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Summary

Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks 

generally have shapes evolved to fit precisely into binding pockets on their targets. Such peptides 

can have excellent pharmaceutical properties, combining the stability and tissue penetration of 

small molecule drugs with the specificity of much larger protein therapeutics. The ability to design 

constrained peptides with precisely specified tertiary structures would enable the design of shape-

complementary inhibitors of arbitrary targets. Here we describe the development of computational 

methods for de novo design of conformationally-restricted peptides, and the use of these methods 

to design 15–50 residue disulfide-crosslinked and heterochiral N-C backbone-cyclized peptides. 

These peptides are exceptionally stable to thermal and chemical denaturation, and twelve 

experimentally-determined X-ray and NMR structures are nearly identical to the computational 

models. The computational design methods and stable scaffolds presented here provide the basis 

for development of a new generation of peptide-based drugs.

Main Text

The vast majority of drugs currently approved for use in humans are either proteins or small 

molecules. Lying between the two in size, and integrating the advantages of both1,2, 

constrained peptides are an underexplored frontier for drug discovery. Naturally-occurring 

constrained peptides, such as conotoxins, chlorotoxin, knottins, and cyclotides, play critical 

roles in signaling, virulence and immunity, and are among the most potent 

pharmacologically active compounds known3. These peptides are constrained by disulfide 

bonds or backbone cyclization to favour binding-competent conformations that precisely 

complement their targets. Inspired by the potency of these compounds, there have been 

considerable efforts to generate new bioactive molecules by re-engineering existing 

constrained peptides using loop grafting, sequence randomization, and selection4. Although 

powerful, these approaches are hindered by the limited variety of naturally-occurring 

constrained peptide structures and the inability to achieve global shape complementarity 

with targets. There is need for a method of creating constrained peptides with new structures 

and functions that provides precise control over the size and shape of the designed 

molecules. A method with sufficient generality to incorporate noncanonical backbones and 

unnatural amino acids would enable access to broad regions of peptide structure and 

function space not explored by evolution.

Although there have been recent advances in protein design methodology5–9, the 

computational design of covalently-constrained peptides with new structures and 

noncanonical backbones presents new challenges. First, both backbone generation and 

design validation by structure prediction require new backbone sampling methods which can 

handle cyclic and mixed-chirality backbones. Second, methods are needed for incorporation 
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of multiple covalent geometric constraints without introduction of conformational strain. 

Third, energy evaluations must correctly model amino acid chirality.

Here we describe the development of new computational methods that meet these 

challenges, opening this exciting frontier to computational design. We demonstrate the 

power of the methods by designing a structurally diverse array of 15–50 residue peptides 

spanning two broad categories: (i) genetically-encodable disulfide-rich peptides, and (ii) 

heterochiral peptides with noncanonical architectures and sequences. Genetic encodability 

has the advantage of being compatible with high-throughput selection methods, such as 

phage, ribosome, and yeast display, while incorporation of noncanonical components allows 

access to new types of structures, and can confer enhanced pharmacokinetic properties. To 

explore the folds accessible to genetically-encoded constrained peptides under 50 amino 

acids, we selected nine topologies: HH, HHH, EHE, EEH, HEEE, EHEE, EEHE, EEEH, 

and EEEEEE (Fig. 1; we define a “topology” as the sequence of secondary structure 

elements in the folded peptide, where H denotes α-helix and E denotes β-strand). To explore 

the expanded design space accessible with inclusion of noncanonical amino acids and 

backbone cyclization, we sought to cover all topologies containing two to three canonical 

secondary structure elements: HH, HHH, EEH, EHE, HEE, and EE, along with HLHR, a 

cyclic topology with right- and left-handed helices.

All of the design calculations described in this paper were carried out with the Rosetta 

software suite10 and followed the same basic approach. Large numbers of peptide backbones 

were stochastically generated as described in the following sections, combinatorial sequence 

design calculations were carried out to identify sequences (including disulfide crosslinks) 

stabilizing each backbone conformation, and the designed sequence-structure pairs were 

assessed by determining the energy gap between the designed structure and alternative 

structures found in large-scale structure prediction calculations based on the designed 

sequence. A subset of the designs in deep energy minima were then produced in the 

laboratory, and their stabilities and structures were determined experimentally.

Genetically-encodable disulfide-constrained peptides

To design disulfide-stabilized genetically-encodable peptides, we created a “blueprint” 

specifying the lengths of each secondary structure and connecting loop for each topology. 

Ensembles of backbone conformations were generated for each blueprint by Monte Carlo-

based assembly of short protein fragments9, or, in the case of HH and HHH topologies, by 

varying the parameters in parametric generating equations11. The backbones were scanned 

for sites capable of hosting disulfide bonds with near-ideal geometry, and one to three 

disulfide bonds were incorporated. Low-energy amino acid sequences were designed for 

each disulfide-crosslinked backbone using iterative rounds of Monte Carlo-based 

combinatorial sequence optimization while allowing the backbone and disulfide linkages to 

relax in the Rosetta all-atom force field (see Methods). Except for the EHEE topology, we 

performed no manual amino acid sequence optimization. Rosetta ab initio structure 

prediction calculations were carried for each designed sequence, and synthetic genes were 

obtained for a diverse set of 130 for which the target structure was in a deep global free 

energy minimum (Fig. 2a,b).
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Disulfide bonds in peptides are unlikely to form in the reducing environment of the 

cytoplasm, so designs were secreted from Escherichia coli or cultured mammalian cells12 

(see Methods). Twenty-nine designs exhibited a redox-sensitive gel-shift, redox-sensitive 

HPLC migration, and/or a CD spectrum consistent with the designed topology (see 

Supplementary Document 3). All twenty-nine contain at least one non-alanine hydrophobic 

residue on each secondary structure element contributing van der Waals interactions in the 

core, which are likely important for proper peptide folding. We chose one representative 

design from each topology for further biochemical characterization. Since eight of the nine 

topologies contained four or more cysteine residues, we used multiple-stage mass 

spectrometry to investigate the disulfide connectivity. In all cases the data were consistent 

with the designed connectivity (see Supplementary Document 4).

The stability of the designs to thermal and chemical denaturation was assessed by CD 

spectroscopy. Samples were heated to 95°C (Fig. 2d), or incubated with increasing 

concentrations of guanidinium hydrochloride (GdnHCl) (Fig. 2e). The contribution of 

disulfide bonds to protein folding was assessed by incubating samples with a ~100-fold 

molar excess of the reductant tris(2-carboxyethyl)phosphine (TCEP). Designs gHEEE_02, 

gEEEH_04, and gEEEEEE_02 are resistant to both thermal and chemical denaturation, 

while design gHH_44 is resistant to thermal denaturation. gHEEE_02 contains three 

disulfide bonds, with each secondary structure element participating in at least one disulfide 

bond, and no two secondary structure elements sharing more than one disulfide bond. 

gEEEH_04 has two of three disulfide bonds linking the N-terminal β-strand to the C-

terminal α-helix. gEEEEEE_02 consists of two antiparallel β-sheets packing against one 

another in a sandwich-like arrangement, with each β-sheet stabilized by a disulfide bond 

linking one terminus to its adjacent β-strand. gHH_44 consists of two α-helices with a 

single disulfide bond connecting the termini.

We crystallized design gEHEE_06 and determined the structure to a resolution of 2.09 Å 

(Fig. 3, Supplementary Information Table S2-2). The crystals had threefold non-

crystallographic symmetry, and each protomer aligns to the design model with a mean all-

atom RMSD of 1.12 Å. All three of the designed disulfide bonds were well-defined by 

electron density (Extended Data Fig. 1), and rotamers of core residues exhibited excellent 

agreement with the design model. The protein was thermostable and completely resistant to 

chemical denaturation (Fig. 2d,e). While gEHEE_06 shares the short-chain scorpion toxin 

topology, the length of secondary structure elements and loops, and the position of the 

disulfide bonds, are entirely divergent from known natural peptides.

