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DNA methylation is an epigenetic mark that plays an essential role in regulating
gene expression. CpG islands are DNA methylations regions in promoters known to
regulate gene expression through transcriptional silencing of the corresponding gene.
DNA methylation at CpG islands is crucial for gene expression and tissue-specific
processes. At the current time, a limited number of studies have reported on gene
expression associated with DNA methylation in diverse adult tissues at the genome-
wide level. Expression levels are rarely affected by DNA methylation in normal adult
tissues; however, statistical differences in gene expression level correlated with DNA
methylation have recently been revealed. In this study, we examined 20 pairs of DNA
methylomes and transcriptomes from RNA-seq and reduced representation bisulfite
sequencing (RRBS) data using adult Ogye chicken tissues. A total of 3,133 CpG islands
were identified from 20 tissue data in a single chicken sample which could affect
downstream genes. Analyzing these CpG island and gene pairs, 121 significant units
were statistically correlated. Among them, six genes (CLDN3, DECR2, EVA1B, NME4,
NTSR1, and XPNPEP2) were highly significantly changed by altered DNA methylation.
Finally, our data demonstrated how DNA methylation correlated to gene expression
in normal adult tissues. Our source codes can be found at https://github.com/wjlim/
correlation-between-rna-seq-and-RRBS.

Keywords: gene silencing, DNA methylation, RNA-seq, RRBS – reduced representation bisulfite sequencing,
transcriptome, methylome

Abbreviations: CGI, CpG island; DEG, differentially expressed gene; DMS, differentially methylated site; FPKM, fragments
per kilobase of exon per million mapped fragments; GSEA, gene set enrichment analysis; RRBS, reduced representation
bisulfite sequencing; TSG, tissue-specific gene; WGBS, whole genome bisulfite sequencing.
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INTRODUCTION

The development of next generation sequencing (NGS) has
allowed the investigation of genomes of a large number of species
at high quality and resolution. Genomic researches along with
transcriptome and DNA methylome has enabled us to deepen
our knowledge of functional studies at work in complex genomics
(Kulski, 2016). Epigenomic regulation occurs across species, and
animal models can be used to infer potential human disease
related epigenetic regulation (Robertson, 2005). In particular,
the chicken model is a practical model system widely used
for vertebrate research topics (Li et al., 2011; Hu et al., 2013).
Although the genomic and transcriptomic landscapes of livestock
animals such as cows, goats, pigs, and chickens have been
constructed (Kern et al., 2018), genome wide level in diverse
tissue specific DNA methylation studies remains unknown.

DNA methylation constitutes a major epigenetic modification
of the genome and is essential for cellular reprogramming,
tissue differentiation, and normal development related to many
biological processes including gene expression regulation. DNA
methylation is known to occur at the 5′ of cytosine in CpG
dinucleotides which are found mostly in so called CGI regions
present in promoters. The DNA methylation of CGIs regulates
gene expression by transcriptional silencing of the corresponding
gene (Newell-Price et al., 2000; Curradi et al., 2002; Ehrlich
and Lacey, 2013). DNA methylation is also crucial for gene
expression and tissue-specific processes (Wilkinson, 2015). Some
studies have reported that the alteration of DNA methylation
affects embryonic development, genomic imprinting, genome
stability, and chromatin status (Robertson, 2005). Moreover,
epigenetic mutations have been studied in many human
diseases. Additionally, studies have revealed changes in the
DNA methylation profile in many types of tumors (Esteller and
Herman, 2002; Sharma et al., 2008; De Jager et al., 2014).

Discovering DNA methylation using RRBS is an effective
high-throughput technique for detecting the status of DNA
methylation in CGIs. Unlike WGBS, restriction enzymes are used
to extract high CpG contents regions, representing only ∼1%
of the total DNA methylome (Meissner et al., 2005). However,
these sequences cover about 30% of all CpG sites, and these CpG
sites account for ∼65% of the promoter CpGs of the entire gene,
thus allowing limited but effective genome comparison at a lower
cost than WGBS (Gu et al., 2011). CGIs present in the promoter
can regulate downstream genes; however, only a few such genes
are known to function, at the genome-wide level. While RNA-
seq and RRBS can both be used for quantitative analysis, when
comparing different adult tissues, there are as many as ∼8,000
statistically DEGs, but there are only∼100 DMSs in the promoter
region (Bird, 2002). A previous study demonstrated that DNA
methylation level and gene expression are negatively correlated
(Wagner et al., 2014). However, this relationship is rarely known
diverse tissues at genome-wide level.

In this study, we examined the Ogye chicken, a domesticated
chicken with black skin, fascia, and cockscomb, in Korea. We
computed a transcriptome and DNA methylome quantitative
matrix using two different types of sequencing platforms—-RNA-
seq and RRBS. RNA-Seq facilitates the quantification of the entire

transcriptome even in a genome that does not possess a reference
sequence. It also provides information on isoforms by sequencing
high-depth mRNA fragments (Kukurba and Montgomery, 2015).
Most genes in vertebrates undergo alternative splicing events,
resulting in different protein sequences. These splicing events
regulate mRNA stability and localization (Merkin et al., 2012).
Such differences are also present in interstitial tissue, and may
be selectively controlled between tissues (Wang et al., 2008). We
examined 3,133 CGIs identified from 20 different tissues from
one chicken sample which could affect downstream genes and
calculated statistically significant changes in their relationships.
Analyzing these CGI and gene pairs, 121 significant units were
statistically correlated. Among those, six genes (CLDN3, DECR2,
EVA1B, NME4, NTSR1, and XPNPEP2) were discovered to be
highly significantly correlated, and their expression was changed
by alteration of DNA methylation.

