Wnt are active (Fig 3C), the model reaches a single state attractor. In

this signaling cascade the canonical Wnt signal disrupts the destruction complex and β-catenin

is activated. However, its downstream target TCF is not active in the entire signaling cascade.

TCF competes with FoxO for the binding to β-catenin. Due to the activation of Akt by IGF,

FoxO gets inactivated and thus TCF is again active in the attractor. During aging, IGF signal-

ing declines whereas Wnt signaling increases [43]. However, this shift proceeds slowly and

therefore the resulting attractor from the signaling cascade of IGF in combination with non-

canonical Wnt signaling represents a mid-aged phenotype.

Signaling cascade of Wnt—An aged-phenotype

Originating from a cell with active Wnt as single active node (Fig 3D), canonical Wnt signaling

disrupts the destruction complex and β-catenin is activated. Despite the inactive IGF, TCF is

not active over the entire signaling cascade. Here, it competes again with FoxO until it is inac-

tivated by Akt due to crosstalk.

In addition, Ras-Raf-MAPK signaling is also activated by crosstalk, even if IGF is not pres-

ent. This crosstalk is mediated by factors of non-canonical Wnt signaling such as PKC, Rac

and JNK.

The resulting attractor is a single state attractor with active canonical and non-canonical

Wnt signaling as well as components of IGF signaling. Wnt signaling increases with age [43].

Therefore, this attractor represents an aged phenotype.

Modeling the age-related shift from IGF to Wnt signaling

During aging of muscle cells, IGF signaling slowly declines while Wnt signaling increases

[43]. Also, non-canonical Wnt signaling shifts from non-canonical to canonical signaling

[14,108,109]. For this reason, a shift from IGF to Wnt signaling was simulated. In a non-aged

satellite cell IGF signaling is active. Therefore, a simulation based on an initial state in which

all nodes are switched off expect IGF as external input was performed (Fig 3B). After five time

periods the signaling cascade reaches an attractor. This attractor is the circulating three-state

attractor (attractor 2) with IGF as single extracellular input. With respect to aging, this circu-

lating state is maintained until an unknown signal leads to a shift from IGF to Wnt signaling.

Afterwards, the shift from IGF to Wnt signaling was simulated by adding Wnt as an addi-

tional input factor. However, a slow shift from IGF to Wnt is supposed to occur. Therefore, we

first activated Wnt as external input of the model in addition to IGF and performed another

simulation based on the states of the prior attractor 2. This time the model reached attractor 3

(Fig 4A). It turned out that it does not matter from which initial state out of three possible

states from attractor 2 we started our simulation. Each simulation resulted in attractor 3 (Fig

4A). As a result of this simulation we could show that switching from IGF to Wnt signaling

changes the behavior of the model.
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In a last step we turned off IGF signaling and simulated a signaling cascade with only Wnt

as external input, thereby reaching attractor 4 (Fig 4B). The effect of aging results in different

attractors, which is explained in the following section.

Imbalance between IGF and Wnt signaling in favor of Wnt. During aging of muscle

cells, IGF signaling slowly declines while Wnt signaling increases [43] and thus IGF and Wnt

are simultaneously active before Wnt signaling outweighs IGF signaling. Attractor 3 represents

Fig 4. Age-related shift from IGF to Wnt signaling. (A) The age-related shift from IGF to Wnt happens stepwise. At the beginning of this shift both

signals are active and the temporal sequence simulation results in a single state attractor. (B) Passing the life span of an organism, initially IGF as

external signal is active, resulting in a three-state attractor. Then, a slow shift from IGF to Wnt takes place. At the beginning both input factors are

active, whereas at the end Wnt as single external input is active, resulting in a single-state attractor.

https://doi.org/10.1371/journal.pone.0195126.g004
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this transformation from IGF to Wnt signaling. Here, both external input factors IGF and

Wnt are present. However, attractor 3 closely resembles attractor 4 with Wnt as the only extra-

cellular input signal. The only difference between these two attractors is the activity of IGF.

IGF signaling is self-limited by a negative feedback-loop from S6K to IRS [110,111]. This can

be seen in attractor 2 and in the signaling cascade in Fig 3B. In combination with Wnt IRS is

doubly inhibited by S6K and additionally JNK [112,113]. However, in the signaling cascades of

Wnt we could already show that downstream targets of Wnt are also able to induce down-

stream components of the IGF signaling by crosstalk such as PI3K and Akt. Consequently,

there is an imbalance between IGF and Wnt signaling in favor of Wnt.