As crystallization efforts for other designs were unsuccessful (with phase-separation rather 

than protein precipitation observed), we expressed isotope-labelled peptides in E. coli, and 

determined structures by nuclear magnetic resonance (NMR) spectroscopy13,14 (see 

Methods). Upfield chemical shifts of the cysteine β-carbons15 (deposited in the BMRB) 

confirmed the formation of the designed disulfide bonds. Design gEEHE_02, with one 

disulfide bond connecting the termini within the β-sheet and two between the α-helix and β-

sheet, aligns to the NMR ensemble with a mean all-atom RMSD of 1.44 Å. This design was 

impervious to both thermal and chemical denaturation (monitored by CD spectroscopy), and 

remained partially folded in the presence of TCEP. The final three designs are each 
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composed of three secondary structure elements, with termini located at opposite ends of the 

molecule and two disulfide bonds connecting each terminus to the middle structural element 

or adjacent loop. gEEH_04 was less stable than the others to thermal denaturation, but its 

NMR structure is nearly identical to the design model (mean all-atom RMSD of 1.29 Å). 

gEHE_06, which contains a solvent-exposed two-strand parallel β-sheet (rare in natural 

protein structures16), aligns to the NMR ensemble with an all-atom mean RMSD of 1.95 Å. 

It was thermally and chemically stable based on CD measurements, and remained folded in 

the presence of TCEP. gHHH_06 partially unfolds upon heating to 95°C but returns to the 

folded state upon cooling; the design model aligns to the NMR ensemble with a mean all-

atom RMSD of 1.74 Å. Taken together, the X-ray crystallographic and NMR structures 

demonstrate that our computational approach enables accurate design of protein mainchain 

conformation, disulfide bonds, and core residue rotamers.

Synthetic heterochiral disulfide-constrained peptides

We next sought to design shorter disulfide-constrained peptides incorporating both L- and 

D-amino acids. We generalized the Rosetta energy function to support D-amino acids by 

inverting the torsional potentials used for the equivalent L-amino acids (see Methods and 

Supplementary Information), and sequence design algorithms were extended to enable 

mixed-chirality design. Since chemical synthesis is labour-intensive, we prioritized the 

development of automated computational screening techniques, supplementing Rosetta ab 
initio screening with molecular dynamics (MD) evaluation.

Large numbers of disulfide-constrained backbones for topologies HEE, EHE, and EEH were 

generated by fragment assembly as described above for genetically-encodable peptides. 

Sequences were designed (permitting D-amino acids at positive-phi positions), and the 

resultant low-energy designs were evaluated using MD and ab initio structure prediction 

(Extended Data Fig. 2). For each topology, we selected a single, low-energy design 

(Extended Data Fig. 3) which underwent only small (< 1.0 Å RMSD) fluctuations in the MD 

simulations (Extended Data Fig. 4) and had a significant energy gap in the structure 

prediction calculations. Selected peptides were chemically synthesized, and structurally 

characterized by NMR. In all three cases, the NMR spectra had well-dispersed, sharp peaks 

and secondary 1Hα chemical shifts consistent with the secondary structure of the design 

model (Supplementary Fig. S2-5).

High-resolution NMR solution structures were determined for each of the designs 

(Supplementary Information Table S2–3). NC_HEE_D1 is a 27-residue peptide with a D-

proline, L-proline turn at the β-β junction; in this case, Rosetta re-identified a motif known 

previously to stabilize type II′ turns17,18. The NMR structure closely matches the design 

model: the Cα RMSD is 0.99 Å between the designed structure and the lowest-energy NMR 

model (Fig. 4, top row). NC_EHE_D1 is a 26-residue peptide crosslinked using two 

disulfide bonds with a D-arginine residue in the β-α loop and a D-asparagine residue as the 

C-terminal capping residue for the α-helix. The design model has a 1.9 Å Cα RMSD to the 

lowest-energy NMR ensemble member, and 0.68 Å Cα RMSD to the closest member of the 

ensemble (Fig. 4, middle row; the last two residues at C-terminal vary considerably in the 

ensemble). NMR characterization of NC_EEH_D1 design showed an unwound C-terminal 
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α-helix adopting an extended conformation, differing from the design model (Extended Data 

Fig. 5). We hypothesized that substantial strain was introduced by the angle between the 

helix and the preceding strand, and by the disulfide bonds at both ends of the helix. A 

second design for the same topology, NC_EEH_D2, has a type I′ turn at the β-β connection 

and a different disulfide pattern. The NMR ensemble for NC_EEH_D2 is very close to the 

design model (0.86 Å Cα RMSD to the lowest-energy NMR model; Fig. 4, bottom row).

We explored the stability of the designed peptides using CD spectroscopy to monitor thermal 

and chemical denaturation. All three peptides are very thermostable: there is no loss in 

secondary structure for NC_HEE_D1 and NC_EEH_D2 at 95 °C, and only a small decrease 

for NC_EHE_D1 (Fig. 4f). Remarkably, NC_HEE_D1 does not denature in 6 M GdnHCl 

(Fig. 4g, top row). Treatment with TCEP causes unfolding of all three designs, highlighting 

the importance of disulfide bonds.

Both the genetically-encoded and noncanonical disulfide crosslinked designs were created 

de novo without sequence information from natural proteins. Searches for similar sequences 

in the PDB and NCBI non-redundant database using PSI-BLAST found a significant 

alignment (e-value < 0.01) only for NC_EHE_D1. This sequence has weak similarity (e-

value of 2×10−4) to the zinc-finger domain of lysine-specific demethylase (PDB ID: 2MA5), 

but the aligned regions adopt different structures (Extended Data Fig. 6).

Synthetic backbone-cyclized peptides

Next, we explored the design of peptides with cyclized backbones, which can increase 

stability and protect against exopeptidases19. To generate such backbones without 

dependence on fragments of known structures, we implemented a generalized kinematic 

loop closure20,21 method (named “GenKIC”) to sample arbitrary covalently-linked atom 

chains capable of connecting the termini. Each GenKIC chain-closure attempt involves 

perturbing multiple chain degrees of freedom, then analytically solving kinematic equations 

to enforce loop closure with ideal peptide bond geometry in the case of N-C cyclic peptides 

(see Methods, Supplementary Information, and Extended Data Fig. 7). Sequence design, 

backbone relaxation, and in silico structure validation using MD simulation and Rosetta ab 
initio structure prediction were carried out with terminal bond geometry constraints 

(Extended Data Fig. 2).

We synthesized cyclic peptides for three topologies (cEE, cHH, and cHHH) and their 

structures were determined by NMR spectroscopy. The 18-residue NC_cEE_D1 design has a 

cyclic anti-parallel β-sheet fold similar to natural theta-defensins, but with one disulfide 

bond (rather than three), and different turn types containing heterochiral sequences22. The 

lowest-energy NMR model has a Cα RMSD of 1.26 Å to the designed structure. The 

variability in the curvature of the sheets across the NMR ensemble is similar to the 

variability observed in the structure calculations (Fig. 5, top row). The 26-residue 

NC_cHH_D1 design, which has one disulfide bond linking the two α-helices, has a 1.03 Å 

Cα RMSD from the lowest-energy NMR structure (Fig. 5, second row). The 22-residue 

NC_cHHH_D1 design has three short regions of α-helical structure and a single disulfide 
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bond. The NMR structure of the design was again very close to the design model (Fig. 5, 

third row), with a Cα RMSD of 1.06 Å to the lowest-energy NMR structure.