MATERIALS AND METHODS

Sample Preparation
Ogye chicken (object number: 02127) used in this study
was obtained from the Animal Genetic Resource Research
Center of the National Institute of Animal Science (Namwon,
South Korea). Twenty tissues were dissected from an 8-month-
old female chicken (breast, liver, bone marrow, fascia, cerebrum,
gizzard, matured, and immatured egg, cockscomb, spleen,
cerebellum, gallbladder, kidney, heart, uterus, pancreas, lung,
skin, eye, and shin skin) for the RNA-seq and RRBS library
preparation. Protocols for the care and experimental use of Ogye
chicken was reviewed and approved by the Institutional Animal
Care and Use Committee of the National Institute of Animal
Science (IACUC No. 2014-080). Ogye chicken management,
treatment, and sample collection took place at the National
Institute of Animal Science.

RNA Sequencing
Total RNA was extracted from 20 different tissues using 80%
EtOH and TRIzol. RNA concentration was measured using
Quant-IT RiboGreen (Invitrogen, Carlsbad, CA, United States).
Samples were run on a TapeStation RNA screentape (Agilent,
Waldbronn, Germany) to assess the integrity of total RNA. Only
high-quality RNA samples (RIN ≥ 7.0) were used to construct
the RNA-seq library. Each library was independently prepared
with 300 ng of total RNA using the Illumina TruSeq Stranded
Total RNA Sample Preparation Kit (Illumina, San Diego, CA,
United States). The rRNA was depleted from total RNA using
the Ribo-Zero kit. After rRNA depletion, the remaining RNA
was purified, fragmented, and primed for cDNA synthesis. The
cleaved RNA fragment was cloned into (first-strand) cDNA
using a reverse transcriptase and a random hexamer. After
this step, second-strand cDNA synthesis was performed using
DNA polymerase I, RNase H, and dUTP. The resulting cDNA
fragment was then ligated with a single ‘A’ base followed by an
adapter. The product was purified and concentrated by PCR to
generate the final cDNA library. Libraries were quantified using
qPCR as per the qPCR Quantitation Protocol Guide (KAPA
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Library Quantity Kit for the Illumina Sequencing Platform) and
TapeStation D1000 ScreenTape Analysis (Agilent Technologies,
Waldbronn, Germany).

Reduced Representation
Bisulfite Sequencing
Preparation of the RRBS library was performed according to
Illumina’s RRBS protocol. First, 5 µg of genomic DNA was
purified with a QIAquick PCR purification kit (QIAGEN,
Hilden, Germany) and digested with the MspI restriction enzyme
using the TruSeq Nano DNA Library Prep Kit (Illumina, San
Diego, CA, United States) and was subsequently used for
library preparation. The eluted DNA fragment was terminally
repaired, and the 3′ end was extended to A and ligated
with a TruSeq adapter. After binding was assessed, products
with lengths of 175–225 bp (55–105 bp insert DNA plus
120 bp adapter) were plated on a 2% (w/v) low-range ultra-
agarose gel (Bio-Rad, Hercules, CA, United States) and purified
using the QIAquick gel extraction protocol. Purified DNA
was converted to bisulfite using EpiTect Bisulfite Kit (Qiagen,
59104). The bisulfite-converted DNA library was amplified
by PCR (four cycles) using PfuTurbo Cx DNA polymerase
(Agilent, 600410). The final product was then quantified using
qPCR and assayed using Agilent Technologies 2200 TapeStation
assay (Agilent, Waldbronn, Germany). Final products were
sequenced using a HiSeq 2500 platform (Illumina, San Diego,
CA, United States).

Data Processing and Quantification
For integrative data analysis of the Ogye chicken transcriptome
and methylome, we used one tissue associated with reproduction
(uterus), two tissues at different stages of development
(immatured and matured eggs), and 17 other tissues (cerebellum,
gall bladder, kidney, heart, pancreas, lung, skin, eye, brisket,
shin skin, liver, bone marrow, fascia, cerebrum, gizzard, and
cockscomb), generating 20 pairs of each RNA-seq data and RRBS
data. The Ensembl genome browser was used for its reference
genome and annotation of the chicken (Galgal4, ver78 used for
this study). The quality of the RNA-seq library and RRBS library
was confirmed using FastQC (v0.11.5) (Andrews, 2010). In the
RNA-seq library, the front 13 bp failed base quality test and so
were trimmed preceding further analysis. The RRBS sequence
libraries satisfied the quality score.

In total, 16,752 gene structures with annotations known in the
reference genome were used for the RNA-seq data processing.
The mapping rates of the kidney, pancreas, and bone marrow
were less than 50%, and the highest one was for brisket
(Supplementary File S1: Table S1). For the RRBS reads, Bismark
was used for mapping and quantifying DNA methylation level
(Krueger and Andrews, 2011). On average, 52% of the reads were
uniquely mapped, and the reads covering the CpG area were
12.6× on average (Supplementary File S1: Tables S2, S3). All
reads including six samples (gall bladder, pancreas, shin skin,
liver, cocks comb, spleen) with an average depth lower than
10× were discarded preceding further analysis (Supplementary
File S1: Table S3).

