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Abstract

Adverse events in pregnancy may ‘programme’ offspring for the later development of cardiovascular disease and
hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-
angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation
of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we
investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene
expression. We investigated whether treatment of rat dams with the 11b-hydroxylase inhibitor metyrapone, could prevent
the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in
pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously.
Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the
appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed
hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that,
whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene
expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and
expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy
a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of
this glucocorticoid or a stage-specific influence.
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Introduction

It is recognised that the onset and development of disease in

adult life is influenced by the quantity and quality of nutrition

during the fetal period [1–5]. Epidemiological studies in developed

and developing countries have strongly suggested that the

intrauterine environment plays a role in determining risk of adult

disease. Many cohort studies indicate that lower weight at birth,

followed by rapid catch-up growth in childhood, is associated with

risk of metabolic syndrome and cardiovascular disease in

adulthood [6–11]. It has been proposed that maternal undernu-

trition may ‘‘programme’’ long-term changes in gene expression in

the fetus, resulting in cardiovascular and metabolic abnormalities

in later life. This epidemiological data is strongly supported by

evidence from animal models [12–15]. Our laboratory has

established a rat model of programmed hypertension and

metabolic syndrome, in which the feeding of a low protein diet

during pregnancy results in the development of a programmed

phenotype in the offspring [16,17].

There is currently considerable interest in the potential for

nutritionally-mediated changes to epigenetic markers in the fetal

genome to drive the development of programmed cardiovascular

disease. A range of studies using the model of protein restriction

during rat pregnancy have suggested that maternal undernutrition

leads to reduced methylation and hence increased gene expression

of important metabolic and physiological regulators in the

offspring [18–20]. Heijmans et al (2008) have reported similar

hypomethylation of the imprinted IGF2 gene in human subjects

exposed to famine during fetal development [21].

We recently demonstrated that maternal protein undernutrition

in pregnancy leading to the development of hypertension in the

offspring was associated with reduced methylation and increased

expression of the At1b angiotensin receptor gene (Agtr1b)

expression in the rat adrenal gland [22]. Offspring from

pregnancies in which the mother had been subjected to an

isocaloric low protein diet throughout pregnancy were found to

have a number of alterations in expression of components of the

renin-angiotensin system in several tissues [23,24]. The earliest

significant changes were found in the expression of the AT1b and

AT2 angiotensin receptor in the adrenal [22]. This finding is

consistent with increased adrenal responsiveness to angiotensin

[25] and observations that the development of hypertension can be

prevented by administration of ACE inhibitors or AT1 antagonists

in early life [23,26]. In addition, we were able to show that the low
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protein diet offspring had reduced methylation of CpG sites in the

proximal promoter of the Agtr1b implying an epigenetic mecha-

nism may, at least in part, explain this effect [22].

The maternal low protein diet model of programming is a

widely used model, but is not unique. Other causes of maternal

stress can result in similar long term consequences and this has led

to the proposal that stress-related over-activity of the maternal

pituitary-adrenal axis in pregnancy results in over-exposure of the

fetus to maternal glucocorticoids and that this provides a common

mechanism that leads to the changes in gene expression and

ultimately the long-term pathological consequences associated

with programming. In support of this hypothesis, administration of

dexamethasone in pregnancy also has similar long term cardio-

vascular consequences [27,28].

