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Normal physiological functions require a robust biological timer called the circadian clock. 
When clocks are dysregulated, misaligned, or dampened, pathological consequences 
ensue, leading to chronic diseases and accelerated aging. An emerging research area 
is the development of clock-targeting compounds that may serve as drug candidates 
to correct dysregulated rhythms and hence mitigate disease symptoms and age-related 
decline. In this review, we first present a concise view of the circadian oscillator, phys-
iological networks, and regulatory mechanisms of circadian amplitude. Given a close 
association of circadian amplitude dampening and disease progression, clock-enhanc-
ing small molecules (CEMs) are of particular interest as candidate chronotherapeutics. 
A recent proof-of-principle study illustrated that the natural polymethoxylated flavonoid 
nobiletin directly targets the circadian oscillator and elicits robust metabolic improve-
ments in mice. We describe mood disorders and aging as potential therapeutic targets 
of CEMs. Future studies of CEMs will shed important insight into the regulation and 
disease relevance of circadian clocks.
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iNTRODUCTiON

The circadian clock is an intrinsic biological timing device operative in evolutionarily divergent 
species, ranging from microorganisms to human (1, 2). The clock drives daily oscillations of 
important molecular and physiological processes to anticipate and respond to the changing 
environment imposed by the rotation of the Earth. Consistent with its adaptive function, normal 
clock functions are required for organisms to survive and thrive. Coculture of cyanobacteria with 
varying period lengths demonstrated competitive growth advantage when inherent periodicity 
aligned with external light/dark rhythms (3), in accordance with findings from plant experi-
ments (4). Likewise, circadian patterns of foraging and predator avoidance are well documented 
for animals in their natural habitats. For example, chipmunks whose central pacemaker, the 
hypothalamic suprachiasmatic nuclei (SCN), had been surgically removed suffered significantly 
higher mortality rate in the wild than those with fully functional clocks (5). The clock has also 
been postulated to protect early eukaryotes from irradiation during the day (6, 7). Despite the 
lack of acute lethality from genetic disruption of clock genes in laboratory animals, there exists 
a strong correlation, and in some cases causative relationship, between malfunctioning clocks 
and chronic diseases as well as aging (8, 9).
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FigURe 1 | The core circadian oscillator and regulatory molecules. The circadian clock oscillator is comprised of a network of transcriptional–translational 
feedback loops including the core loop (BMAL1/CLOCK/NPAS2 and PERs/CRYs), the stabilization loop (BMAL1/CLOCK, REV-ERBs, and RORs), and the auxiliary 
loop (DBP, E4BP4, REV-ERBs, and RORs). Various protein regulators (F-box-containing E3 ligases are shown as examples) and small-molecule modulators 
(nobiletin is shown) have been identified to target core clock components, regulating circadian periodicity and amplitude. See the main text for details.
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As we extend the list of clock-associated pathologies and 
probe for greater mechanistic understanding, the outstanding 
question remains whether and how to target the clock to combat 
disease and physiological decline (10–12). Except in the case of 
jet-lag, targeting the clock for health benefits will likely entail 
chronic intervention and gradual and systemic improvement of 
phenotypes and symptoms. Here, we highlight clock-associated 
metabolic disease, mood disorder, and aging as clock-associated 
processes characterized by dampened amplitude of circadian 
oscillation (13). Small-molecule enhancers of the circadian 
clock may strengthen the clock and clock-driven gene expres-
sion and physiology, retarding pathological deterioration. 
While this review will mainly focus on circadian amplitude 
enhancement, clock modulators capable of circadian phase 
and/or period modulation can show clinical utility in diseases 
states that are accompanied by circadian phase misalignment 
or abnormal periodicity (10, 14).

MAMMALiAN CiRCADiAN CLOCK

In the canonical mammalian clock, the molecular oscillator is 
the functional unit present in every cell of the body (15, 16). 
Comprised of interlocked feedback loops (Figure 1), molecular 
oscillators in individual tissues coordinate to govern highly 
tissue-specific expression programs of clock-controlled genes 
(CCGs). While 43% of genes have been shown to oscillate in 
at least one tissue in mice (17), indicating prevalent circadian 
gene regulation, the overlap of CCGs between tissues was found 
to be approximately 10% (18). At the system level, various 
tissue clocks are orchestrated by the SCN master pacemaker, 
a pair of neuron clusters bilaterally located in the anterior of 
the hypothalamus (19). The SCN displays tight coupling among 
its neurons (20) and functions to respond to photic signals to 
synchronize tissue and cellular clocks throughout the body via 
neural and hormonal signals.