Reference sequence alignment was performed using Tophat2
(TopHat v2.0.13) for transcriptome quantification. The
transcriptome assembly for each sample was held by cufflinks
(v2.2.1) (–GTF-guide –frag-bias-correct –multi-read-correct)
and differential expression of the transcripts were quantified in
fragments per kilobase million (FPKM) using cuffdiff (v2.2.1).
The expression patterns of each tissue in PCA and MDS were
visualized by CummeRbund (v0.1.3) (Trapnell et al., 2012). We
constructed a matrix using an in-house R (v 3.1.2) script and
compared the differences between the tissues using ensemble
gene names. The genes which were not equal to FPKM row sum
3 were filtered.

Converted reference sequence alignment of the RRBS libraries
was performed for DNA methylome quantification. In the
RRBS libraries, the methylated sites of cytosines and thymines
were transformed into the CpG sites and were aligned to
the reference sequence using bismark_genome_preparation,
a part of bismark (v0.14.5). After the alignment of the
methylated sites the quantification was performed using
bismark_methylation_extractor. Extracted information on the
converted cytosines from the mapped reads were converted into
a bed format. An in-house program was used to calculate DNA
methylation percentages of CpG and non-CpG sites. All regions
with less than 10× site coverage were discarded. The 21,664
CGIs described in the reference genome were then used to
identify the promoter, gene body, CGIs, and CGI shores along
with Ensembl gene annotation and CGI annotation using the
UCSC genome browser1. The promoter region was set as 2 kbp
upstream based on the transcription start site (TSS), gene body
region as the TSS to transcription end site (TES). The CGI shore
was set to be 2 kbp upstream and downstream of the CGIs.
Statistical calculations were performed using Bedtools (v2.26.0-
112) for different genomic features. Quantification of CGIs were
calculated by taking the median value of DNA methylation levels
using Seqmonk (Andrews, 2007).

Gene Expression Patterns and
Tissue-Specific Genes
Expression patterns from the 20 tissues were calculated using
Euclidean distance and ward linkage based K-means clustering
with a quantified FPKM matrix. Clustering results showed that
12 groups (K = 12) reached a positive correlation (r > 0.5) with
reference to the correlation plot (Supplementary File S1: Figure
S1). To best represent the characteristics of each cluster, the
tissues were compared with each other and genes were selected
that satisfied the fold change criteria in at least more than one
pair. The fold change value was calculated using a range from
2 to 256, and a fold change of 16 was selected to satisfy the
above criteria (Lin et al., 2014). Finally, 1,492 selected genes
were filtered and transformed into standard z-scores to visualize
as a heatmap. A GSEA to analyze functional annotation in
each of the clustered genes was performed using PathwayStudio
(Elsevier, Amsterdam, Netherlands). The gene list within each
cluster was used identify interactions by using network analysis
denoting direct protein regulation in order to perform an

1https://genome.ucsc.edu
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entity list summary. The GO terms were identified based on
highest enrichment scores and their expression of characteristics
in each cluster. Finally, visualization of the boxplot with the
gene expression distributions was combined using R package
ComplexHeatmap (Gu et al., 2016).

Characteristics of Gene
Expression Patterns
Twenty tissues were compared pairwise to identify DEGs. To
compare differences within pairs the cutoff for significantly
altered genes was set at a p-value of≤0.05. A pairwise comparison
table was constructed centered on the DEG counts, and was
visualized over the network of tissues to make comparisons
easier. Network nodes represent the total sum of DEGs in a given
condition, and edges represent DEGs compared between two
tissues. DEGs that appeared between similar tissues were used for
GSEA, to explain the difference in tissues.

Genome-Wide Detection of
Alternative Splicing
Predicted transcripts were formed based on Cufflink reference
annotation based transcript (RABT) assembly and were
examined by cuffcompare (v2.2.1) using 130,295 exons. The
inclusion ratio (ψ) of exons for each tissue was calculated by
rMATS (Shen et al., 2014) and in-house scripts. Regions of
read coverage below 10 were discarded after combination of
paired-end read information and read split information. The
2,910 canonical exon splice sites were used to create an exon
usage matrix with missing data in all tissues (Burset et al.,
2000). Then, exons with exon exclusion (ψ ≤ 0.3, ψ ≥ 0.7) in
different tissues were used to find switch-like exon candidates.
A number of 160 switch-like exon candidates were examined and
functional classification was carried out using DAVID (Dennis
et al., 2003). The 160 switch-like exon candidates were then
converted to refSeq ID; among them 63 matched the results
of the DAVID calculation and only seven genes were enriched
(enrichment score 3.18; Supplementary File S1: Table S9).
Differential exon usages (DEUs) between samples in different
developmental stages (matured eggs and immatured eggs) were
calculated by rMATS. We then made a genome-wide circular
plot of switch-like exon candidates, inclusion ratios of the 20
tissues, and differential values of exon usages at developmental
stage tissues using the R package omicCircos (Hu et al., 2014).

Characteristics of DNA Methylation and
Pairwise-Comparison Among the
20 Tissues
Pair-wise comparisons of differential methylated sites (DMS)
were calculated using MethylKit (1.0.0) in all conditions
(FDR ≤ 0.05) (Akalin et al., 2012). To find DNA methylation
differences between tissues, a network using DMS counts across
tissues was constructed. The 2 kbp region upstream of the TSS
was designated as a region of CGIs using bedtools. The median
value of DNA methylation sites in the CGIs was defined as a
representative value of all the CGIs. Based on the gene expression
matrix, we performed network analysis using 3,133 CGIs present

in the promoter regions. Unsupervised clustering was performed
using the Markov cluster algorithm of BioLayout Express 3D
(v3.2) (MCL = 1.3) (Theocharidis et al., 2009). We confirmed
that three subnetworks appeared and performed GSEA. In-
house python scripts were used to generate matrices using DNA
methylation level of CGIs and FPKM of downstream genes.
Correlation between the matrices was examined by Pearson’s
correlation test. Among the pairs of CGIs and downstream
genes, 121 significantly negatively correlated units were found
(p-value ≤ 0.05). We performed GSEA using Pathway Studio for
the downstream gene names of the selected 121 units. Then, we
selected six genes with high significance (Pearson’s correlation
tests; p-value ≤ 0.001). We showed relationship between gene
structure and CGI using the IGV (Win_2.4.19) (Robinson et al.,
2011) (Supplementary File S1: Figure S7).