In this study we wished to test the glucocorticoid hypothesis

using Agtr1b expression and epigenetic changes as molecular end

points. The most direct test of the hypothesis is to expose pregnant

animals receiving a low protein diet to the 11 b-hydroxylase

inhibitor, metyrapone which blocks the last steps of corticosterone

synthesis in the rat [29]. We have previously shown that this

protocol normalizes the blood pressure of the resulting offspring of

protein restricted rats, strongly suggesting that steroids play a key

role in mediating the programming effects of undernutrition

[24,27]. If glucocorticoids are central to the low protein effects,

metyrapone should block the early change in gene expression. As

in our previous reports this study targeted the blockade to the first

14 days of gestation, as prolonged use of this drug in pregnancy

can inhibit lung maturation in the fetus. For comparison with

another model of programmed hypertension we studied offspring

of mothers treated with dexamethasone during pregnancy. In this

second experiment, the final week of gestation was targeted for

intervention as this has been previously shown to be the period of

maximal sensitivity of rat fetal development to glucocorticoid

exposure [27,30]. In all cases offspring were studied postnatally for

alterations in Agtr1b expression and DNA methylation at 1 week of

life and at 4 weeks for blood pressure.

Results

Metyrapone Study
8 litters from mothers fed (a) a control diet, (b) a low protein

diet or (c) a low protein diet with metyrapone administered for

the first fourteen days of pregnancy were studied. Consistent with

our previous reports [16,24] neither low protein feeding, nor

treatment with metyrapone had any significant impact upon

maternal weight gain in pregnancy, reproductive outcome or

birth weights of the offspring (Table 1). Offspring were weaned

onto standard laboratory chow and blood pressure was measured

at four weeks of age. Blood pressure is unlikely to be altered at

earlier time points and is technically more difficult to measure.

Figure 1a shows that both males and females subjected to low

protein during fetal life had significantly greater systolic blood

pressure, whereas animals whose mothers were treated with

metyrapone maintained control levels of blood pressure. A 2 way

ANOVA for sex and maternal treatment was performed and this

showed no effect of sex (F = 1.737, p = 0.146), an effect of

treatment (F = 4.837, p = 0.013) and no interaction of sex and

treatment (F = 0.375, p = 0.689).

Adrenal glands were harvested from 1 week old animals and

used to make cDNA and genomic DNA. This time point was

chosen as previous work had shown that RNA expression changes

were statistically significant at this time point (22), whereas at later

time points changes in expression of some genes were likely to be

secondary to development of hypertension. If changes in gene

expression at 1 week were related to DNA methylation we would

expect to identify such methylation changes in adrenals at this age

also. Real-time PCR was performed on these samples using Agtr1b

and 18S RNA primers. As we have shown previously, Agtr1b

mRNA expression was significantly greater in MLP adrenal

offspring, but administration of metyrapone completely prevented

this overexpression (Figure 2a).

Genomic DNA prepared from these adrenals at 1 week of age

was bisulphite converted, amplified and subcloned. Individual

clones from adrenals from 5 different animals in each treatment

group were sequenced to determine the degree of methylation of

the three CpG sites in the AT1b proximal promoter. As we

reported previously, the MLP offspring had less methylation at

these sites compared to controls (controls, 20.0%; LP, 10.8%;

p,0.05). Administration of metyrapone in early pregnancy

significantly reversed this trend though, such that methylation

levels were indistinguishable from controls and significantly

greater than the LP group (LP, 10.8%; LPM, 23.8%; p,0.05).

These changes were most clearly reflected in the methylation

status of CpG site 3 (control, 28.9%; LP, 5.4%; LPM, 40%)

(Figure 2b).

Dexamethasone Study
For comparison with a distinct model of hypertension

programmed in utero, rats were administered dexamethasone

during pregnancy. Table 2 shows the maternal response to

dexamethasone administration, which had no significant impact

upon either gestational weight gain or reproductive outcomes.

Surprisingly, at this administered dose of dexamethasone there

was no suppression of food intake and in fact the pair-fed controls

had a non-significant trend towards slightly less food consump-

tion than the treatment group over the final week of gestation.

Pups born to dexamethasone treated dams were of normal birth

weight. At four weeks of age a similar effect on blood pressure to

that observed after the MLP diet was observed and blood

pressure was influenced by dexamethasone treatment (P,0.001)

and by the interaction of sex and treatment (p = 0.049)

(Figure 1b).However no difference in adrenal Agtr1b expression

at one week of age could be identified (Figure 3a). Furthermore,

analysis of the same proximal promoter CpG sites from 9 controls

and 6 treated adrenals showed very similar degrees of

methylation (Control 26.9%; Dex treated 24.2%; not significant)

(Figure 3b).