The molecular oscillator is composed of intersecting negative 
feedback loops to drive ~24-h gene expression rhythms (1). 

In  the core loop, the positive arm consists of three bHLH-PAS 
transcription factors, including paralogous CLOCK/NPAS2 
and their heterodimeric partner BMAL1 (Figure 1). CLOCK or 
NPAS2 each interacts with BMAL1 through the PAS and bHLH 
domains. After dimerization, CLOCK/BMAL1 and NPAS2/
BMAL1 activate expression of Period (Per) and Cryptochrome 
(Cry) genes via E-box promoter elements. PER and CRY proteins 
themselves heterodimerize and translocate into the nucleus to 
inhibit transcriptional activities of CLOCK/BMAL1 and hence 
their own transcription. CRYs belong to the photosensing 
photolyase protein family that functions in DNA damage repair 
in bacteria and in circadian photic entrainment in flies (21). 
However, the mammalian CRY proteins appear to have lost the 
photosensing ability yet acquired function as the major tran-
scriptional repressor in the circadian core loop. Crystal structure 
studies showed that CLOCK and BMAL1 interact via bHLH 
and two PAS domains in an asymmetrical fashion, characterized 
by a β-sheet/α-helix interaction involving respective BMAL1 
and CLOCK PAS-B domains (22). On the β-sheet surface of 
CLOCK PAS-B, mutagenesis screen identified several residues 
whose mutations attenuated CRY inhibition of CLOCK/BMAL1 
transactivation, suggesting CLOCK/CRY interactions. Several 
crystal structures of CRY proteins have been reported. The FAD-
binding domain of CRY proteins appears to be a key nodal point 
recognized by both a CRY-stabilizing small molecule (23) or an 
CRY-degrading E3 ligase (24), and that PER binding to CRY 
precludes access for the E3 ligase FBXL3 (25), thus stabilizing 
CRY. Future structural studies of core clock complex formation 
on promoter DNA will advance our understanding of circadian 
oscillator function.

Several other feedback loops have been shown to stabilize 
and/or modulate the core feedback loop (Figure 1). In the prin-
cipal stabilization loop, CLOCK/BMAL1 and NPAS2/BMAL1 
activate highly cyclic expression of genes encoding the nuclear 
hormone receptors REV-ERBα/β (26). REV-ERBs and their 
antagonistic receptors RORα/β/γ compete for binding to shared 
consensus elements (RORE and RevDR2) on the promoter of 
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Bmal1/Npas2 and other target genes throughout the genome to 
promote robust oscillatory gene expression (27–29). In another 
auxiliary loop (30), CLOCK/BMAL1 activates expression of 
genes encoding the PAR-bZip transcription factor DBP (D-box 
binding protein), which in turn drives Ror gene expression 
via their D-box promoter elements. In addition to Bmal1, 
REV-ERBs and RORs also govern the expression of the Nfil3 
gene, which encodes a transcriptional suppressor (also known 
as E4BP4) that binds to the D-box to antagonize DBP tran-
scriptional activity. Apart from these transcriptional feedback 
loops, other feedback mechanisms are also important, includ-
ing a post-translational loop involving the NAD+-dependent 
sirtuin (SIRT) 1 deacetylase (31). CLOCK/BMAL1 activates the 
Nampt gene, which encodes the rate-limiting enzyme for NAD+ 
biosynthesis. The NAD+ level directly correlates with SIRT1 
activity, which directly target core clock proteins including 
BMAL1 and PER2 (32, 33).

Degradation of core clock components has emerged as a key 
regulatory mode for circadian functions. Casein kinase 1 has 
been shown to phosphorylate PERs, thereby facilitating their 
proteasomal degradation by the F-box proteins β–TRCP1/2 
(34). Likewise, the AMPK kinase phosphorylates CRYs to 
promote CRY degradation (35), mainly mediated by the F-box 
protein FBXL3 (36–38). FBXL21, a close homolog of FBXL3, 
was found to antagonize FBXL3 to decelerate CRY degradation 
in the nucleus, on the other hand, also accelerate CRY turnover 
in the cytoplasm (39, 40). Mice harboring hypomorphic muta-
tions in Fbxl3 and Fbxl21 showed opposite effects on circadian 
period length, highlighting an important circadian function 
for ubiquitin-mediated proteasomal degradation. Autophagy is 
another major protein degradation mechanism, involving lyso-
somal degradation of protein cargo delivered via autophagosome 
(41). It was recently found that BMAL1 undergoes dual degrada-
tion by proteasome- and autophagosome-dependent pathways, 
and attenuation of both in ClockΔ19/+ heterozygous mice 
improves glucose homeostasis (42). Overall, the circadian clock 
system is regulated by an exceedingly complex array of molecular 
mechanisms encompassing all levels of gene expression, together 
ensuring temporal precision (~24 h) and oscillatory robustness 
(see below).