RESULTS

Gene Expression Patterns and
Tissue-Specific Genes
We quantified RNA-Seq reads from 20 tissues to observe
changes in gene expression patterns within an individual chicken
model. FPKM values were calculated for quantification of RNA-
seq samples (Trapnell et al., 2012). Based on Ensembl gene
annotation, we created a matrix for each of the 20 tissues.
Pearson’s correlation test was performed using 16,752 genes
(Supplementary File S1: Table S4) and a positive correlation was
detected in all paired sets (p < 2.2e-16). The highest positive
correlation was between the cerebrum and cerebellum (r = 0.819;
p-value < 2.2e-16), and the pair of tissues with the weakest
correlation was the eyes and liver. Tissue pairs with a strong
positive correlation (r > 0.5) included the heart, brisket, and
fascia, and the r-values of the cockscomb, skin, and shin skin were
high. Especially in different developmental stage tissues, matured
eggs and immatured eggs, showed a strong positive correlation
(r = 0.638; p-value < 2.2e-16) compared with other tissues. The
correlation matrix was then used for a clustering method in
which tissues with strong positive correlations (r > 0.5) were
considered together. Here, a total of 12 clusters were evident
(Supplementary File S1: Figure S1). The distribution of gene
expression displayed two peaks and we were able to observe a
small peak in all tissues under FPKM 1 (Figure 1B). The median
values of the distributions considered as the main peaks were
similar (Figures 1A,B).

To investigate the similarity between tissues and
characteristics among the functional genes, significantly different
expression levels according to the conditions were identified
(fold change ≥ 16). Unsupervised K-means clustering (k = 12)
was used to select 1,492 TSGs and the number of genes in each
cluster was 60–200 (Figure 1C). The patterns for the cerebrum
and cerebellum (which had the strongest correlation) were found
to be similar. In the eye, two kinds of patterns appeared, an
independent one and shared patterns from clusters 6, 11, and
12. Two cluster groups from 6 and 11, which were groups from
muscle and brain tissues, shared patterns different from other
groups. Unlike the other tissues, the gene sets for the uterus had
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FIGURE 1 | Unsupervised K-means clustering of TSGs. (A) Gene expression differences in the 20 tissues. (B) Smoothed histogram of gene expression values.
(C) Heatmap of tissue-specific genes using k-means clustering (k = 12; Euclidian distance method; ward linkage method). FPKM values in each of the tissues were
converted to z-scores. The GO terms for each cluster used the term with the highest enrichment score. The cluster names are labeled 1–12 from top to bottom.

high expression values in only one cluster, and had low values
for all of the other clusters. There were six clusters with similar
patterns in more than two tissues (clusters 1, 5, 6, 9, 10, 11).
Among them six clusters showed a strong positive correlation
when combining r > 0.5 samples, with the exception of cluster

9 (liver and kidney), which showed high expression values but a
low correlation value (r = 0.471). Cluster 1 contained immatured
and matured egg tissue classed as in the developmental stage. For
the heart, brisket, and fascia, the results indicated that the tissues
had evident characteristics of muscle fiber (cluster 6). Similarly,
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in cluster 5, the shin skin, cockscomb, and skin showed relatively
high expression values. In clusters 9 and 11, the kidney and liver
showed a single expression value, and bone marrow and spleen
showed particularly high expression values. All grouped clusters
shared similar cytological functions.

Gene set enrichment analysis was performed to investigate
the more detailed functions of the gene sets in each cluster
(Supplementary File S1: Table S5) (Subramanian et al., 2005)
using Pathway Studio (v.11.2.04, v11.4.08, Elsevier; Mammal
database). Cluster 1 contained tissues in the developmental stage,
and consistent with this, many genes related to gonadotropin
stimulus were found, such as the early growth response
(EGR) and steroidogenic acute regulatory protein (STAR)
family, associated with steroid hormone synthesis. In particular,
forkhead box L2 (FOXL2) associated with ovarian development
had the most abundant relationship (Borman et al., 2004). Cluster
5 included skin tissue were related to fatty acids. For the bone
marrow and spleen tissue, the terms associated with blood
and cytokine receptor activity, associated with immune system
were the most enriched. Cluster 12, which had high expression
value only in the eye, had enriched terms including those
related to visual perception and photo transduction. This cluster
contained many genes related to neural differentiation such as
nuclear receptor subfamily 2 group E (NR2E3) and orthodenticle
homeobox 2 (OTX2) and particularly on cone rod homeobox
(CRX), which controls the differentiation of photoreceptor cells.

Characteristics of Gene Expression
Patterns Among Tissues
We successfully found gene sets that were highly expressed in
specific tissues and identified groups of tissues that shared the
same gene set. However, there were distinct functional differences
among the tissues, and DEGs were examined to investigate
these differences. 66,133 DEGs were examined by combining
all of the sample together (Figure 2A; negative binomial tests;
p-value ≤ 0.05). Among the pairwise comparison of 20 tissues,
the cerebellum and liver had the highest number of statistical
differences, and the cerebrum and cerebellum had the strongest
positive correlation and lowest number of DEGs. Also, two
samples of brain tissue revealed a relatively large number of DEGs
when compared to other tissues (Figure 2A).