Of note, the aged phenotype might be prone to develop aging-related diseases. Here, TCF is

currently active and can further induce the expression of the canonical Wnt target gene cyclin

D [114,115]. Thereby it promotes cell cycle progression and enables cancer formation if dereg-

ulated. Furthermore, Akt is permanently active in this attractor. It deactivates pro-apoptotic

proteins like Caspase-9 or Bad as well as cell cycle inhibitors p21 and p27. Akt additionally

inhibits GSK3β [116,117] and thus further promotes the activation of TCF. All these events

drive cancer formation, progression and invasiveness. Moreover, S6K is active in both attrac-

tors 2 and 3. S6K can be activated by mTORC1, which is also active in these attractors. IRS can

be inhibited by S6K resulting in insulin-resistance thereby promoting the development of dia-

betes mellitus type II [118,119]. S6K also stimulates autophagy which is increased in type II

diabetes [120].

The aging process can only be represented through the IGF/Wnt crosstalk

To investigate the relevance of the IGF/Wnt crosstalk in our model we have simulated both

pathways separately. As seen in Fig 1 (dashed boxes), we divided the whole network into IGF

components and Wnt components without their crosstalk interactions (transition functions

can be found in S1 Text) and performed an exhaustive attractor search (Fig 5).

The simulation of the IGF sub-network leads to three attractors (Fig 5A), called attractors

A, B and C. Matching these three attractors to the crosstalk network shows that the pattern of

attractor A can be found in both attractors 3 and 5 (Fig 2). On the other hand, the crosstalk

present in the complete model seems to stabilize the network and thus the patterns of attrac-

tors B and C no longer exist. Two attractors called attractor D and E (Fig 5B) were found when

simulating the Wnt sub-network. Of these two, attractor D could be matched to attractor 1 of

the crosstalk model (Fig 2). As with the IGF sub-network the crosstalk seems to stabilize the

network leading to a removal of pattern of attractor E. However, the sub-network simulations

did not reveal attractors 2 and 4, which were found in the crosstalk model, representing young

and old phenotypes with respect to aging.

This leads to the conclusion that the modeling of the aging process of satellite cells with the

IGF/Wnt crosstalk model is only possible through the interaction of both pathways while the

simulation of only one of the two pathways could not realize aging.

Robustness analysis of IGF/Wnt crosstalk model

Biomolecular networks are considered to be robust. This means that a perturbation of single

molecules in most cases does not influence the behavior of the system. We evaluated the

robustness of both the IGF/Wnt crosstalk model as well as the sub-networks.

Biological networks can adapt to environmental changes and their functions are resistant to

damage [121]. The network models’ robustness was evaluated in terms of their transition

robustness. The transition robustness of the models is determined using a computer-intensive

test. The test perturbs states in the network with a random bit flip, which corresponds to a
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Fig 5. Attractors of the sub-networks. (A) Simulation of the IGF sub-network lead to attractors A, B and C, the first of which could be matched to

attractors 3 and 5 of the complete crosstalk model (see Fig 2). (B) Attractors D and E were found while simulating the Wnt sub-network. Here, attractor D

could be matched to attractor 1. Each block represents an attractor. The regulatory factors are listed on the y-axis. Each rectangle symbolizes the state of such

a factor: red stands for inactive, green for active.

https://doi.org/10.1371/journal.pone.0195126.g005
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point mutation in the biological context. In a second step, the corresponding successor state of

the original state as well as of the perturbed state is computed. Then, the distance between the

two successor states is measured using the normalized Hamming distance. The Hamming dis-

tance computes the number of genes which differ between the original successor state and the

successor state of the perturbed network. To compare networks of different sizes the Ham-

ming distance is then normalized by the number of genes in the network. The distance shows

how well a Boolean network can maintain its functionality under mutation conditions. A nor-

malized Hamming distance of zero indicates that the mutation has no effect on evaluated net-

work behavior. This test was repeatedly done for 100 randomly drawn states of the Boolean

network model and the mean normalized Hamming distance was computed, denoted by H.

Additionally, this was tested with 1000 randomly generated networks. A comparison to the

results of the random networks indicated if the constructed Boolean network model is signifi-

cantly more robust than a randomly generated network of the same size.