CiRCADiAN AMPLiTUDe RegULATiON

Amplitude denotes the robustness of circadian oscillation, 
measured by the difference between peak and trough of the 
circadian cycle. Whereas dampened circadian amplitude has 
been shown to closely correlate with chronic diseases and 
aging (10, 12, 43), the molecular and physiological mechanisms 
underlying circadian amplitude regulation are not well under-
stood. Within the core oscillator, multiple lines of evidence 
indicated the importance of balancing positive vs. negative 
activities. For example, in mouse MEF cells, CLOCK/BMAL1 
(positive factors) are in higher abundance than PER/CRY (the 
negative arm); as a result, overexpressing PER and CRY, but 
not CLOCK or BMAL1, strongly enhanced circadian ampli-
tude (44). Such functional balance is further illustrated by the 
antagonistic transcriptional function of REV-ERBs and RORs 

in the secondary loop. Whereas ROR levels cycle only weakly, 
REV-ERB mRNA and protein levels are highly oscillatory. By 
directly competing for binding to promoter elements, they 
together govern a significant fraction of genome-wide circadian 
gene expression (29, 45). The clock is inherently a self-limiting, 
rhythmic machinery, namely, a limit cycle. Maintaining the 
“Yin–Yang” balance may lead to sustained oscillation, whereas 
brute force beyond a homeostatic range will dampen the overall 
amplitude of the following cycles. In other studies, CLOCK 
overexpression was found to enhance amplitude (46, 47), yet 
it remains unclear whether the primary mechanism involved is 
simply the greater level and activity of the positive transcription 
factor or an optimized functional balance.

More recent studies have provided insight into the functional 
complexity and dexterity of core clock components in amplitude 
regulation. In one study, REV-ERBα was found to be phospho-
rylated by cyclin-dependent kinase 1 (CDK1) at T275, a site not 
conserved in REV-ERBβ (48). Phosphorylated REV-ERBα was 
subsequently recognized by the F-box protein FBXW7 for pro-
teasome degradation. Knockdown of CDK1 or FBXW7 reduced 
the amplitude of a circadian reporter in a dose-dependent man-
ner, suggesting this REV-ERBα degradation pathway plays an 
important role in circadian amplitude. Another study described 
a “facilitated recruitment” mechanism where REV-ERBs are 
recruited to open chromatin following a rate-limiting step medi-
ated by ROR/BMAL1 and transcription cofactors SRC-2/PBAF 
(49). It was posited that recruitment of the REV-ERB repressors 
by the activators ROR/BMAL1 ensures efficient and timely tran-
scriptional shutdown, resulting in robust amplitude in target gene 
expression.

At intercellular and physiological/behavioral levels, oscillator 
coupling is of paramount importance to maintaining robust 
oscillation (50). The SCN rhythm is known to be exceptionally 
refractory to genetic perturbation compared with peripheral cells 
due to the tight coupling between SCN neurons (20). For exam-
ple, several clock genes, including Per1 and Cry1, are required for 
sustained PER2:LUC reporter rhythms in dissociated fibroblast 
cells and SCN neurons. At the tissue level, whereas lung explants 
remained arrhythmic, SCN slices showed robust cycling of the 
PER2:LUC reporter. In accordance, Per1-null mice displayed 
clear rhythmic locomotor behavior, albeit with a short period 
length (51). These studies together indicate that intercellular syn-
chronization between SCN neurons, likely involving vasoactive 
intestinal polypeptide (VIP) (48), strengthens system amplitude. 
Such coupling-induced rhythm stabilization can also be observed 
in peripheral cells, where single-cell reporter rhythms were less 
robust or stable compared with those in tissue slices (16, 52). 
Besides genetic perturbation, intercellular coupling can also 
confer protection against pharmacological disturbance and 
stochastic noise (53). Reciprocally, intercellular coupling can 
also facilitate noise-generated stochastic rhythm. While dis-
persed SCN neurons from Bmal1−/− mice showed no circadian 
rhythmicity, Bmal1−/− SCN slices displayed shorter and highly 
variable circadian rhythms (54). Such unstable rhythms were 
shown to be abolished by tetrodotoxin-induced uncoupling in 
the SCN slices, further indicating that intercellular coupling 
augments rhythmic stability and robustness.
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CLOCK-eNHANCiNg SMALL MOLeCULeS 
(CeMs) AND eFFiCACieS iN MeTABOLiC 
DiSeASe MODeLS