For a more intuitive comparison, we presented the DEG
counts of the paired samples in a network (Figure 2B). The
tissues with a relatively small number of DEGs were the cluster
that included the brisket, heart, and muscle of fascia and the
cluster that included the skin, shin skin, and epithelial tissue
of the cockscomb. Samples with relatively low DEG counts
were near-positioned or highly correlated samples determine
by k-means clustering. To identify differences between these
tissues, we identified genes that exhibited statistical differences
in clustered tissues (p-value ≤ 0.05). Kidney and liver pairs had
the most DEGs, and the cerebrum and cerebellum, which had the
highest r-values, had the lowest number of DEGs. The brisket,
heart, and fascia including muscle had a higher number of DEGs
than clusters compared with other tissues. A comparatively small
number of DEGs, between 40 and 60, were observed in the cluster

of skin, cockscomb, and shin skin including skin. The lowest
number of DEGs were detected in pairs of matured eggs and
immatured egg, and also for the cerebrum and cerebellum, which
had the strongest correlation (Supplementary File S1: Table S4).

Gene set enrichment analysis was performed to determine
the biological significance of the DEGs of clustered tissues
(Supplementary File S1: Table S6). The most enriched term
in the bone marrow and spleen pairs was extracellular
matrix organization in which the collagen gene appeared most
abundantly. The collagen gene is the most common protein in
multi-cellular animals, accounting for 30% of the extracellular
matrix (Daley et al., 2008). Since the kidney and liver pairs
showed the largest difference, genes with the terms synaptic
transmission and ion transport pathway commonly appeared.

Genome-Wide Detection of
Alternative Splicing
Researchers in the splicing regulation field have utilized
comparative approaches to reveal tissue-specific or disease
related alternative splicing (AS) events (Heinzen et al., 2008;
Buljan et al., 2012). To investigate AS events, the inclusion level
of alternative exons was quantified in several studies using a
transcriptomic quantification method (Pan et al., 2008; Wang
et al., 2008). We examined the inclusion level of alternative exons
by quantifying the percentage of the number of reads that match
the two splice junctions formed by exon inclusion, over the
splice junction formed by exon skipping. Splice junction reads
were used for quantification of minor isoforms with different
frequencies, as a function of the read coverage or RPKM.

The inclusion ratios for individual tissues were calculated
using rMATS to identify exons used only in specific tissues
(Shen et al., 2014). The inclusion ratio of 130,295 exons was
calculated using transcripts made with cufflinks. A total of
22,482 (17.25%) exon skippings, 6,859 (5.26%) alternative 3′
exons, and 4,188 (3.21%) alternative 5′ exons were found by
filtering all of the sites where the number of reads of the
splicing sites did not reach 10× coverage (Supplementary File
S1: Table S7). We found 2,910 exon skippings, 669 alternative
3′ exons, and 479 alternative 5′ exons including exon skipping
events that used canonical splice sites. Switch-like alternative
splicing exons indicate high-level usages in some tissues but low-
level usages in other tissues (Wang et al., 2008). To provide
candidates for switched-exons and to catalog alternative exons
that vary among the tissues, 160 exon skipping events with
an inclusion ratio of ≤0.3 and ≥0.7 were selected in at least
one tissue (Figure 3, second outer circle). Seventy genes were
enriched with GSEA using 160 alternative splicing candidates.
Thus, among the 160 alternative splicing of enriched genes,
seven genes were significant in immatured egg and matured egg
related to developmental stage (DAVID Enrichment score 3.18;
Supplementary File S1: Table S9). The splicing factor has the
largest enrichment score. We then tested DEU in immature and
mature eggs, and identified 82 significantly changed exons out
of 6,726 exon skipping events (Figure 3, fourth outer circle,
Supplementary File S1: Table S8; FDR ≤ 0.05). GSEA analysis
using 39 genes mapped out 82 exons, revealing terms related
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FIGURE 2 | The number of DEGs and the pair-wise comparison of the 20 tissues. (A) The number of DEGs that were compared with each other among the 20
tissues. (B) Network created using the DEGs. The total number of DEGs in a given condition is represented by a node, and the number of DEGs in the condition is
indicated by an edge.

to mitosis and histone demethylation (Supplementary File S1:
Table S10). We observed eight significantly enriched genes in
autosomal chromosomes in tissues related to the developmental
stage, and we also observed significance in genes present in sex
chromosomes but not in enriched terms (Supplementary File S1:
Table S9 and Figure 3, third outer circle).

Characteristics of the Differences in
Pairwise-Comparison of
DNA Methylation
We next quantified the RRBS data to distinguish the epigenetic
functions of DNA methylation and to measure the diversity
occurring within an individual. The RRBS data was used
to discriminate CpG sites from CHG sites and determine
the percentage of methylation in DNA methylation sites.
Approximately 70% of methylation events in animal genomes
are known to occur in CpG sites (Law and Jacobsen, 2010). We
focused on the CpG sites and calculated the DNA methylation

levels in the reliable (read depth ≥ 10) 27 Mbp promoter region
and the 405 Mbp gene body region. Using the CGI definition
provided by UCSC genome browser (see text footnote 1), 21,664
DNA methylation sites of CGIs were obtained using 13,777
promoters and gene bodies. In the case of DNA methylation sites
in CGIs, the percentage of hypo-methylation in the gene body was
higher than that of hyper-methylation in most samples. The rates
of hypo-methylation in all samples were high in the promoter
region (Supplementary File S1: Figure S2), and there were few
hyper-methylated DNAs in the CHG region. In the sites that were
computable, there were∼6 times more CHG sites than CpG sites.