Table 1. Maternal weight gain, food intake and reproductive
outcomes following protein restriction and metyrapone
administration over d0–14 gestation.

Maternal diet Treatment
Control
Saline LP Saline LP Metyrapone

Weight at mating (g) 24767 25366 24467

Weight at delivery (g) 383612 40268 38768

Food intake d0–7 (g/day) 29.262.6 32.461.4 30.660.9

Food intake d8–14 (g/day) 26.462.0 27.761.2 26.661.9

Food intake d15–22 (g/day) 26.562.8 23.560.7 26.062.0

Litter size (no. pups) 1261 1361 1461

Birth weight male offspring (g) 5.6060.12 5.2360.16 5.6160.25

Birth weight female offspring (g) 5.1860.14 4.9660.23 5.4060.19

Data are shown as mean 6 SEM for 8 observations per group. There were no
significant differences between the groups.
doi:10.1371/journal.pone.0009237.t001

AT1b Programming
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Discussion

In this study we have reproduced the findings reported in our

previous paper showing that at one week of postnatal life, rat

offspring that were exposed to a maternal low protein diet in utero

have increased expression of the adrenal Agtr1b and reduced

methylation of CpG residues in its proximal promoter [22]. By the

age of four weeks these animals already showed evidence of

hypertension. The novel finding we report here however is that

when the mothers receive metyrapone during the first two weeks of

pregnancy the hypertension, the increased Agtr1b expression and

the reduced DNA methylation were all normalised. The findings

of this study are, therefore, highly suggestive of the maternal

pituitary-adrenal axis playing a central role in mediating the

adverse effects of the low protein diet and this would be consistent

with widely held views [31].

Alternative explanations should be considered however. One

possibility is that metyrapone has induced a long-term effect on

adrenal development and differentiation such that 1 week old

animals are hypoadrenal and consequently protected from

developing hypertension. Though unlikely in view of the extensive

experience in the use of this drug, it is notable that the size of

adrenals did not differ in the metyrapone group (data not shown).

In the rat fetus, the adrenal exists as a distinct organ at 14 days, but

has no evidence of zonation. The Agtr1b is not expressed at this

early stage [32,33]. Consequently this data suggests that a maternal

glucocorticoid effect is able to ‘programme’ the expression of the

Agtr1b at an early, pre-zonation, stage of adrenal development.

One explanation for these observations is that activated

glucocorticoid receptor binds to the two functional GREs in the

Agtr1b [34,35] and that this process consequently impairs the laying

down of DNA methylation that would normally take place during

this phase of differentiation and development. A large number of

genes contain GREs and this might be a very detrimental process if

it applied to all glucocorticoid responsive genes in the fetus.

Therefore it seems probable that there is greater complexity and

specificity in effecting this response. Alternatively, the DNA region

around CpG site 3 in the Agtr1b forms a perfect polycomb response

element. Such elements are complex and include binding sites for

several proteins [36] and may act as transcriptional repressors or

Figure 1. Blood pressure at 4 weeks of age in offspring. A) rats fed low protein diet throughout pregnancy without (LP) or with metyrapone
over days 0–14 gestation (LPM), and B) rats treated with dexamethasone over days 15–22 gestation. Data are shown as mean 6 SEM for 8
observations per group. Two way ANOVA indicated that in the metyrapone experiment blood pressure was influenced by maternal treatment
(p = 0.006), but there was no effect of sex. In the dexamethasone study, blood pressure was influenced by dexamethasone treatment (P,0.001) and
by the interaction of sex and treatment (p = 0.049). All measurements were corrected for body weight.
doi:10.1371/journal.pone.0009237.g001

AT1b Programming
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activators of particular importance in early development [37–40].