All three cyclic topologies were found to be extremely stable in thermal denaturation 

experiments, retaining CD signal when heated to 95 °C (Fig. 5f). The CD spectra of 

NC_cHH_D1 and NC_cEE_D1 were nearly identical in 0 and 6 M GdnHCl, indicating that 

these peptides do not chemically denature (Fig. 5g; NC_cHHH_D1 showed some loss of 

secondary structure in 6M GdnHCl). After treatment with TCEP, both NC_cHH_D1 and 

NC_cHHH_D1 lost secondary structure, but the CD spectrum of NC_cEE_D1 was not 

changed by reduction of the central disulfide bond (Fig. 5g, top row). Overall, the cyclic 

designs are exceptionally stable given their very small sizes.

Beyond natural secondary and tertiary structure

As a final test of the generality of the new design methodology, we designed a heterochiral, 

backbone-cyclized, two-helix topology with one noncanonical left-handed α-helix and one 

canonical right-handed α-helix (HLHR) assembling into a tertiary structure not observed in 

natural proteins. As before, we validated designs by MD; however, for validation by ab initio 
structure prediction it was necessary to develop a new, GenKIC-based structure prediction 

protocol (see Extended Data Fig. 8, Methods, and Supplementary Information) since the 

standard Rosetta ab initio structure prediction method utilizes fragments of native proteins, 

which typically do not contain left-handed helices. Our selected design for this topology, 

NC_HLHR_D1, is a 26-residue peptide with one D-cysteine, L-cysteine disulfide bond 

connecting the right-handed and left-handed α-helices. There is an excellent match between 

the NMR structure ensemble and design model (Cα RMSD: 0.79 Å) (Fig. 6). As expected 

for the nearly achiral topology, the CD signal is very small (as observed for a previously-

studied two-chain, four-helix mixed D/L system23), and no change was observable on 

heating to 95 °C. The secondary 1Hα chemical shifts also show no significant change on 

heating to 75 °C (Fig. 6g, Supplementary Fig. 2–6), indicating that the peptide is 

thermostable. Successful design of this topology demonstrates that our computational 

methods are sufficiently versatile and robust to design in a conformational space not 

explored by nature.

Conclusions

The key advances in computational design presented here — notably the methods for 

designing constrained peptide backbones spanning a broad range of topologies and 

incorporating natural and non-natural building-blocks — enable high-accuracy design of 

new peptides with exceptional thermostability and resistance to chemical denaturation. All 

twelve experimentally-determined structures are in close agreement with the design models, 

including one with helices of different chirality. Unlike the natural constrained peptide 

families, designed peptides are not limited to particular shapes, sizes, nucleating motifs, or 

disulfide connectivities; indeed, the sequences of these de novo peptides are quite different 

from those of any known peptides. In this paper, we have focused on extending sampling 

and scoring methods to permit design with D-amino acids and cyclic backbones, but the new 
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tools are fully generalizable to peptides containing more exotic building-blocks, such as 

amino acids with noncanonical sidechains24 or noncanonical backbones25.

The hyperstable molecules presented in this study provide robust starting scaffolds for 

generating peptides that bind targets of interest using computational interface design26 or 

experimental selection methods. Solvent-exposed hydrophobic residues can be introduced 

without impairing folding or solubility (Extended Data Figs. 9 and 10, Supplementary Fig. 

S2–6) suggesting high mutational tolerance. Hence it should be possible to reengineer the 

peptide surfaces, incorporating target-binding residues to construct binders, agonists, or 

inhibitors. There has been considerable effort in both academia and industry to employ 

small, naturally-occurring proteins as alternatives to antibody scaffolds for library selection-

based affinity reagent generation. Our genetically-encoded designs offer considerable 

advantages as starting points for such approaches because of their high stability, small size, 

and diverse shapes. Furthermore, having been designed exclusively to be robust and stable, 

they lack the often-destabilizing non-ideal structural features that arise in naturally occurring 

proteins from evolutionary selective pressure for a particular function. Similarly, the 

heterochiral designs described here provide starting points for split-pool and other selection 

strategies compatible with noncanonical amino acids.

Going beyond the reengineering of our hyperstable designs to bind targets of interest, the 

methods developed in this paper can be used to design new backbones to fit specifically into 

target binding pockets. Such “on-demand” target-specific scaffold generation is likely to 

yield scaffolds with considerably greater shape-complementarity than that of scaffolds 

generated without knowledge of the target. More generally, our computational methods open 

up previously inaccessible regions of shape space, and, in combination with computational 

interface design, should help unlock the pharmacological potential of peptide-based 

therapeutics.

Methods

Computational design

De novo design of constrained peptides can be divided into two main steps: backbone 

assembly and sequence design. Practically, our peptide design pipeline has been optimized 

to permit these two steps to be performed in immediate succession with a single set of 

inputs, with no need for export or manual curation of generated backbones prior to the 

sequence design. (A third and final validation step is typically performed separately.)

For backbone assembly, we used two different approaches in this report: disulfide-

constrained topologies were sampled using a fragment assembly method, while backbone-

cyclized peptide topologies were sampled using a fragment-independent kinematic closure-

driven approach. Example scripts and command lines for each step in the design workflow 

are available in the Supplementary Information.

Backbone design using fragment assembly

In the case of disulfide-crosslinked designs, the topology was defined using a “blueprint” 

that specifies secondary structure and torsion bins for each amino acid residue, the latter 
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defined using the ABEGO alphabet system described previously7,9. The ABEGO 
nomenclature assigns a letter to each of five regions, or bins, in Ramachandran space. These 

correspond to the α-helical region (A), the β-sheet region (B), the region with positive phi 

values typically accessed by glycine (G), and the remainder of the Ramachandran space (E). 

(The fifth bin, O, represents residues with cis-peptide bonds, and was not used here.) The 

blueprint is the input for a Rosetta Monte Carlo-based fragment assembly protocol7,9,10,27 

that generates backbone conformations matching the blueprint architecture. Briefly, the 

fragment assembly protocol uses the defined blueprint to pick backbone fragments from a 

database of non-redundant high-resolution crystal structures. The insertion of fragments 

serves as the moves in a Monte Carlo search of backbone conformation space. For searches 

of the NC_EEH topology, loop types were limited to ABEGO bins EA and GG for the ββ 
connection, and BAB and GBB for the αβ connection. For sampling of the NC_EHE 

topology, βα connections were limited to GBB, BAB, and AB, while αβ connections were 

limited to GB, GBA, and AGB. For sampling of the NC_HEE topology, αβ connections 

were limited to BAAB, GB, GBA, and AGB, while ββ connections were limited to EA and 

GG.

Backbone design using generalized kinematic closure

While the fragment-based approaches described above are powerful, they are limited to 

conformations favored by peptides composed primarily of L-amino acids. For N-C cyclic 

designs — NC_cHHH_D1, NC_cHH_D1, NC_cEE_D1, NC_cHLHR_D1 — we chose to 

focus on fragment-independent methods that are better suited to explore conformations that 

are only accessible to mixed D/L peptides. We therefore turned to generalized kinematic 

closure (GenKIC).