Calculation of the DNA methylation of CpG sites was
estimated using the methylation level of 21,664 CGIs without
missing data. Pearson’s correlation tests were performed using
the matrix and all tissues presented positive correlations
(Supplementary File S1: Figure S3). Liver and spleen data with
an average depth of less than 5× displayed a weak correlation
compared to other tissues. The tissues presenting the strongest
correlation were the cerebellum and cerebrum. In addition,
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FIGURE 3 | Circos plot of switch-like exons. From the outer circle to inner circle are the genomic position, inclusion ratios, developmental stage, significance signal
[–log(q-value)], inclusion ratios of the immature eggs and mature eggs (red: mature eggs, blue: immature eggs), and the gene name of the significantly changed
exons. The highlighted pairs are the genes that were converted and for which GO terms were found (black box). Significantly changed signals are marked with a
black arrow.

tissues organized by organ system category were located close to
the dendrogram (data not shown). We analyzed the correlations
of tissues through paired correlation analysis (PCA), and all
tissues except the spleen and liver were in moderately close
positions (Supplementary File S1: Figure S4A). The density
intensity decreased as the methylation level increased, because
the ratio of hypo-methylation was higher in all tissues, but
a sub-peak was observed around 50% aside from the hyper-
methylation peak (Supplementary File S1: Figure S4B). We used
a gene structure to draw a trend plot of DNA methylation level

2 kbp upstream and 2 kbp downstream (Supplementary File S1:
Figure S4C). The patterns here were almost the same but
differences occurred according to the read depth. On the basis
of the TSS, the methylation level decreased, then increased, and
decreased again at the TES: a common pattern that can be found
in several other studies (Cokus et al., 2008; Guo et al., 2015).

For DMSs, DNA methylation differences among the tissues
were computed, and were counted site by site for quantification.
The tissues with the least difference were the cerebellum and
cerebrum, and 112 DMS were found to be significantly different
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FIGURE 4 | The number of DMS and the pair-wise comparison of the 20 tissues. (A) The number of DMSs that were compared with each other among the 20
tissues. (B) Network created using the DMSs. The total number of DMSs in any pair-wise condition is represented by a node, and the number of DMSs in the
condition indicated by an edge.

(Figures 4A,B). The largest difference between the tissues was
found between the uterus and bone marrow, with 74,121 DMSs.
After pairwise comparison across the tissues, the largest number
of the DMSs occurred with in the bone marrow, showing in
2,240–74,121 DMSs when compared with other tissues. The
average deviation was 34,887, and the standard deviation was
20,745, demonstrating that the fluctuation was large compared to
other tissues. The fewest DMSs were observed in the spleen and
shin skin according to a low average depth.

Correlation Across Tissues Between
Expression Level and DNA Methylation
Previous studies have demonstrated clearly the mechanism of
gene expression regulation through DNA methylation (Nan et al.,
1993; Hark et al., 2000; Jones, 2012) and these mechanisms
are known to be important during developmental stages and
differentiation (Bird, 2002). Based on this fact, we tried to identify
the relationships between DNA methylation changes and gene
expression across different tissues. To do this, we compared
promoter methylation levels with FPKM using 13,777 gene

annotations to determine how the level of DNA methylation
changes affects gene expression. First, quantified matrices of the
DNA methylation level and gene expression were examined.
We constructed 3,133 units around the CGIs in the promoter
regions to determine correlations between DNA methylation
levels and gene expression (Supplementary Data Sheet S1).
A negative correlation between DNA methylation level and gene
expression pairs was evident (Figure 5A; Pearson correlation
test; r = −0.0837). Most of these distributions showed a uniform
density, but in the hypo-methylated region, many pairs were
clustered between 0 and 5 FPKM. To identify candidates that
could be involved in gene silencing, 121 gene silencing DNA
methylations (GSMs) and their downstream gene expressions
were determined as pairs with a negative correlation (r < 0;
p-value ≤ 0.05) (Supplementary File S1: Table S11). The
distribution of 3,131 CGI and the 121 GSMs differed little
in gene expression; however, there was a difference in their
DNA methylation level. Gene expression density was very high
in genes with no significance in regions below FPKM 1, but
close to uniform when density was measured using only 121
GSMs (Figure 5A). On the other hand, the density of DNA
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FIGURE 5 | Overview of gene silencing DNA methylations. (A) Gene expression density in Y-axis. (B) DNA methylation density in X-axis. (C,D) Density distribution of
GSM candidates and GSMs. (E) Network constructed using GSM candidates (BioLayout Express 3D; r > 0.85; MCL = 1.3). It was divided into three subnetworks
and 35 subgroups. The top 13 subgroups that had peaks in one tissue are marked. Highlighted edges (red) are significantly correlated genes with
gene-silencing methylations.

methylation levels was high in hypo- and hyper-methylated DNA
and relatively low in the intermediate level (Figure 5B). Hypo-
methylated DNA density was higher than hyper-methylated
DNA density (Figures 5C,D). Regardless of whether GSMs were
selected or not, their distribution showed a negative correlation.
And the GSM density of hypo-methylated regions with gene
expression values of 4–5 was particularly high.