Precisely how the DNA methylation observed at this site would

relate to polycomb activity which would normally result in specific

histone methylation marks is not clear at present.

Although confirmatory of earlier studies [24,41], the finding that

dexamethasone in the final week of gestation could elevate blood

pressure in the offspring independently of any effects upon maternal

food intake is important. Woods and colleagues have asserted that

rather than glucocorticoids mediating programming effects of

undernutrition, all effects of steroid treatment in rodent pregnancy

are related to associated reductions in food intake [31]. Our findings

refute this assertion. The selectivity of the effect is demonstrated by

our observation that dexamethasone administration does not lead to

increased Agtr1b expression or alteration of methylation. Interestingly

we also noted a strong sex-specific effect in the dexamethasone study

consistent with our previous findings [24].

The distinct characteristics of the two hypertension-inducing

treatments used in this study may reflect the different stages in

pregnancy at which each of the drugs was administered. It could

be inferred that that early glucocorticoid exposure results in Agtr1b

changes, whereas later exposure acts upon blood pressure

regulation through an independent, sexually dimorphic mecha-

nism. Experiments with prenatal protein restriction indicate that

the insult can induce hypertension at any stage of pregnancy

[16,42], but that effects are greatest if the undernutition is induced

later in gestation. Alternatively, it could be argued that

dexamethasone, in contrast to corticosterone, will not be

susceptible to conversion into inactive steroid by 11 b-hydroxy-

steroid dehydrogenase in the placenta and will almost certainly

provide a more potent glucocorticoid stimulus to the developing

adrenal than maternal corticosterone could do. Dexamethasone

lacks significant mineralocorticoid activity [43], whereas endoge-

Figure 2. Effect of Metyrapone on Agtr1b expression and DNA methylation. (A) Gene expression in animals at 1 week of age whose mothers
received control (C) or low protein diets during pregnancy with vehicle alone (LP) or metyrapone (LPM) for the first fourteen days of pregnancy.
Results are expressed relative to the 18S ribosomal RNA and are expressed as the mean 6 SEM. The number of adrenals studied in each group is
shown below each column. * p,0.05; *** p,0.005 (B) Methylation of the three most proximal CpG sites in the Agtr1b promoter in the adrenal at 1
week of age. Each empty circle represents an unmethylated CpG site, while filled circles represent methylated sites. Each column represents a single
adrenal, the sex of which is shown above the column. Each horizontal group of three circles indicates a single sequenced clone. Differences between
groups are calculated by Chi squared. * p,0.05; ** p,0.01; *** p,0.005.
doi:10.1371/journal.pone.0009237.g002
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nous maternal corticosterone has a potent mineralocorticoid effect

in addition to maternal aldosterone. Treatment of animals with

metyrapone inhibits both corticosterone and aldosterone synthesis,

perhaps suggesting that mineralocorticoid receptor dependent

mechanisms are important in programming AT1b gene expression

at this earlier stage of pregnancy.

In conclusion, these studies confirm our earlier observations

linking the adverse effects of fetal programming events to

epigenetic mechanisms and strongly suggest a role for maternal

glucocorticoid in this process. Epigenetic mechanisms have been

associated with the consequences of programming in several

models affecting for example the glucocorticoid receptor, PPARa
and DNA methyltransferase [18–20]. Such observations suggest a

highly plausible mechanism leading to long-term adverse conse-

quences. The major challenges now seem to be in understanding

how the prenatal insult brings about the epigenetic changes

observed and in demonstrating the causative, as opposed to

reactive role for such changes.

Table 2. Maternal weight gain, food intake and reproductive
outcomes following dexamethasone administration over d15–
22 gestation.