GenKIC-based sampling works by treating a peptide as a loop, or series of loops, to be 

“closed”. The torsion values of an initial, “anchor” residue are randomly selected; this 

residue is then fixed, and the rest of the peptide is treated as a loop closure problem. The 

particular covalent linkages serve as a set of geometric constraints for loop closure. The 

GenKIC algorithm performs a series of user-controlled perturbations to the torsion angles of 

the peptide chain, which inevitably disrupt the geometry of the closure points. GenKIC then 

mathematically solves for the value of six “pivot” torsion angles that restore the geometry of 

the closure points and permit the loop to remain closed20,21,28. Since the algorithm can 

return up to sixteen solutions per closure attempt, a filters are applied to eliminate solutions 

with pivot amino acid residues in energetically unfavorable regions of Ramachandran space 

or with other geometric problems, such as clashes with other residues. The “best” solution is 

then chosen based on the Rosetta score function10.

During the sampling steps, regions in the designed topology that were intended to form 

helices or sheets were initialized to ideal phi/psi values, and were either kept fixed or 

perturbed by only small amounts (<20 degrees). In loop regions, the perturbation was carried 

out by drawing torsion values randomly, biased by the Ramachandran preferences of the 

amino acid residue. Glycine or D/L alanine were used for backbone sampling prior to 

design. The allowed torsion value range either covered the entire Ramachandran space, or, in 

cases in which known loop ABEGO patterns could connect secondary structure elements, 
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the mainchain torsion values were were limited to those ABEGO bins. For example, during 

the design of the cEE topology, connection types were limited to the ‘GG’ and ‘EA’ torsion 

bins for the 2-residue loops.

Disulfide positioning

To design disulfide bonds, we first evaluated all residue pairs with Cβ atoms ≤ 5 Å apart for 

geometry suitable to disulfide bond formation27, selected backbones that could harbor 

disulfide bonds with near-ideal geometry, and incorporated one to three disulfide bonds. To 

select an ideal disulfide configuration from the set of all sterically possible combinations of 

disulfide bonds for a given backbone, we ranked disulfide configurations according to their 

effect on the unfolded state configurational entropy. The reduction in unfolded state entropy 

due to a set of multiple crosslinks was computed according to a random flight model using 

Eq. 6 in Harrison et al.29, with ΔV = 29.65 Å3 and b = 3.8 Å3. This method has been 

implemented in the Rosetta software suite as the Disulfidize Mover and DisulfideEntropy 

Filter, both of which are accessible to the RosettaScripts scripting language.

Modifications to Rosetta to permit design of cyclic backbones and mixed D/L peptides

D-amino acid residues allow access to regions of conformational space normally only 

accessed by glycine. When placed correctly, they can provide greater rigidity than glycine, 

stabilizing glycine-dependent structural motifs and, thereby, the overall fold30. Because the 

Rosetta software suite has primarily been used for designing proteins consisting of the 19 

canonical L-amino acids and glycine, a number of modifications were necessary in order to 

permit robust design of peptides containing mixtures of D- and L-amino acids. First, 

Rosetta’s default scoring function (talaris2013 at the time of the work described here) was 

updated to permit D-amino acids to be scored with mirror symmetry relative their L-

counterparts. Terms in the score function that are based on mainchain or sidechain torsion 

values were modified to invert D-amino acid torsion values before applying the equivalent 

L-amino acid potentials. Those score function terms that are based on interatomic distances 

required minimal changes. To permit energy minimization, score function derivatives were 

also modified to invert torsion derivative values for D-amino acids. Rosetta’s rotameric 

search algorithm, the packer, was modified to use L-amino acid rotamers with sidechain chi 

torsion values inverted for D-amino acid rotamer packing, and to update Hα and Cβ 
positions appropriately when inverting residue chirality. Finally, we added an option to 

symmetrize the energy tables for the mainchain torsion preferences of glycine, which are 

asymmetric by default because they are based on statistics taken from the Protein Data 

Bank. (Glycine, in the context of L-amino acids only, occurs disproportionately in the 

positive-phi region of Ramachandran space, but should have no asymmetric preferences in a 

mixed D/L context.) Details of these modifications are described in the Supplementary 

Information.

Because Rosetta has traditionally been used to build linear polymers, a number of core 

Rosetta libraries had to be modified to permit N-C cyclic geometry to be sampled and scored 

properly. The assumption that residue i is connected to residues i+1 and i−1, which is invalid 

for cyclic peptides, has been removed and replaced with proper lookups of connected 
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residue indices. Cyclic geometry support was tested by confirming that the circular 

permutations of cyclic peptide models score identically.

Note that, as of 11 March 2016, the default Rosetta score function has been changed to 

talaris2014, which re-weights a number of score terms and introduces one new term31. The 

talaris2014 score function has also been made fully compatible with D-amino acids and 

cyclic geometry. A newer, experimental score function, currently called beta_nov15, has also 

been made fully compatible with D-amino acids and cyclic geometry.

Sequence design and filtering

Backbone assembly using fragment assembly or GenKIC was followed by a sequence 

design step. Sequence design was performed using the FastDesign protocol (see 
Supplementary Information). This involves four rounds of alternating sidechain rotamer 

optimization (during which sidechain identities were permitted to change) and gradient 

descent-based energy minimization. The best-scoring structure was taken from a minimum 

of three repeats of FastDesign (twelve rounds of rotamer optimization and minimization). 

Each amino acid position was sorted into a layer (“core”, “boundary”, or “surface”) based on 

burial, and the layer dictated the possible amino acid types allowed at that position. 

Hydrophobic amino acid residues, for example, were only permitted at core positions. To 

favor more proline residues during sequence design, the reference weight for proline in the 

Rosetta score function was reduced by 0.5 units. Backbones were allowed to move during 

the relaxation steps. For each topology ~80,000 structures were generated, and filtered based 

on the overall energy per residue, score terms related to backbone quality, and score terms 

related to the disulfide geometry. In a few cases for noncanonical peptides, a conservative 

mutation was manually introduced into a surface-exposed repeat sequence (e.g. an arginine 

to break a poly-lysine sequence) to facilitate unambiguous NMR assignment.

Rosetta-based computational validation

Typically, the number of designs that can be created in silico exceeds the number that can be 

produced and examined experimentally. We therefore used Rosetta to prune the list of 

designs, by one of two methods. For design consisting of canonical amino acids, Rosetta’s 

fragment-based ab initio algorithm32 was utilized to predict a design’s structure given its 

amino acid sequence, and to determine whether the target structure was a unique minimum 

in the conformational energy landscape. Disulfide bonds were not allowed to form during 

these simulations; the designed disulfide bonds are intended to stabilize the folded 

conformation rather than direct protein folding. Designs which incorporate short stretches of 

D-amino acids were also validated using Rosetta’s fragment-based ab initio algorithm; the 

amino acid sequences of designs, with all D-amino acids mutated to glycine, were provided 

as input, and we allowed Rosetta to generate on the order of 30,000 predicted structures as 

output. Unlike the standard ab initio protocol, we did not use secondary structure predictions 

in fragment picking. Additionally, the length of small and large fragments was set to 4 and 6 

amino acid residues, instead of the default 3 and 9; we found that this produced better 

sampling for peptides. After conformational sampling, the D-amino acid positions were 

changed to their original identities, and rescored. A small modification to the ab initio 
algorithm permitted it to build a terminal peptide bond for the N-C cyclic designs during the 
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full-atom refinement stages of the structure prediction. Those designs that showed no 

sampling near the design conformation, or for which the design conformation was not the 

unique, lowest-energy conformation, were discarded.

Since fragment-based methods are poorly suited to the prediction of structures with large 

amounts of D-amino acid content, such as NC_cHLHR_D1, we developed a new, fragment-

free algorithm for validation of these topologies. This algorithm, which we call 

“simple_cycpep_predict”, uses the same GenKIC-based sampling approach used to build 

backbones for design, with additional steps of filtering solutions based on disulfide 

geometry, optimizing sidechain rotamers, and gradient-descent energy minimization. 