More than half of top-selling drugs act on protein targets encoded 
by cyclically expressed genes (17), and xenobiotic metabolism is 
subjected to circadian regulation (55). These findings indicate 
a close circadian regulation of pharmacodynamics and phar-
macokinetics (56–58). On the other hand, rather than aligning 
the timing of chronotherapy with intrinsic rhythms, a distinct 
strategy is to manipulate the clock or clock components to allevi-
ate clock-regulated disease symptoms (10–12, 14). Behavioral or 
dietary manipulations have been shown to modulate circadian 
rhythms, such as light exposure (59–61), exercise (62) as well as 
feeding/fasting regimens (63). For example, a series of studies 
have shown that time-restricted feeding (TRF) can improve sleep 
and metabolic homeostasis and delay cardiac aging in Drosophila 
(13, 64) At the molecular level, TRF activates genes involved in 
circadian rhythms and mitochondrial electron transport chain 
complexes. Similarly, timed caloric restriction (CR) led to highly 
consolidated food intake, which enhanced the expression and 
amplitude of core clock genes and improved lipid homeostasis, 
eventually contributing to life span extension (63, 65). Finally, 
bright light and melatonin, both major circadian synchronizers 
that strengthen rhythms, have been shown to improve cognition 
and mood in the elderly (66). These studies exemplify the benefi-
cial effects of enhancing the molecular and physiological rhythms 
on physiology and behavior.

Various chemical compounds capable of manipulating clocks 
have been discovered via either unbiased phenotypic screens or 
targeted approaches focusing on particular clock components 
(67–72). As described above, the clock is a self-limiting machine 
with a myriad of check-and-balance mechanisms governing its 
periodicity and robustness. Excessive functional manipulation, 
either stimulatory or inhibitory, of a specific clock protein may 
compromise the inherent balance within the clock, eventually 
diminishing or even abrogating the intended effects. Therefore, 
when searching for small molecules capable of enhancing circa-
dian robustness, it is important to evaluate the sustained effects 
on reporter rhythms rather than assaying only the molecular 
function of individual clock components. Below, we describe our 
recent efforts to utilize phenotypic screening to identify chemical 
modifiers that enhance circadian amplitude.

In two separate screens using cell-based phenotypic assays, 
we reported a group of clock amplitude-enhancing small 
molecules dubbed CEMs. The first screen of 200,000, largely 
synthetic, compounds identified 4 CEMs that potentiated cel-
lular and tissue reporter rhythms in both WT and ClockΔ19/+ 
heterozygous mutant backgrounds (73). In contrast to 
ClockΔ19/+ heterozygous cells that displayed attenuated but 
sustained circadian rhythms, ClockΔ19/Δ19 homozygous or 
Bmal1-null cells where the oscillators are essentially broken were 
refractory to CEM (14). CEM3, a benzimidazole compound, was 
uniquely able to further potentiate the robust reporter rhythms 
of the SCN pacemaker. In a second, smaller screen, a natural 
flavonoid compound called nobiletin (NOB) was identified as 
a novel CEM, along with its close analog tangeretin (74). NOB 

showed strong enhancing activities in circadian reporter cells, 
with an EC50 in the low micromolar range. NOB is a major 
polymethoxylated flavone found in citrus peels and exhibits a 
favorable pharmacokinetic profile devoid of significant toxicity 
(75). Previous studies have reported diverse biological activities 
against metabolic syndrome, oxidative stress, inflammation, and 
cancer (76–80); however, its molecular mechanism of action and 
direct protein targets were unknown.

A potential metabolic efficacy of NOB is intriguing and 
provides a focal point of connecting circadian manipulation and 
metabolic fitness. Previous research has established a regulatory 
role of the circadian clock in metabolic homeostasis (31). For 
example, the ClockΔ19/Δ19 mutant mice showed a broad array 
of metabolic dysfunctions, including blunted feeding rhythms, 
hyperphagia, exaggerated obesity risk under high-fat diet (HFD) 
feeding or at older ages, elevated blood glucose levels and hypo-
insulinemia (81). Reciprocally, metabolism and/or nutrition 
also modulate our internal clocks (82, 83). For example, under 
ad  libitum HFD feeding, mice showed a slight increase in the 
free-running period length (~23.8  h) compared with regular 
chow-fed animals (~23.6 h), and importantly a marked decrease 
in amplitude of circadian rhythms, including both clock gene 
oscillation in the periphery and feeding rhythms (82, 84). Both 
examples showed a correlation of circadian amplitude reduction 
and metabolic dysfunction, consistent with human studies where 
blunted insulin secretion rhythm associates with increased risk 
for diabetes (85).