A DNA methylation network analysis was performed to
investigate the interaction of 3,133 GSM candidates (Figure 5E;
BioLayout Express 3D; r > 0.85; MCL = 1.3). Here, 29
subgroups were constructed and connected into 13 clusters.
A total of 829 CGIs remained, and the subgroup belonging
to clusters with one peak contained 653 CGIs. The GSEA
of the downstream genes of CGIs were composed in three
subnetworks, and from the left, the 213, 331, and 109 CGIs

appeared as unconnected bundles. In the first subnetwork, the
cockscomb, gallbladder, gizzard, eye and bone marrow were
combined in one peak. In this subnetwork, the Rab-GAP TBC
domain, nuclear pore, and transmembrane protein 41 (TMEM41)
family were found as enriched terms (Supplementary File S1:
Figure S5A). The Rab-GAP TBC domain has several functions
well known in membrane trafficking (Gillingham and Munro,
2003; Barr and Lambright, 2010; Müller and Goody, 2018). The
nuclear pore and TMEM41 family were the next most enriched
terms, as all three were associated with the cell membrane.
The second subnetwork was the largest, composed of the
spleen, liver, shin skin, skin, and cerebrum (Supplementary
File S1: Figure S5B). Terms related to protein degradation
and glucose metabolism were observed in this network. The
last subnetwork showed the smallest peak for cerebellum,
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immature egg and mature egg (Supplementary File S1: Figure
S5C). Finally, we analyzed the GSEA of the downstream genes
using 121 significantly correlated CGIs. Among the biological
processes, terms related to liver development and cardiac
morphogenesis were observed.

We applied a hard filter to the GSMs and finally selected six
genes (CLDN3, DECR2, EVA1B, NME4, NTSR1 and XPNPEP3)
associated with epigenetic regulation, differentiation and cancer
(Figure 6; Pearson’s correlation test; p-value ≤ 0.001). Most
DNA methylation levels were moderate and gene expression
levels were between 0 and 10 when converted to log2 (FPKM+1)
(Figures 6A,B). In particular, the expression level of NME4
was high in the liver (Supplementary Data Sheet S2; FPKM:
1558.41). XPNPEP2 had the lowest gene expression distribution,
but highest methylation level in most tissues (Figure 6C).
XPNPEP2 is located on the X chromosome, which possesses
hydrolase and aminopeptidase activities. This gene plays a
role in the metabolism of the vasodilator bradykinin, and is
associated with colorectal cancer through somatic methylation
alterations (Navarrete-Meneses and Pérez-Vera, 2018). The gene
with the largest expression change was CLDN3 (Figure 6B)
and a change in DNA methylation level was concentrated at
around 50%. A previous study identified that the promoter
of CLDN3 is affected by epigenetic processes through DNA
methylation in ovarian cancer cells (Honda et al., 2007). DECR2
had relatively high gene expression values (Figure 6B). The
gene regulation of lipid metabolism by peroxisome proliferator-
activated receptor alpha (RPARalpha) has been reported to be
a candidate in prostate cancer development, that function by
regulating gene expression through DNA methylation (Yang
et al., 2013). EVA1B was the most significant negatively correlated
gene, with the highest variation of DNA methylation. In
the bone marrow, brisket, cerebellum, cerebrum and uterus,
EVA1B had relatively high DNA methylation levels (Figure 6C),
which is known to regulate programmed cell death as the
paralog gene of EVA1A. Epigenetic regulation of this gene
was previously reported using a dental pulp stem cell model,
in which a hyper-methylated DMR region in this gene was
reported with embryonic stem cells (Li et al., 2016; Dunaway
et al., 2017). NTSR1 had the lowest median DNA methylation
level (Figure 6B), where DNA methylation levels were relatively
high in the brisket and kidney (Figure 6C). NTSR1 belongs
to the superfamily of G-protein coupled receptors, and its
signaling has been determined to activate downstream MAP
kinases and prevent apoptosis. DNA methylation of this
gene has been studied in pancreatic, colorectal and ovarian
cancers (Hagihara et al., 2004; Nelson et al., 2012; Kamimae
et al., 2015; Navarrete-Meneses and Pérez-Vera, 2018), and
it is known to be a general marker of epigenetic regulation.
Finally, NME4 showed a significant negative correlation and
had a pattern similar to NTSR1, with a particularly high
gene expression value and low DNA methylation level in
the liver. DNA methylation levels of NME4 were slightly
higher than those of NTSR1 (Figure 6B). This gene encodes
ubiquitous enzymes that catalyze the transfer of gamma
phosphatases, and was identified as an epigenetic biomarker
through methylation microarray-based scanning in a colorectal

cancer cohort (Mori et al., 2011). All six of the gene-
silencing DNA methylations (GSM) were relatively low in liver
(Figure 6C), and all of these genes have previously been reported
to regulate downstream genes by altered DNA methylation in
their promoters.