Because the search space is vast, even with the constraints imposed by the N-C cyclic 

geometry and the disulfide bond(s), we further biased the search by setting mainchain 

torsion values for residues in the middle of the helices to helical values (a Gaussian 

distribution centred on phi=−61°, psi=−41° for the αR helix and on phi=+61°, psi=+41° for 

the αL helix); this is analogous to the biased sampling obtained by fragment-based methods, 

in which sequences with high helix propensity are sampled primarily with helical fragments. 

As with ab initio validation, designs showing poor sampling near the design conformation or 

poor energy landscapes were discarded.

Molecular dynamics-based computational validation

We carried out further molecular dynamics-based validation of those designs for which the 

ab initio or simple_cycpep_predict algorithms predicted high-quality energy landscapes. 

Similar to strategies described previously33,34, we used multiple short and independent 

trajectories, starting with different initial velocities to analyze the conformational flexibility 

and kinetic stability of designed peptides. MD simulations were performed in explicit 

solvent conditions using the AMBER12 package and Amber ff12sb force field35. A 

rectangular water box with 10 Å buffer of TIP3P water36 in each direction from the peptide 

was used for simulations. Sodium and chloride counterions were added to neutralize the 

system. The solvated system was minimized in two steps: solvent was first minimized for 

20,000 cycles while keeping restraints on the peptide, followed by minimization of the 

whole system for another 20,000 cycles. At the start of simulations, the system was slowly 

heated from 0 K to 300 K under constant volume with positional restraints on the peptide of 

10 kcal/(mol·Å) for 0.1 ns. For each selected peptide, 50 independent simulations starting 

with different initial velocities were performed. Each simulation started with the energy-

minimized designed model, and was carried out for ~3.5 ns. Periodic boundary conditions 

were used with a constant temperature of 300 K using the Langevin thermostat37 and a 

pressure of 1 atm with isotropic molecule-based scaling. A cutoff of 10 Å was used for the 

Lennard-Jones potential and the Particle Mesh Ewald method38 to calculate long-range 

electrostatic interactions. The SHAKE algorithm39 was applied to all bonds involving H 

atoms and an integration step of 2 fs was used for the simulations with amber12 PMEMD in 

the NPT ensemble. At the conclusion of the simulations, all the trajectories were analysed 

using the Amber12 package and VMD40. We looked for for fluctuations in RMSD, and for 

the convergence (or the lack thereof) to the designed structure among all the trajectories. 

Distribution of RMSD values at the end of all trajectories was also analyzed, although the 
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beginning two-thirds of each trajectory were discarded as a burn-in period. MD analyses for 

three designs of the same topology are shown in Extended Data Figure 4.

Prediction of mutational tolerance

Since the designed peptides presented in this study are intended to be used as starting points 

for designing binders to targets of therapeutic interest, we sought to examine the extent to 

which the designs can tolerate mutations (such as those that must be introduced to create a 

binding surface). Due to the computational expense of the mutational analysis, we focused 

on the NC_cHLHR_D1 design, mutating each position in sequence to each of alanine, 

arginine, aspartate, phenylalanine and carrying out a full structure prediction simulation for 

each. These mutations covered each class of mutation (elimination of the sidechain, 

introduction of a positive or negative charge, introduction of a bulky aromatic sidechain, or 

introduction of a small aliphatic sidechain). Mutations preserved chirality (i.e. only D-amino 

acid to D-amino acid or L-amino acid to L-amino acid mutations were considered). 

Simulation runs were carried out on the Argonne Leadership Computing Facility’s Blue 

Gene/Q supercomputer (“Mira”) using a version of the Rosetta simple_cycpep_predict 

application parallelized using the Message Passing Interface (MPI). The 127 prediction runs 

(each for a different mutation) required approximately 20,000 CPU-hours apiece, and each 

produced on the order of 25,000 sampled, closed conformations with good disulfide 

geometry. For each mutation considered, 50 trajectories were also carried out in which the 

mainchain was perturbed slightly and relaxed. The resulting collection of samples (from 

structure prediction and relaxation) was then used to calculate a goodness-of-energy-funnel 

metric, termed Pnear, by the following expression:

(1)

The value of Pnear ranges from 0 (a poor funnel with low-energy alternative conformations 

or poor sampling close to the design conformation) to 1 (a funnel with a unique low-energy 

conformation very close to the design conformation). N is the number of samples, and Ei 

and RMSDi represent the Rosetta score and RMSD from the design structure of the ith 

sample, respectively. The parameter λ controls how close a state must be to the design if it is 

to be considered native-like. This was set to 1 Å. Similarly, the parameter kBT governs the 

extent to which the shallowness or depth of the folding funnel affects the score. This was 

assigned a value of 1 Rosetta energy unit. The Pnear metric provided a basis for comparison 

for the mutations considered.

Code availability

All the methods described in this report were implemented in the Rosetta software suite 

(www.rosettacommons.org). Rosetta software is available free to academic and non-

commercial users. Commercial licenses for the suite are available via the University of 

Washington Technology Transfer Office. Design protocols were implemented using the 

RosettaScripts interface available within the Rosetta software suite. Input files and command 
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line arguments for each step in our peptide design pipeline are available in the 

Supplementary Information.

Protein purification of genetically-encodable disulfide-rich peptides

Genes of designed disulfide-rich peptides were cloned into the vector pCDB180 (which we 

have made available via Addgene) using Gibson Assembly41. Protein expression from E. 
coli was carried out using a large N-terminal fusion domain consisting of: the native E. coli 
protein OsmY to direct periplasmic and extracellular localization42, a deca-histidine tag for 

protein purification, and the SUMO protein Smt3 from Saccharomyces cerevisiae to 

chaperone folding and provide a mechanism for scarless cleavage of the fusion from the 

designed protein43. Designed proteins were expressed from BL21*(DE3) E. coli 
(Invitrogen), and expression cultures were grown overnight with incubation at 37 °C and 

shaking at 225 RPM. Following expression via Studier autoinduction44, a periplasmic 

extract45 was prepared by washing cells with: 20% sucrose, 30 mM Tris-HCl pH 8.0, 1 mM 

ethylenediaminetetraacetic acid pH 8.0, 1 mg/mL lysozyme. Protein was purified from the 

bacterial-conditioned medium and/or the periplasmic extract by immobilized metal-affinity 

chromatography (IMAC). During screening, fusion protein was purified from the bacterial-

conditioned medium of 50 mL cultures, which typically yielded 9 ± 4 mg of protein (prior to 

removal of the fusion protein). Protein expression from mammalian cells was carried out 

using the Daedalus12 system, as previously described in detail. With both purification 

systems, purified fusion proteins were cleaved by a site-specific proteases, SUMO protease 

for E. coli and TEV protease for Daedalus, followed by a secondary IMAC step. The final 

designs were purified to homogeneity by reverse-phase high-performance liquid 

chromatography on an Agilent 1260 HPLC equipped with a C-18 Zorbax SB-C18 4.6 × 

150mm column. Solvent A (Water + 0.1%TFA) and solvent B (Acetonitrile + 0.1%TFA) 

were run using the following gradient: 0–5% solvent B (5 minutes), 5–45% solvent B(40 

minutes).

Synthesis and purification of noncanonical peptides

Linear and cyclic peptides were synthesized as previously described46. Briefly, peptides 

were synthesized using automated solid phase peptide synthesis with Fmoc (9-

fluorenylmethyloxycarbonyl) strategy. Cyclic reduced peptides were obtained after cleavage 

of the sidechain-protected peptides from the resin, ligation of both termini and the cleavage 

of sidechain protecting groups. Linear reduced peptides were collected by cleaving the 

sidechain protecting groups and resin from the peptides simultaneously. All linear or cyclic 

reduced peptides were oxidized at room temperature in a buffer containing 0.1 M 

NH4HCO3, where the peptide concentration was 0.25 mg/mL. After 48 h, the mixture was 

acidified with trifluoroacetic acid, loaded onto a semi-preparative column and purified by 

RP-HPLC.