We therefore examined the efficacy of NOB in two mouse 
metabolic disease models, namely the HFD-induced obese mice 
and db/db diabetic mice. Metabolic characterization illustrated 
that NOB effectively mitigated body weight gain without altering 
food intake, stimulated energy expenditure (EE) and circadian 
activity, enhanced glucose and insulin tolerance, and diminished 
lipid content in circulation and in liver (74). The alleviated liver 
steatosis phenotype was accompanied by restored oscillation 
of core clock components in mouse liver. In addition to energy 
homeostasis, NOB was also found to reduce serum ammonia 
levels in different diets and appeared to enhance urea cycle gene 
expression and function under HFD feeding (86). ClockΔ19/Δ19 
homozygous mutant mice showed no or much diminished 
response to NOB, indicating clock requirement for NOB effects. 
Microarray analysis using mouse liver showed extensive remod-
eling of energy metabolic pathways including lipid metabolism 
and mitochondrial respiration. Together, these findings support 
the notion that clock enhancement by NOB contributes to meta-
bolic improvement (87).

Importantly, NOB was found to directly activate ROR recep-
tors via filter binding and functional studies including mam-
malian one-hybrid assays (74). This key finding highlights the 
role of RORs in circadian amplitude regulation and also sheds 
important insight on the functional complexity of NOB and 
ROR. First, despite the robust affinity of NOB–ROR interac-
tion, the activation of ROR target genes, including core clock 
genes (e.g., Bmal1) and downstream output genes, was gener-
ally moderate (74). This observation is consistent with the limit 
cycle nature of the clock where the balance between positive and 
negative limbs is paramount to the overall amplitude. Second, 
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a large number of ROR inverse agonists and REV-ERB agonists 
have been identified (71, 88). Despite opposite molecular 
functions relative to NOB as an ROR agonist, several of these 
compounds have been shown to improve energy metabolism 
in metabolic disease models (89, 90). This apparent paradox 
illustrates a potential functional dexterity of ROR (and also 
REV-ERB). It is possible that specific ligands, either agonists or 
antagonists, of ROR/REV-ERB can promote metabolic health, 
likely via distinct compound-specific mechanisms. A recent 
study (91) showed that three antagonists of RORγt employed 
divergent molecular mechanisms to affect its promoter binding 
and target gene expression and exhibited different degrees of 
mimicry with genetic RORγt disruption. These studies highlight 
the importance of in-depth mechanistic understanding of CEMs 
in circadian rhythms and downstream physiology.

MOOD DiSORDeRS AND AgiNg AS 
POTeNTiAL PATHOPHYSiOLOgiCAL 
TARgeTS OF CeMs

Below we highlight two potential targets of CEMs, namely mood 
disorders and aging, where accumulating evidence indicates a 
strong correlation between pathophysiology and clock amplitude 
decline.

Mood Disorders
Mood disorders and circadian dysfunction are closely associ-
ated. Various manifestations of major mood disorders such 
as major depressive disorder, bipolar disorder, and seasonal 
affective disorder (BPD and SAD, respectively) exhibit diurnal 
rhythms, with the most severe symptoms typically occurring 
in the morning or around sunset (92, 93). In an early study 
comparing depressed, recovered, and healthy subjects, the 
depressed group exhibited blunted circadian rhythms, with 
a significant correlation to scores on depression severity (94). 
Recovered participants following 3  weeks of antidepressant 
treatment showed restored circadian amplitude, suggesting that 
depression is closely linked to circadian rhythmicity. In SAD 
patients suffering from depression during winter months with 
shorter daytime (95), circadian rhythms in feeding, sleep, body 
temperature, cortisol, and melatonin release, neurotransmitter 
(serotonin, norepinephrine, and dopamine) have been shown to 
be disturbed or dampened (96, 97). Another mood disorder is 
Sundowning syndrome, also referred to as “nocturnal delirium” 
(93). Sundowning syndrome is characterized by a worsening of 
behavior (i.e., aggression, restlessness, delirium, and agitation) 
in the late afternoon or early evening, particularly in the elderly 
population suffering from dementia. Clinical and preclinical data 
suggest that disturbances in sleep, environmental entrainment 
cues, and the SCN pacemaker all contribute to Sundowning syn-
drome (93). Specifically, sleep disruptions including impaired 
NREM sleep consolidation, sleep fragmentation, daytime 
sleeping, and reduced sleep efficiency are common among 
both the elderly and demented (98), and circadian amplitude 
disturbances manifested as sleep disruptions listed above can 
contribute to mood imbalance (99).