Investigation of the Relationships of
Imprinted Genes to Infer the Epigenetic
Function of GSMs
In chickens, there are no known imprinted genes, however,
we investigated known or predicted genes in other species
to identify the epigenetic functions of 121 GSMs (Plasschaert
and Bartolomei, 2014; Choi et al., 2015). We searched for
information in the imprinted genes database and found three
genes that overlapped at Geneimprint2 (Supplementary File
S1: Table S12). There were two predicted genes in humans
(FOXG1, PRDM16) and one imprinted gene in the gray short-
tailed opossum (MEIS1) (Luedi et al., 2005, 2007; Douglas, 2013).
In the case of FOXG1, the methylation level in the cerebrum
and cerebellum was drastically decreased, and that of FPKM
was found to be high (Supplementary File S1: Figure S6A).
FOXG1 has been reported to play an important role in brain
development and is evolutionary conserved in vertebrates. Its
expression was compared with that of the human gene using
BioGPS (Wu et al., 2009) (Supplementary File S1: Figure S6B).
MEIS1 was found to be highly expressed in the uterus and
gizzard. This gene is known to function as an enhancer to
regulate the cofactors of the HOXA10 homeobox gene. HOXA10
is a gene that regulates embryonic uterine development and
endometrial receptivity (Xu et al., 2008). Compared with that
in humans, high expression was observed in the uterus. For
FOXG1 and MEIS1, there were two tissues with relatively
high gene expression values, but PRDM16 was high only in
the pancreas. PRDM16 encodes a transcription factor and
histone H3 methyltransferase, and a genetic screening study
reported that it plays an important role in the development
of the pancreas (Sugiyama et al., 2013). In BioGPS, no
significance were found to be specifically highly expressed, and
expression values in the heart and liver were relatively high.
Among FOXG1, MEIS1 and PRDM16, the methylation level
of PRDM16 was high on average (Supplementary File S1:
Figure S6C). In fact, FOXG1 and MEIS1 had identifiable tissue-
specific properties.

DISCUSSION

In the field of epigenetic studies, NGS technology has brought
many advantages and advances (Hurd and Nelson, 2009;
Schweiger et al., 2011). In particular, it is possible to produce
more accurately quantified results by using high throughput
data and observing changes in the base-pair resolution of the
genome. We produced data on two different platforms and
quantified the transcriptome and DNA methylome through
RNA-seq and RRBS, respectively. This data allowed us to

2http://www.geneimprint.com
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FIGURE 6 | Downstream genes of highly significant GSMs. (A) Correlation of the highly significant GSMs and distribution of DNA methylation and gene expression
values. The simple linear correlation and 95% confidence intervals marked using the lm function (black line, red range). (B) Distribution of gene expression and DNA
methylation values was expressed using boxplot. (C) Heatmap of gene expression and DNA methylation values.

FIGURE 7 | Venn diagram of TSGs intersecting with human TSGs (TiGER
database). TiGER database genes were selected with paralog genes of the
chicken gene annotations. Only single copy genes were used.

observe even very small differences in DNA methylation
and gene expression. Based on this, we sequenced as many
tissues as possible and investigated the relationship between
them. Previous DNA methylome studies were identified that
used embryonic stem cells or samples in the developmental
stages (Laurent et al., 2010; Spiers et al., 2015; Fu et al.,
2018). In addition, there have been studies that considered
difficulties in finding statistically significant results due to a
lack of sample diversity (Habibi et al., 2013; Chen et al.,
2015; Choi et al., 2015; Zhou et al., 2016). Here however,
we discovered significant results because we examined the
relationship between DNA methylation and gene expression
using 20 different adult tissues.

First, we looked for a set of highly expressed genes in
specific tissues to examine the patterns of gene expression.
This not only helped to understand the features of the
tissues but also to understand the relationships between them
(Figures 1, 2). The gene sets found reflect the characteristics
of each tissue. To compliment this, many of these genes
are found in the human TSGs database TiGER3 (Liu et al.,
2008) (Figure 7). One cluster, however, did not represent
a single tissue, which explains the similarities in expression
pattern across similar tissues (Figure 1). In the case of the
eyes, however, the muscle-related tissues and gene sets that
were associated with muscle contraction and muscle filament
sliding were shared. When we searched for human eye TSGs
in the TiGER database, we found that many of them overlap
with muscle TSGs (14/232). This suggests that the eye tissue
can have both attributes. In brief, we identified both gene
sets that are specifically expressed in only one tissue and
genes that are expressed in similar patterns in tissues with
similar functions.

The relationship between CGIs in promoter regions and
downstream genes they may regulate has been studied for a long
time (Schilling and Rehli, 2007; Haberle and Lenhard, 2016).
However, there have not been many studies undertaken on a
genome-wide level. Previous studies have found a way to measure
tissue-specific DNA methylation and its effects (Chen et al., 2015;
Choi et al., 2015; Zhou et al., 2016). On the other hand, we
assessed the relationship between DNA methylation and gene

3http://bioinfo.wilmer.jhu.edu/tiger/
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expression at the genome-wide level and found clear correlations
between them. In our study, we found 121 statistically significant
GSMs, related to genes associated with development or human
disease. Finally, six genes were selected by hard filtering and
these genes were also found to be associated with development,
differentiation, epigenetic regulation, and cancer. All of these
genes were found to have CGIs that significantly overlapped with
the first exons (Supplementary File S1: Figure S7). In addition,
XPNPEP2, NME4 and NTSR1 were contained in 1,492 TSGs. In
particular, XPNPEP2, an X-chromosome linked gene, is known to
change the state of DNA methylation depending on sex, age, and
environmental conditions (Liu et al., 2010). We believe additional
epigenetic studies are needed for these three genes.

CONCLUSION

In conclusion, genes that display a correlation between
DNA methylation and their expression in specific tissues are
responsible for significant changes in not only in developmental
stages but also in adult tissues. We made this finding by using
tissues that are not in developmental stages, but have developed
in adults. This can either represent a change that occurs at the
developmental stage, or it can be the result of epigenetic changes.
This study presents a methodology that can be used by other
researchers using omics data combined with different types of
NGS data, and provides them with the opportunity to use our
transcriptome and DNA methylome landscapes.
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