Mass spectrometry

Intact samples for each genetically-encodable peptide were diluted in loading buffer with 

0.1% formic acid and analyzed on a Thermo Scientific Orbitrap Fusion Tribrid Mass 

Spectrometer via data-dependent acquisition. Liquid chromatography consisted of a 60 

minute gradient across a 15 cm column (75 μm internal diameter) packed with C18 resin 
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with a 3 cm kasil frit trap (150 μm internal diameter) packed with C12 resin. For disulfide 

connectivity analysis, peptides were digested with sequencing grade modified trypsin 

(Promega) at 1:50, enzyme to substrate, concentration for 1 hour at 37°C then desalted via 

mixed-mode cationic exchange (MCX). Peptide samples were dried under vacuum and 

resuspended in 0.1% formic acid. Digested samples were analyzed using both data-

dependent acquisition and targeted methods.

Thermal and chemical denaturation experiments

Circular dichroism (CD) wavelength and temperature scans were recorded on AVIV model 

420 or Jasco J-1500 CD spectrometer. For thermal denaturation, peptides samples were 

prepared at 0.07–0.2 mg/ml final concentration in 10 mM sodium phosphate buffer (pH 7.0). 

Wavelength scans from 195 nm to 260 nm were recorded at 25 °C, 55 °C, 95 °C, and again 

after cooling back to 25 °C. For chemical denaturation experiments, samples for each 

peptide were prepared in the presence of 0 M to 6 M GdnHCl concentrations. The 

concentration of GdnHCl was measured by refractometry47. Peptide samples were also 

prepared in the presence of 2.5 mM TCEP (TCEP was pre-equilibrated to pH 7.0 prior to 

addition), and incubated for 3 hours. Peptide concentrations were the same across all 

samples. Wavelength scans from 190 nm to 260 nm were recorded for each sample in 0.1 cm 

cuvette.

NMR analysis and structure determination of genetically-encodable disulfide-rich peptides

Agilent NMR spectrometers operating at 1H resonance frequencies between 500 to 750 

MHz equipped with 1H{15N,13C} probes were used to acquire NMR data for gEHE_06, 

gEEHE_02, gEEH_04, and gHHH_06. The peptides were all uniformly 15N-labeled with 

gEEH_04 and gHHH_06 also ~10% labeled with 13C. The peptides were suspended in 50 

mM sodium chloride, 20 mM sodium acetate, pH 4.8 (gEHE_06 and gEEHE_02) or 50 mM 

sodium phosphate, 4 μM 4,4-dimethyl-4-silapentane-1-sulfonic acid, 0.02% sodium azide, 

pH 6.0 (gEEH_04 and gHHH_06) at concentrations between 1.5 and 0.5 mM. The 1H, 13C, 

and 15N chemical shifts of the backbone and sidechain resonances were assigned by analysis 

of two-dimensional [15N,1H] HSQC, [13C,1H] HSQC (aliphatic and aromatic), [1H,1H] 

TOCSY, and [1H,1H] NOESY spectra, and three-dimensional (3D) 15N-resolved [1H,1H] 

TOCSY, 15N-resolved [1H,1H] NOESY, HNCA, HNCO, and HNHA spectra acquired at 

20 °C (for gEHE_06 and gEEHE_02) and 25 °C (gEEH_04 and gHHH_06), respectively. 

Mixing times of 90 ms (gEHE_06 and gEEHE_02) and 200 ms (gEEH_04 and gHHH_06) 

were used for 2D and 3D NOESY, respectively. Slowly exchanging amides were identified 

for gEHE_06 and gEEHE_02 by lyophilizing a 15N-labeled protein, re-dissolving in D2O, 

and collecting a 2D [15N,1H] HSQC spectrum ~10 minutes after re-dissolving the protein. 

The resulting D2O sample was subsequently used to collect additional 2D [1H-1H] TOCSY 

and [1H-1H] NOESY data. Stereospecific assignments for the Val and Leu methyl groups 

were obtained for gEEH_04 for the 10% fractionally 13C-labelled sample48,49. Because it 

was not economical to prepare uniformly 13C-labelled peptides by autoinduction, 

established triple-resonance NMR backbone assignment protocols could not be used. 

Instead, the carbon resonances were assigned by analyzing the 2D [1H,1H] TOCSY spectra 

along with [13C,1H] HSQC spectra (collected at natural 13C abundance for gHHH_06, 

gEHE_06 and gEEHE_02). For gEEH_04, which was 10% fractional 13C-labeled, the 
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assignments were complemented with HNCA spectra. NMR data were processed using the 

Felix2007 (MSI, San Diego, CA) and PROSA (v6.4) programs and were analyzed using the 

programs Sparky (v3.115), XEASY, or CARA. Proton chemical shifts were referenced to 

internal DSS, while 13C and 15N chemical shifts were referenced indirectly via 

gyromagnetic ratios. Chemical shifts, NOESY peak lists and time domain NMR data were 

deposited in the BioMagResBank (for accession numbers see Supplementary Table 2-1).

Isotropic overall rotational correlation times of 1.6 - 1.3 ns were inferred from averaged 

backbone 15N spin relaxation times (www.nmr2.buffalo.edu/nesg.wiki), indicating that all 

peptides are monomeric in solution. The 1H, 13C, and 15N chemical shift assignments and 

NOESY peak lists were used for iterative structure calculations using the program CYANA 

(v 2.1 and 3.97). Chemical shifts were used to derive dihedral phi and psi angle constraints 

using the program TALOS+50 for residues located in well-defined regular secondary 

structure elements. For the final structure calculation, hydrogen bond restraints13 were also 

introduced for gEHE_06 and gEEHE_02, for slowly exchanging amide protons. The 

resulting ensemble of 20 CYANA conformers was refined by restrained molecular dynamics 

in an ‘explicit water bath’ using the program CNS (v1.3)51. Structural quality was assessed 

using the online Protein Structure Validation Suite (PSVS, v1.5)52. The structural statistics 

are summarized in Supplementary Table 2-1. The coordinates for the 20 conformers 

representing the solution structures were deposited in the PDB (for accession numbers see 

Supplementary Table 2-1).

NMR analysis and structure determination of noncanonical peptides

Each noncanonical peptide (1 mg) was dissolved in 500 mL of 10% D2O/90% H2O or 100% 

D2O (~pH 4). NMR spectra were recorded at 298K on a Bruker Avance-600 spectrometer. 

Two-dimensional NMR experiments included TOCSY with an 80 s MLEV-17 spin lock, 

NOESY (200 ms mixing time), ECOSY, as well as natural-abundance 13C and 15N HSQC. 

Solvent suppression was achieved using excitation sculpting. Spectra were processed using 

Topspin 2.1 then analysed using CcpNmr Analysis53. Chemical shifts were referenced to 

internal 2,2-dimethyl-2-silapentane-5-sulfonate (DSS).

Initial structures were generated using CYANA and were based upon distance restraints 

derived from NOESY spectra recorded in both 10% and 100% D2O. The following restraints 

were also included: disulfide bonds, hydrogen bonds as indicated by slow D2O exchange 

and sensitivity of amide proton chemical shift to temperature, chi1 restraints from ECOSY 

and NOESY data, and backbone phi and psi dihedral angles generated using the program 

TALOS-N54. The final set of structures was generated within CNS55 using torsion angle 

dynamics, refinement and energy minimization in explicit solvent and protocols as 

developed for the RECOORD database56. Final structures were assessed for stereochemical 

quality using MolProbity57.