Mouse studies have begun to supply evidence for a pos-
sible causal relationship between clock function and mood. 
For example, behavioral assays using the ClockΔ19/Δ19 mice 
revealed manic-like behaviors similar to human bipolar mania 
(100), including hyperactivity, decreased sleep, hyperhedonia, 
and an increased preference for cocaine use. Disrupted circa-
dian rhythms are also commonly found in human mania (94). 
More recently, the subcapsular cell hyperplasia associated with 
adrenal tissue remodeling was reported to enhance circadian 
amplitude of glucocorticoid rhythm, but not the total glucocor-
ticoid levels (101). Interestingly, the enhanced stress hormone 
rhythm promotes anxiolytic function. It was postulated that the 
high-amplitude oscillation of the anxiogenic glucocorticoid, 
the descending phase in particular, endows a robust anxiolytic 
response to regulate mood balance.

Consistent with a close relationship between clock disruption 
and mood disorders, various treatment options are known to 
manipulate or enhance circadian and/or sleep cycles. Among 
the environmental therapies are bright light therapy, social 
rhythm therapy (SRT), and sleep deprivation. Bright light 
therapy is the treatment of choice for SAD and has also 
been applied to depression, bipolar disorder, and sleep–wake 
cycle disturbances (102). Bright light in the morning serves 
to advance the circadian phase to correct the phase delays 
commonly seen in SAD patients and may also function as a 
strong photic zeitgeber to improve daily rhythms. Likewise, 
SRT (103) entails social zeitgebers such as routine daily 
tasks to restore stability of biological rhythms in depression 
patients. Finally, a total sleep deprivation paradigm has also 
been developed to temporarily alleviate SAD symptoms. Its 
biological basis is not well understood, although it has been 
shown to impact neurotransmitter function and rapidly reset 
behavioral and circadian rhythms (104). Therefore, behavioral 
and environmental cues employed in these therapies reset and 
potentiate circadian rhythms, mainly at the behavioral levels, 
to counter the debilitating depressive tendency.

Various pharmacological agents have been used in mood dis-
orders, including antidepressants, antimanic or mood-stabilizing 
drugs, and antipsychotics (Table 1). Lithium is a mood-stabilizing 
drug that has been used to treat bipolar disorder for more than 
50 years. In addition to its mood-stabilizing effects, lithium has 
been reported to lengthen the free-running circadian period in 
mammals including hamsters and mice (105, 106). A potentially 
important target of lithium is GSK-3β (107), a kinase broadly 
acting in various signaling pathways. GSK-3β was previously 
shown to phosphorylate and stabilize REV-ERBα, and lithium 
treatment accelerated proteasomal degradation of REV-ERBα 
(108). More recently, lithium was found to activate Per2 gene 
expression and enhance the circadian reporter amplitude in 
both SCN and periphery (106). Another pharmacological 
treatment that affects the circadian system is valproic acid or 
valproate. Valproate is traditionally an anti-epileptic drug but 
has been repurposed as a mood-stabilizing drug. Valproate has 
been shown to alter circadian period (109) and acute valproate 
treatment of PER2:LUC bioluminescence experiments in skin 
fibroblasts yielded amplitude enhancement and induced phase-
shifts, depending on the relative level of PER2:LUC protein 
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TABLe 2 | Antidepressive and neuroprotective roles of nobiletin.

Species Treatment 
duration

effect Cellular effects Reference

Mouse (despair model via FST 
and TST)

60 min prior 
to assay

Antidepressant Monoamine upregulation (112)

Mouse 11 days Antidepressant; improved 
memory impairment

Activated ERK/MAP kinase-dependent signaling and 
increased CREB phosphorylation

(111)

Mouse AD (APP-SL 7-5 Tg mice) 4 months Reduced Aβ plaque pathology; 
improved memory impairment

ERK phosphorylation; enhanced neprilysin activity (126)

Mouse AD (3XTg-AD) 3 months Improved cognitive impairment Reduced soluble Aβ levels, reduced ROS levels in the 
hippocampus of WT and 3XTg-AD mice

(127)

Mouse (senescence-accelerated 
mouse prone 8, SAMP8)

2 months Improved recognition and  
context-dependent fear  
memory

Restored decrease in GSH/GSSG ratio, increased antioxidant 
(GPx) enzyme activity, reversed tau phosphorylation at Ser202 
and Thr231

(128)

MPTP-treated model mice 14 days Improved motor and cognitive 
deficits

Increased levels of CaMKII autophosphorylation and 
phosphorylation of DARPP-32 in the striatum and 
hippocampus; restored CaMKII- and cAMP kinase-dependent 
TH phosphorylation; enhanced dopamine release in striatum 
and hippocampus

(129)

Future studies are required to delineate the role of circadian clock in these efficacies.
FST, forced swim test; TST, tail suspension test.