Control (pair fed)
Dexamethasone
treated

Weight at mating (g) 26866 26267

Weight at delivery (g) 416613 41767

Food intake d0–7 (g/day) 25.660.6 26.360.7

Food intake d8–14 (g/day) 29.160.5 29.860.6

Food intake d15–22 (g/day) 29.360.9 29.860.7

Litter size (no. pups) 1461 1561

Birth weight male offspring (g) 6.6760.24 6.6560.17

Birth weight female offspring (g) 6.4260.20 5.8860.25

Data are shown as mean 6 SEM for 8 observations per group. There were no
significant differences between the two groups.
doi:10.1371/journal.pone.0009237.t002

Figure 3. Effect of Dexamethasone on Agtr1b expression and DNA methylation. (A) Expression of the Agtr1b at one week of age in animals
whose mothers received control (C) or dexamethasone during the last 7 days of pregnancy. Results are expressed relative to the 18S ribosomal RNA
and are expressed as the mean + SEM. The number of adrenals in each group are shown on the columns. There were no statistically significant
differences. (B) Methylation of the three most proximal CpG sites in the Agtr1b promoter in the adrenal at 1 week of age. Each empty circle represents
an unmethylated CpG site, while filled circles represent methylated sites. Each column represents a single adrenal, the sex of which is shown above
the column. Each horizontal group of three circles indicates a single sequenced clone. The differences between the two groups were not statistically
significant.
doi:10.1371/journal.pone.0009237.g003

AT1b Programming
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Materials and Methods

Animals
The experiments described in this report were performed under

license from the Home Office in accordance with the 1986 Animals

(Scientific Procedures) Act. The study used rats of the Wistar strain,

and all animals were housed in plastic cages and subjected to a 12

hour light/dark cycle at a temperature of 20–22uC.
Metyrapone study. Twenty-four virgin female Wistar rats

(Harlan Ltd, Belton, Leics, UK) were mated at weights between

250 and 275 g. Upon confirmation of mating by the appearance of

a semen plug on the cage floor, the rats were allocated to be fed (ad

libitum) isoenergetic diets containing 18% protein (control, n = 8) or

9% protein (LP, n = 16), as described previously [27]. Half of the

LP fed rats received twice daily injections of metyrapone (5 mg/kg

body weight, in saline s.c group LPM) over days 1–14 of

pregnancy. Control rats and the remaining LP rats received

vehicle injections. Metyrapone was administered at a dose

previously shown to have no adverse effect upon reproductive

outcome and to reduce maternal corticosterone concentrations by

90% [29,44]. In unpublished work we have found that higher

doses led to fetal abnormalities. At delivery the litters were culled

to a maximum of eight pups (4 males and 4 females) to minimize

variation in suckling nutrition. Offspring were culled using CO2

asphyxia and cervical dislocation at 1 or 4 weeks of age (1 male

and 1 female per litter at each time point).
Dexamethasone study. Sixteen virgin female Wistar rats

(250–275g) were fed standard laboratory chow diet and were

mated with a stud male. At day 15 gestation the rats were

allocated for either vehicle injection (n = 8, 0.1 ml saline, s.c.

daily) or treatment with dexamethasone (n = 8, 100mg/kg body

weight daily, s.c. injection). As dexamethasone has been

reported to reduce food intake in rats, all vehicle-treated,

control animals were pair-fed to the dexamethasone group.

Treatment continued until the females gave birth on day 22 of

gestation. At delivery the litters were culled to a maximum of

eight pups (4 males and 4 females). Offspring were culled at 1

or 4 weeks of age (1 male and 1 female per litter) as previously.

These timepoints were selected as it is established that elevated

blood pressure is in place by 4 weeks [16] and the earlier

timepoint enabled evaluation of any adrenal changes ahead of

any influences of hypertension.