X-ray crystallography

The gEHEE_06 peptide was purified by size exclusion chromatography on an AKTA Pure 

using a GE HiLoad 16/600 Superdex 75 pg column, concentrated to 50 mg/ml, and 

crystallized by vapor diffusion over well solutions of 100 mM citrate (pH 3.5), and 25% 
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PEG3350. Selected crystals were transferred to a cryo-solution of 100 mM citrate (pH 3.5), 

20% PEG3350, and 15% glycerol. Diffraction data were collected on a Rigaku 

Micromax-007HF with a Saturn944+ CCD detector, and integrated and scaled with 

HKL-2000. Initial phases were determined by molecular replacement using Phaser58 as 

implemented in the CCP4 software suite with coordinates derived from a Rosetta model for 

the scaffold. Molecular replacement found 2 molecules per asymmetric unit (ASU). This 

solution was iteratively refined with the program Refmac followed by model building with 

COOT, yielding a crystallographic R-values (Rcryst = 39.9%, Rfree = 42.5%). Based on the 

Matthews’ coefficient, the crystals should have contained 3 molecules per ASU in order to 

have a reasonable solvent content of 45%. At this point positive electron density appeared 

that allowed for the manual positioning of a third molecule in the ASU and improving the R-

values (Rcryst = 32.0%, Rfree = 34.9%). The model was further improved by including 

solvent molecules and TLS refinement. The quality of the final model was assessed using 

ProCheck and Molprobity (overall score: 100th percentile). The final model has been 

deposited in the PDB with accession code 5JG9. Crystallographic statistics are reported in 

Supplementary Table S2-2.

Surface redesign

In attempt to reduce solubility and enhance crystallization, we redesigned solvent-exposed 

residues of designs representing each major topological category (mixed α/β, all β-sheet, all 

α-helical). Two resurfaced variants were selected for each design bearing between one to 

two solvent-exposed tyrosine residues. We then expressed and purified these resurfaced 

designs using Daedalus, all of which expressed solubly and exhibited a redox-sensitive 

migration time by reverse-phase HPLC. We were only able to obtain diffracting protein 

crystals for redesign gEEHE_2.1_02_0008, which diffracted to 2.90 Å resolution 

(Supplementary Table 2-2). However, Matthews calculations predicted non-crystallographic 

symmetry with approximately nineteen copies in the asymmetric unit, and attempts to phase 

the crystal by molecular replacement were unsuccessful, as were attempts at reproducing the 

crystal outside of the initial screen.
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Extended Data

Extended Data Figure 1. Disulfide bonds are well defined by X-ray crystallography
An Fo – Fc omit-map is shown contoured at 4 σ for design gEHEE_06. Disulfide sulfur 

atoms were removed, and the omit-map was calculated following real-space refinement.

Bhardwaj et al. Page 18

Nature. Author manuscript; available in PMC 2017 March 14.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Extended Data Figure 2. Flowchart of pipelines for designing noncanonical cyclic peptides
Inputs are shown in blue, RosettaScripts-automated parts of the pipeline are in green, parts 

carried out by Rosetta standalone applications are pink (the fragment picker application) and 

purple (the various structure prediction applications), parts performed with molecular 

dynamics software are yellow, and manual steps are grey. a) Fragment assembly-based 

design pipeline. Final computational validation was carried out using MD simulations and 

fragment-based Rosetta ab initio structure prediction. For peptides containing isolated D-

amino acids, these residues were mutated to glycine for Rosetta ab initio structure 

prediction. b) Fragment-free, GenKIC-based design pipeline. This approach permits design 

of noncanonical topologies like the mixed HLHR topology, which occurs in no known 

natural protein. The GenKIC-based structure prediction algorithm is described in Extended 

Data Figure 7 and in the Supplementary Information.
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Extended Data Figure 3. Sidechain placement in noncanonical peptide designs chosen for 
experimental characterization
Designs are shown as cartoon and stick representations (top row in each box) and as van der 

Waals spheres showing sidechain packing (bottom row in each box). L-amino acid residues 

are shown in cyan, and D-amino acid residues are coloured orange. Sidechains of D- or L-

variants of alanine, phenylalanine, isoleucine, leucine, valine, tryptophan, and tyrosine are 

coloured grey to aid visualization of hydrophobic packing interactions.
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Extended Data Figure 4. Molecular dynamics screening of designed peptides
Fifty independent molecular dynamics (MD) simulations in explicit solvent conditions, all 

starting from the designed peptide, were used for discriminating good, kinetically-stable 

(e.g. EHE_D1) designs from non-optimal designs of the same topology (e.g. EHE_X18 and 

EHE_X11). a) Five representative trajectories from MD simulation runs. Designs that 

showed good convergence, and smaller fluctuations were selected for further experimental 

characterization. b) RMSD distribution from all 50 trajectories. Only the last one-third of the 

trajectory was used for this analysis. Designs with narrower distributions were picked for 

further testing. c) Concatenated trajectory of all 50 independent runs show lower fluctuations 

for the more optimal designs.

Extended Data Figure 5. Structural characterization of NC_EEH_D1
NMR structure of NC_EEH_D1 does not match the designed topology. a) Rosetta-designed 

model for NC_EEH_D1. b) Ensemble of conformers representing the NMR solution 
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structure. c) Superposition of the designed model (blue) with a representative NMR 

conformer (green).

Extended Data Figure 6. Structural mapping of sequence-aligned region between NC_EHE_D1 
and 2MA5
Design NC_EHE_D1 and PDB entry 2MA5 show weak but significant (e-value: 2×10−4) 

sequence alignment, which is highlighted in purple. The aligned region folds into very 

different structures in the different contexts of peptide and protein.

Extended Data Figure 7. Generalized kinematic closure (GenKIC) algorithm flowchart
GenKIC allows sampling of closed conformations of arbitrary chains of atoms, passing 

through canonical or noncanonical backbone or sidechain linkages. Bond length, bond 

angle, and torsional degrees of freedom in the chain can be fixed, perturbed from a starting 
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value by small amounts, set to user-defined values, or sampled randomly. The algorithm then 

solves for six torsion angles adjacent to three user-defined pivot atoms in order to enforce 

closure of the loop. The many solutions from the closure are then filtered internally, and 

each can be subjected to arbitrary user-defined Rosetta protocols and filtration in order to 

prune the solution list further. A single solution is selected from those passing filters by a 

user-defined selection criterion. This flowchart shows the steps in a single invocation of the 

algorithm; for sampling, a user may specify that the algorithm be applied any number of 

times. User inputs are shown in blue, steps carried out by the GenKIC algorithm itself are in 

green, steps carried out by Rosetta code external to the GenKIC algorithm are shown in 

yellow, and outputs are shown in salmon.

Extended Data Figure 8. A new fragment-free structure prediction algorithm
a) Flowchart diagramming the steps to generate a single sampled conformation. In typical 

usage, this process would be repeated tens of thousands of times to produce many samples. 
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Inputs (the peptide sequence and an optional PDB file for the design structure) are shown in 

blue, and outputs (the sampled structure, its energy, and its RMSD from the design structure) 

are shown in salmon. Steps performed by the Generalized Kinematic Closure algorithm are 

shaded green, and setup and completion steps performed by the simple_cycpep_predict 
application are shown in yellow. Further details of this algorithm are discussed in the 

Supplementary Information available online. b) The initial, random peptide conformation 

with bad terminal peptide bond geometry. c) Ensemble of closed conformations found for a 

single closure attempt. In this example, residue 7 (cyan) is the fixed anchor residue. Certain 

regions of the peptide have been set to left- or right-handed helical conformations prior to 

solving closure equations. d) A single closed solution with relative cysteine sidechain 

orientations that pass the initial, low-stringency filter for disulfide (fa_dslf) conformational 

energy. e) The resulting structure, following sidechain repacking, energy-minimization, and 

cyclic de-permutation.