TABLe 1 | Pharmacological treatments for mood disorders targeting the circadian system.

Drug name Therapeutic effect Circadian target(s) Circadian-related effect(s) Reference

Lithium Mood stabilizer GSK-3β Lengthened circadian period; enhanced PER2 protein expression; 
and oscillatory amplitude

(105, 106)

Valproate Mood stabilizer Dopamine-mediated, 
possibly PER2

Shortened circadian period of behavioral rhythms in DAT-KD mice 
and rhythms in suprachiasmatic nuclei explants from PER2:LUC mice

(109)

Quetiapine Mood stabilizer; 
adjunctive antidepressant; 
antipsychotic

Per1/2, Bmal1 Enhanced Per1/2 mRNA at different ZTs in the mouse amygdala (113)

Carbamazepine Mood-stabilizer Undetermined Shortened length of locomotor activity; stabilized running activity (114)

Fluoxetine Antidepressant Per2/3, Cry2, GSK-3β Altered circadian period; enhanced hippocampal clock gene 
expression; altered phase re-entrainment

(115–117)

Agomelatine Antidepressant MT1/2 receptors Accelerated resynchronization of circadian rhythms; improved rest–
activity cycle more than common antidepressant; entrained circadian 
rhythms; induced phase-shifts

(118–123)

Ramelteon Antidepressant MT1/2 receptors Phase advance (124)

Tasimelteon Antidepressant MT1/2 receptors Phase advance/delay (125)
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expression (110). Previous mouse studies have also suggested 
antidepressive functions of NOB (111, 112) (Table  2). For 
example, NOB was found to improve mouse performance in 
forced swimming test and tail suspension tests, while pretreat-
ments with drugs targeting monoaminergic systems disrupted 
the NOB effects (112). It will be interesting for future studies 
to investigate a role of circadian clocks in these NOB efficacies.

Aging
Gradual decline in metabolic, physiological, and behavioral 
functions with age leads to increasing risk of chronic disease and 
mortality (130). One physiological basis for such system-wide 

deterioration is age-related circadian attenuation (13, 43). 
Various clock-regulated physiological and behavioral processes 
are known to display reduced amplitude with age (43, 61, 131). 
For example, aging correlates with impaired rhythms in SCN 
firing rate, hormone secretion (e.g., cortisol and melatonin), 
and body temperature (132). Sleep fragmentation, character-
ized by multiple short periods of sleep episodes throughout 
the normal sleep phase and also sleep during the normal active 
phase, indicates amplitude dampening of the sleep/wake cycle 
and constitutes a well-documented characteristic of aging and 
various age-related diseases including Alzheimer’s disease (133). 
At the molecular level, there is also broad dysregulation of 
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clock gene expression (61, 134, 135). Whereas peripheral clocks 
appear to suffer amplitude dampening (136, 137), the central 
clock neurons maintain robust molecular oscillation (135, 137). 
It is possible that cellular coupling and/or output pathways are 
compromised during aging, leading to systemic decline. In 
accordance, old age in both humans and mice is associated 
with delayed adaptation to phase shift cues (138, 139), sug-
gesting that aging compromises circadian synchronization and 
weakens entraining response. Genetic studies have also provided 
evidence linking the clock and aging. The Bmal1-null mutant 
mice, exhibiting arrhythmic clock gene expression and defective 
clock-controlled physiological processes such as metabolism 
and activity (140, 141), suffered premature aging phenotypes 
such as sarcopenia, cataracts, and early mortality (142, 143). On 
the other hand, the αMUPA transgenic mice, as a long-living 
mouse model, displayed 24-h circadian periodicity regardless 
of age (144). These mice maintained robust behavioral and 
physiological rhythms, and core clock gene expression showed 
enhanced amplitude. Collectively, the evidence indicates that 
circadian robustness, involving both clock gene oscillation and 
systemic synchronization (145), may confer beneficial effects 
on life span and health span.

An established circadian output marker is melatonin (146), a 
sleep-regulating hormone in humans whose synthesis pathway is 
governed by the clock (147). Aging dampens the circadian peak 
(and amplitude) and daily total secretion of melatonin (148–150), 
contributing to lower sleep quality including decreased rapid eye 
movement, slow wave sleep, and increased stage 2 non-REM 
sleep in the elderly (151, 152).