In addition to the crosstalk model, this computer-intensive test was performed for each of

the two sub-network models. The results were then compared (Fig 6). The IGF/Wnt crosstalk

model shows a statistically significant result of H = 0.043 (p< 106) in comparison to the ran-

domly generated networks (Fig 6A). A mean normalized Hamming distance of 0.043 can be

interpreted as 4.3% of the genes in the states are differing in the mutated networks on average.

The IGF sub-network shows a mean normalized Hamming distance of H = 0.05 (p = 0.051,

Fig 6B). Fig 6C shows a mean normalized Hamming distance of H = 0.088 (p = 0.2) in the

Wnt sub-network, which is not significantly smaller than in the randomly generated networks.

Discussion

In this study, we created a model of the molecular interactions between IGF and Wnt signaling

in satellite cells and muscle aging by integrating more than 80 publications of the IGF/Wnt

research field. It was demonstrated that the model recreates the behavior of the signaling path-

ways and viable cellular conditions in form of temporal sequences and attractors. In addition,

the in silico model can predict and recapitulate in vitro and in vivo experiments.

The simulated signaling pathways of IGF and Wnt behave as described in literature. How-

ever, knowledge concerning the interaction of IGF and Wnt signaling as a whole is still miss-

ing. Mostly, there is a description of single molecule interactions and their impact on another

signaling pathway. But often these interactions are not yet fully understood. Thus, the impor-

tance of individual interactions for the behavior of a network is hard to judge. Our model dem-

onstrates that there is a crosstalk between IGF and Wnt signaling. This can be seen by the

activation of non-canonical Wnt signaling by IGF in attractor 2 or by the activation of

PI3K-Akt and Ras by Wnt signaling in attractor 4.

A circulating state with dynamic regulation between the single nodes of the network is only

achieved with IGF as single input. Once Wnt signaling is introduced into the model (attractor

3 and attractor 4) the network stabilize and the simulation ends in a single state attractor

which favors the behavior of Wnt signaling. As mentioned before, IGF signaling shifts to Wnt

signaling during aging of satellite cells. By use of the model we demonstrate that the imbalance

between these two pathways potentially leads to aging-related diseases. In particular, the per-

manent activation of TCF and Akt can lead to the development of cancer due to cell cycle acti-

vation and inhibition of apoptosis. Another well-known age-related disease is diabetes mellitus

type II. It is defined by the reduced response of insulin receptors regarding normal insulin

concentrations. A common underlying mechanism for the development of diabetes is the dys-

regulation of IRS [119]. In our model IRS is only active in two time periods in attractor 2 rep-

resenting the young and healthy state whereas it is switched off in attractor 3 and attractor 4
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Fig 6. Transition robustness. (A) 100 randomly drawn states of the IGF/Wnt model were mutated by bit flip (point

mutation) and their successor states were computed. The successor states of the mutated and the original states were

then compared using the normalized Hamming distance (red line). The same was done for 100 randomly generated

networks of the same size (histogram). The blue line shows the 95% quantile. (B) shows the same test for the IGF sub-

network and (C) for the Wnt sub-network.

https://doi.org/10.1371/journal.pone.0195126.g006
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which represent an aged phenotype. Thus, the potential of developing diabetes mellitus type II

is probably related to the shift of IGF to Wnt signaling during aging.

The simulation of IGF and Wnt pathways separately did not yield the young and old pheno-

type attractors (attractor 2 and attractor 4), which could be found in the IGF/Wnt crosstalk

model. This further supports our thesis that crosstalk between IGF and Wnt pathways exists.

Furthermore, the crosstalk is necessary to represent the aging process whereas Wnt or IGF sig-

naling on their own are not sufficient to describe the aging process.

Beside IGF and Wnt, there is a multitude of other growth factors and external stimuli,

which can also influence the behavior of a cell. It stands to reason that signaling molecules and

pathways other than IGF and Wnt interact with each other and shape the behavior of these

two signaling pathways. Especially the simulation of the IGF/Wnt shift supports this theory.

As aging is a highly complex process, IGF and Wnt signaling might certainly not be the only

players involved.

Despite being a commonly examined pathway, Wnt signaling is still not fully understood.

Examples for this are the activation of the mTOR complexes or the activation of canonical and

non-canonical Wnt signaling pathways by different Wnt molecules. Especially the latter is

dependent on the cell type. Our model was simplified to include the main signaling pathways.