Extended Data Figure 9. Mutational tolerance of selected genetically-encodable designs
RP-HPLC traces for the parental designs are shown next to the redesigned variants where 

applicable. Proteins run under oxidized conditions are shown in black while proteins run 

following reduction with 10mM DTT are shown in red. Insets within each panel are shown 

only to highlight the SDS-PAGE mobility of each purified protein under oxidizing (left 

band) and reducing conditions (right band). Sequence alignments are shown with the 

mutated positions highlight in red, along with theoretical isoelectric points as calculated by 

ProtParam.
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Extended Data Figure 10. Mutational tolerance of selected NC designs
a–b) Mutational tolerance of D-proline, L-proline loop of design NC_cEE_D1 (green in 

panel a), assessed by secondary 1Hα chemical shift for the design sequence (black bars in 

panel b) and the p18d loop mutation (red bars). Eliminating this key proline residue does not 

result in loss of β-strand signal. c–d) Mutational tolerance of loop region of design 

NC_HEE_D1 (green in panel c), as assessed by CD spectroscopy for the design sequence 

(left plot, panel d) and for the D19T, p20q, P21D triple mutant (right plot, panel d). Both 

proline residues may be mutated without loss of secondary structure or major change in the 

thermal stability. e–g) Computationally predicted mutational tolerance of design 

NC_HLHR_D1, across the entire sequence. Each position was successively mutated in silico 
to D- or L-alanine, arginine, aspartate, phenylalanine, or valine (preserving the position’s 

chirality), and full folding simulations were carried out with the Rosetta 

simple_cycpep_predict application. Folding funnel quality was evaluated using the Pnear 

metric described in the Methods. e) Representative plots of energy vs. RMSD from the 

design structure, plotted for the design sequence (top), for the non-disruptive R14F mutation 
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(middle), and for the e18v mutation (bottom). Results from GenKIC-based structure 

prediction runs are shown in blue, and relaxation runs, in orange. Note that the bottom case 

shows many sampled states far from the design state with energy equal to or less than the 

design state energy. f) Mutational tolerance by position (vertical axis) and mutation 

(horizontal axis). Blue rectangles represent well-tolerated mutations, and red to black 

rectangles represent disruptive mutations, based on Pnear evaluation of the folding funnel. 

Black borders indicate the design sequence. g) Mutational tolerance mapped onto the 

NC_HLHR_D1 structure, with colours as in the previous panel. Most positions tolerate 

mutation well, with only the disulfide bridge (C8-c21) and the salt bridges formed by e18 

being highly sensitive. The hydrogen bond networks formed by residues Q5, e24, and s25 

show some moderate sensitivity to mutation, as do residues E3 and e16.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Designed peptide topologies
The designed secondary structure architectures for each of the three classes of constrained 

peptides (genetically-encodable disulfide-rich, heterochiral disulfide-crosslinked, and cyclic) 

span most of the topologies that can be formed with four or fewer secondary structure 

elements. Arrows: β-strands, orange cylinders: right-handed α-helices, green cylinder: left-

handed α-helix; red: loop segments containing D-amino acid residues.
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Figure 2. Computational design and biophysical characterization of genetically-encodable 
disulfide-rich peptides
Genetically-encodable peptides are given the prefix “g” and a number to differentiate 

designs that share a common topology. (column a) Cartoon renderings of each design are 

shown with rainbow colouring from the N-terminus (blue) to the C-terminus (red), and 

disulfide bonds are shown as sticks. (column b) The energy landscape of each designed 

sequence was assessed by Rosetta structure prediction calculations starting from an extended 

chain (blue dots) or from the design model (orange dots); lower energy structures were 

sometimes sampled in the former because disulfide constraints were only present in the 

latter. (column c) CD spectra at 20°C (blue line), after heating to 95°C (red line), and upon 

cooling back to 20°C (green line). Spectra collected with 2.5 mM TCEP are shown in 

purple. (column d) CD steady-state wavelength spectra as a function of GdnHCl 

concentration.
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Figure 3. X-ray crystal structures and NMR solution structures of designed peptides are very 
close to design models
Structures for gEHE_06, gEEH_04, gEEHE_02, and gHHH_06 were determined by NMR 

spectroscopy, and the structure of gEHEE_06 was determined by X-ray crystallography. 

(column a) Cα traces of NMR ensembles, or superimposed members of the asymmetric unit, 

(grey) are aligned against the design model (rainbow). Disulfide bonds are shown with 

sidechain atoms rendered as sticks with sulfur atoms coloured yellow. (column b) A cartoon 

representation of the lowest energy conformer of each NMR ensemble or crystallographic 

asymmetric unit (grey) is shown aligned to the design model (rainbow). Sidechain atoms of 

hydrophobic core residues are rendered as sticks.
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Figure 4. Design and characterization of heterochiral disulfide-constrained peptides
The prefix “NC” denotes noncanonical sequence or backbone architecture, and a numerical 

suffix differentiates designs sharing a common topology. (Column a) Cartoon 

representations of design models with the N-terminus in blue and C-terminus in red. 

(Column b) Folding energy landscapes from Rosetta ab initio structure prediction 

calculations. Blue dots indicate lowest-energy structures identified in independent Monte 

Carlo trajectories. Orange dots are from trajectories starting with the design model. (r.e.u: 

Rosetta Energy Units, RMSD: root mean square deviation from the designed topology). 

(Column c) Five representative trajectories from a total of 50 independent molecular 

dynamics simulations starting from the design model with different initial velocities. 

(Column d) NMR-determined structure ensembles. Cartoon representations coloured and 

oriented as in column a. (Column e) Superposition of the designed structure (blue) with the 

lowest-energy NMR structure (green). (Column f) CD wavelength spectra between 195 nm 

and 260 nm recorded at 25 °C (black), 55 °C (blue), 95 °C (red), and after cooling back to 

25 °C (green). (Column g) CD spectra recorded at 0 M (black), 2 M (blue), 4 M (green), or 6 

M GdnHCl (red), or with 2.5 mM TCEP/0 M GdnHCl (purple). Data are truncated in the 

far-UV region for spectra acquired in the presence of high GdnHCl concentrations (due to 

GdnHCl absorbance).
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Figure 5. Design and characterization of N-C backbone cyclic peptides
Columns are as indicated in Figure 4 legend. A lowercase “c” in the peptide name indicates 

N-C cyclic backbone.
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Figure 6. Design and characterization of a peptide with noncanonical secondary and tertiary 
structure
a) NC_HLHR_D1 design (cyan: L-amino acids, orange: D-amino acids) b) Folding energy 

landscape generated using a new structure prediction algorithm compatible with 

noncanonical secondary structures (see Methods and Supplementary Information). c) Five 

representative molecular dynamics trajectories (from a total of 50) starting from the design 

model with different initial velocities. d) NMR-determined structure ensembles, coloured 

and oriented as in first panel. e) Superposition of designed structure (blue) with lowest-

energy NMR structure (green). f) CD spectra between 195 nm and 260 nm recorded at 25 °C 

(black), 55 °C (blue), 95 °C (red), and after cooling back to 25 °C (green). The CD spectrum 

of NC_HLHR_D1 exhibits very weak signals because the L- and D- helical signals largely 

cancel. g) Secondary 1Hα chemical shifts (ppm) show no change from 25 °C (black) to 

75 °C (red).
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