Aging is associated with prevalent metabolic deterioration 
(130). For example, total EE declines during aging, as the elderly 
display diminished EE and gross energy intake (EI) compared 
with young adults (153). Such age-related energy imbalance, with 
EI > EE in the elderly and EI < EE in young adults, causes exag-
gerated body mass index during aging (154). Body temperature is 
a circadian output that shows a diurnal pattern with a dip during 
sleep (146, 155, 156). Thermogenesis plays a significant role in 
energy homeostasis, and age-related deterioration in energy 
homeostasis impairs circadian body temperature rhythm. For 
example, despite largely comparable basal body temperature, 
phase and amplitude of body temperature rhythm have been 
shown to significantly differ between the elderly and young- or 
middle-aged subjects (155, 157, 158). Liver and muscle play 
important roles in body temperature regulation, and attenuated 
skeletal muscle mass and mitochondrial function significantly 
contribute to dampened energy homeostasis and thermogenesis 
during aging (62, 157).

Caloric restriction universally prolongs life span (159). CR 
depletes white adipose tissue, especially the pro-inflammatory 
and diabetogenic visceral fat that accumulates over age (160). 
Timed CR leads to highly consolidated food intake within a few 
hours, enhancing the amplitude of circadian metabolic rhythms 
(63, 161) and core clock gene oscillation (65). CR involves several 
nutrient-sensing pathways including AMPK, AKT, and mTORC1, 
all of which have been reported to functionally interact with the 
clock (31, 42, 160, 161). In particular, the NAD+-dependent 
deacetylase SIRT proteins play important roles at the interface 

of energy homeostasis, clock, and aging (161, 162). Mammals 
express seven SIRT proteins (SIRT1–7), several of which have 
been implicated in circadian regulation of metabolism (32, 33, 
163, 164). For example, SIRT1 directly deacetylates core clock 
components including BMAL1 and PER2, regulating their 
molecular function and CCG expression (32, 33). More recently, 
SIRT1 was found to interact with PGC-1α to control Clock and 
Bmal1 gene expression in the SCN, consequently regulating 
CLOCK/BMAL1 target genes (165). Various SIRT1-activating 
small molecules (e.g., resveratrol) have been shown to extend 
life span (166); resveratrol, in particular, has been shown to 
modulate physiological and behavioral rhythms and clock gene 
expression (167–169).

FUTURe DiReCTiONS AND CONCLUDiNg 
ReMARKS

Circadian amplitude regulation and pharmacological modifiers 
are exciting research topics with promising translational poten-
tial. The list of CEMs will likely continue to grow, either from 
phenotypic screening, as in the case of NOB, or from targeted 
ligand development (14). On the other hand, pharmacological 
agents shown to target or mimic clock-enhancing pathways such 
as CR, TRF, and exercise are a rich venue for discovery of addi-
tional clock-targeting agents (63, 130, 161, 170). For example, a 
growing number of small molecules or drugs have been shown 
to extend life span and health span, including those deliberately 
designed to mimic CR and other manipulations (170, 171). 
Future studies should characterize their circadian clock effects 
and delineate molecular mechanisms.

Besides metabolic diseases, mood disorders, and aging, other 
chronic diseases such as neurodegenerative diseases (172, 173) 
have also been shown to correlate with dampened circadian 
amplitude or clock dysregulation and may represent new venues 
for studies of clock modifiers. In addition to antidepressive effects, 
several studies have shown neurological efficacies of NOB using 
transgenic disease models (Table  2). For example, 11-day oral 
administration of NOB resulted in an overall memory improve-
ment in olfactory-bulbectomized (OBX) mice based on the step-
through passive-avoidance task and the Y-maze test (111). OBX 
mice share clinical features with both human neurodegenerative 
diseases and major depression (174). The depression-like phe-
notype is thought to derive from pathological or compensatory 
mechanisms within the cortical–hippocampal–amygdala circuit, 
which typically involve deterioration of spine density and/or 
synaptic strength changes (175). Future studies are required 
to determine the specific role of circadian clocks and RORs in 
disease models.

Significant gaps of knowledge remain regarding circadian 
amplitude regulation, especially the mechanisms employed by 
CEMs. At the intracellular level, questions of particular interest 
include gene expression regulation, such as cofactor recruitment, 
epigenetic mechanisms, and chromosome dynamics (1). At the 
intercellular and system levels, other coupling molecules in addi-
tion to VIP and the communication between peripheral and cen-
tral clocks are outstanding questions (50). It is conceivable that 
CEMs execute distinct mechanistic schemes to restore a robust 
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overall output under disease or aging conditions. Exemplified by 
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In conclusion, circadian clocks safeguard physiological health, 
and dysregulated and dampened clocks can serve as therapeutic 
targets to mitigate disease symptoms. Exciting functional and 
mechanistic studies await to develop CEMs as novel preventive 
and therapeutic agents.
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