During aging, the functionality of stem cells decreases in adult tissues [22,122], which

seems to be driven by alterations in stem cell self-renewal pathways [22]. Especially the canoni-

cal Wnt/β-catenin signaling pathway, one of these self-renewal pathways, is important for the

maintenance of stem cells [17,123]. Alterations in the Wnt signaling pathway play a role in

aging processes of adult tissues [5,8]. However, the alterations of Wnt signaling pathway differ

between several stem cell populations. For satellite cells it was shown that an increased activity

of canonical Wnt/β-catenin signaling pathway accompanied by a decrease in IGF signaling

leads to dysfunctions during aging [5,42]. In contrast, a decline of canonical Wnt/β-catenin

signaling was noticed in intestinal and hematopoietic stem cells during aging [23,124]. In

intestinal stem cells a balance between Wnt and Notch signaling instead of IGF and Wnt sig-

naling regulates differentiation and maintenance of stem cells [125], which both decline with

age [124]. An increase in canonical Wnt signaling can even rejuvenate intestinal stem cells

[124].

It can be concluded that there are different mechanisms in Wnt signaling in different cell

types. There are 19 Wnt proteins encoded in the human genome [126], which can bind to one

or more of the over 15 known Wnt receptors and co-receptors [127]. Depending on the Wnt

protein and the receptor combination different downstream signaling cascades are activated

and is not yet fully elucidated, which combination leads to which cascade. It is important to

note, that thepresented model depicts the situation during aging of satellite cells, where the

shift from IGF to Wnt takes place.

After constructing and simulating our model, we evaluated its dynamic behavior by con-

firming the results with published laboratory experiments which were not included in the

model construction. We could indeed confirm that IGF activates Akt, S6K and ERK [128]

which are downstream targets of IGF signaling cascades (Fig 1). This can be seen in attractor 2

(Fig 2). We can see in our model that IRS is mostly inactive due to negative feedback inhibi-

tion. In the mid-aged phenotype, IRS is inhibited by co-inhibition via S6K and JNK (as

described above), while downstream targets of IGF signaling like PI3K/Akt are still active due

to crosstalk activation. However, our results are consistent with the results from von Maltzahn

et al. who found a cross-activation of IGF downstream targets (e.g. PI3K, Akt and S6K) by

Wnt7a independently of IGF receptor activation [15]. Increased activation of Wnt and its

downstream targets (e.g. β-catenin and TCF) in aging satellite cells—as simulated in our

model—was also found in Naito et al. [44] and Watanabe et al. [129].
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Biomolecular networks are usually robust, as the perturbation of single molecules does not

change the behavior of the system, at least not drastically. To test the robustness of the IGF/

Wnt crosstalk model we compared the model to 1000 randomly generated networks of the

same size. The transition robustness measures the influence of point mutations on the net-

work. An analysis of the transition robustness of the crosstalk model, reveals that the IGF/Wnt

crosstalk model is significantly more robust than randomly generated networks of the same

size (p< 106). In contrast, transition robustness of the sub-network models of Wnt (p = 0.051)

and IGF (p = 0.2) does only borderline or not differ statistically from random networks. Com-

parison of the transition robustness of the IGF/Wnt crosstalk model (mean 4.3% differences in

states after mutation, Fig 6A) and the IGF (5%, Fig 6B) and Wnt sub-network models (8.8%,

Fig 6C) also indicated that the crosstalk model is more robust. These results show that the

crosstalk of the IGF and Wnt pathways increases the robustness against perturbations such as

point mutations. Hence, we can conclude that the crosstalk between the IGF and Wnt signal-

ing leads to a stabilization of the network.

This model of IGF and Wnt signaling pathways and their molecular interactions

represents an initial model. As research progresses IGF and Wnt signaling will be better

characterized and new players, regulatory connections and interactions will be discovered.

This novel knowledge can easily be incorporated into this initial model to refine and expand

it.

Taken together, this model of IGF and Wnt signaling is able to reproduce the basic behavior

of IGF and Wnt signaling and displays the interactions between these two signaling pathways

even during aging in satellite cells. The model can be used to gain insight into the connections

of these signaling pathways. It is also able to uncover novel aspects where knowledge is missing

to correctly simulate the behavior of IGF and Wnt signaling in cells. As such, this model func-

tions as a predictor for future targets.
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