Blood Pressure Determination
Systolic blood pressure was determined using an IITC Model 229

Blood Pressure monitor as reported previously [16,23,25]. This tail-

cuff method has been extensively validated and refined to reduce

possible stress-related effects and observer subjectivity. Rats were

placed in a darkened room maintained at 27uC for 2 h and settled in

a Perspex tube. A suitably sized cuff was placed over the tail and

inflated to 300 mmHg. Pulses were recorded during deflation at a

rate of 3 mmHg/s. Blood pressure, which was determined in

triplicate for each animal, was derived using a preset algorithm via

appropriate software. The average systolic pressure from the three

measures was recorded. We have previously demonstrated that we

can acquire reproducible results without the need for training of the

animals to the procedure [23]. It has been demonstrated that values

obtained using this method are similar to those obtained under direct

anaesthesia [45]. Our earlier observations of raised tail-cuff pressures

in animals subject to prenatal protein restriction have been replicated

in studies using both radiotelemetry and swivel-cannulation systems

[46,47], as have studies which have focused upon antenatal

glucocorticoid administration to induce hypertension [48].Data

analysis included correction for body weight.

RNA Quantitation
Some of the offspring were culled at 7 days of age and total

RNA was isolated with Agencourt RNAadvance Tissue total RNA

purification kit (Agencourt, Beverley, MA, USA), which uses

paramagnetic bead-based technology in a 96-well format. Frozen

adrenals (2–10 mg) were homogenized (Precellys 24 benchtop

equipment, Montigny-le-Bretonneux, France). Half of the sample

was frozen for further DNA isolation and the remainder used for

RNA isolation. RNA was immobilized onto the paramagnetic

particles, treated with DNaseI (RNase-free, Ambion, Warrington,

UK)) and washed. Nucleic acid concentration was measured by a

Nanodrop ND1000 spectrophotometer.

cDNA was synthesized using MMLV reverse transcriptase

(Promega, Southampton, UK).

QPCR was performed using a 2-step cycling protocol:

95uC610 minutes, then 40 cycles of 95uC630 s and 59uC61

minute on the MX4000 (Stratagene, La Jolla, CA, USA). Primers

and probe were as described [22]. Amplification plots were

analyzed using MX4000 software version 3.0 (Stratagene). RNA

expression data were given as copy number of gene of interest/

18S RNA. Standards used were PCR fragments purified from a

polyacrylamide gel. All PCR reactions were performed in

triplicate.

Methylation Detection
Genomic DNA was isolated using the QIAamp DNA mini kit

(Qiagen, Crawley, UK). 0.5 mg DNA was subjected to bisulphite

treatment using EZ DNA Methylation-Gold Kit TM (ZYMO

Research, Orange, CA, USA) according to manufacturer’s

instructions. 4ml of DNA was used in PCR with primers designed

to the reverse strand bisulphite-converted DNA [22]. PCR

conditions were: 95uC610 minutes, then 40 cycles of

95uC630 s, 52uC61 minute, 72uC630 s and finally 1 cycle of 7

minutes 672uC. The reaction mixture contained 1x PCR Gold

buffer, 0.2 mmol/L dNTPs, 2 mmol/L MgCl2, 1 mmol/L primers

and 1.25U of AmpliTaq Gold DNA polymerase (Applied

Biosystems). Gel purified PCR products were passed through

SNAP columns (Invitrogen, Paisley, UK), cloned into pCR4-

TOPO vector (Invitrogen) and sequenced.

Statistical Analysis
All data was analysed using the Statistical Package for Social

Sciences (SPSS, Inc, Chicago, IL, Version 14.0). Differences

between groups were assessed using a mixed model ANOVA

(fixed factors, maternal treatment, age and offspring sex), unless

otherwise indicated in the text. A Bonferroni test was applied to

correct for multiple testing. Values are expressed as mean 6

S.E.M. P,0.05 was considered as significant. As multiple pups

from the same dam were used throughout this study, litter of

origin was included as a fixed nested factor in all analyses. The

frequency of cytosine methylation was compared using chi

squared analysis.
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