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Abstract

In this paper, a set of Dombi power partitioned Heronian mean operators of q-rung orthopair

fuzzy numbers (qROFNs) are presented, and a multiple attribute group decision making

(MAGDM) method based on these operators is proposed. First, the operational rules of

qROFNs based on the Dombi t-conorm and t-norm are introduced. A q-rung orthopair fuzzy

Dombi partitioned Heronian mean (qROFDPHM) operator and its weighted form are then

established in accordance with these rules. To reduce the negative effect of unreasonable

attribute values on the aggregation results of these operators, a q-rung orthopair fuzzy

Dombi power partitioned Heronian mean operator and its weighted form are constructed by

combining qROFDPHM operator with the power average operator. A method to solve

MAGDM problems based on qROFNs and the constructed operators is designed. Finally, a

practical example is described, and experiments and comparisons are performed to demon-

strate the feasibility and effectiveness of the proposed method. The demonstration results

show that the method is feasible, effective, and flexible; has satisfying expressiveness; and

can consider all the interrelationships among different attributes and reduce the negative

influence of biased attribute values.

1. Introduction

Multi-attribute group decision making (MAGDM) is a process of choosing the best alternative

in complex scenarios by using a group of decision makers to evaluate the values of multiple

attributes of all alternatives synthetically. In this process, the primary task is to accurately

express the attribute values, and fuzzy sets are regarded as effective tools for such expression.

To date, over twenty different types of fuzzy sets have been presented within academia [1].

Among them, Zadeh’s fuzzy set (FS) [2] is a well-known type of fuzzy set that uses degree of

membership to quantify degree of satisfaction. However, this fuzzy set cannot express non-

membership and hesitancy degree. Atanassov [3] proposed the intuitionistic FS (IFS) to over-

come this shortcoming by adding a nonmembership degree; thus, the hesitancy function can
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be expressed as one minus the sum of the membership and nonmembership degrees. Because

IFSs can describe more complex fuzzy information than FSs, many research topics regarding

them have been presented, such as the operational rules of intuitionistic fuzzy numbers (IFNs)

[4], aggregation operators of IFNs [5], intuitionistic fuzzy preference relations [6], rules of

intuitionistic fuzzy calculus [7], and MAGDM methods based on IFSs [8]. Although IFSs have

shown great potential in MAGDM, their application range is limited by their ability to express

fuzzy information, i.e., the sum of membership and nonmembership degrees should be within

the range of 0 to 1. To address this issue, Yager [9] proposed the theory of Pythagorean fuzzy

sets (PFSs), in which the condition is extended to the sum of the squares of the membership

and nonmembership degrees falling within the range of 0 to 1. Because they have greater

expressiveness than IFSs, PFSs have also received much attention from researchers. For exam-

ple, Yager and Abbasov [10] investigated the relationships among Pythagorean fuzzy numbers

(PFNs); Peng and Yang [11] proposed division and subtraction operations on PFSs; Dick et al.

[12] developed interpretations of complex-valued Pythagorean membership grades; Liang

et al. [13] proposed a new model of three-way decisions based on PFSs.

Recently, to further improve the expressiveness of PFS, Yager [14] presented the concept of

the generalized orthopair fuzzy set, i.e., the q-rung orthopair fuzzy set (qROFS), in which the

membership and nonmembership degrees satisfy the condition that the sum of their q-th pow-

ers lies within the range of 0 to 1. Obviously, IFSs and PFSs are special cases of qROFSs with

q = 1 and q = 2. This feature makes the expressiveness of qROFSs more powerful than that of

IFSs and PFSs by assigning an appropriate value to q. For example, suppose that a decision

maker is influenced by personal wishes or the surrounding environment and assigns special

attribute values to product quality. The attribute values have a membership degree of 0.8 and a

nonmembership degree of 0.8, i.e., (0.8,0.8). Obviously, neither an IFS nor a PFS can be

applied in this case because 0.8+0.8>1 and 0.82+0.82>1. However, the attribute values can be

expressed using a qROFS by increasing the value of the parameter q (q�4). It is worth noting

that as the parameter q increases, the space of acceptable orthopairs increases, and more ortho-

pairs will satisfy the bounding constraint. Therefore, qROFSs are more flexible and more suit-

able for describing fuzzy information by dynamically adjusting the value of the parameter q.

The subject of qROFSs has received extensive attention in recent years. Various research topics

regarding qROFSs are gaining importance within academia, such as the score function of

qROFNs [15, 16], distance measures of qROFNs [16, 17], correlation and correlation coeffi-

cients of qROFSs [18], and extensions of qROFSs [19].

To solve MAGDM problems, there are generally two groups of methods: conventional

methods, such as TOPSIS, VIKOR, and ELECTRE, and methods based on aggregation opera-

tors. Aggregation operators can solve MAGDM problems more effectively than traditional

approaches because they can provide comprehensive values and then give the ranking results,

while conventional methods can only generate rankings. Aggregation operators are usually

considered in terms of operational rules and functions: (1) For operational rules, note that

some aggregation operators are special cases of members in the t-norm (TN) and t-conorm

(TC) families, and the Archimedean t-norm and t-conorm are the generalization of many TNs

and TCs. To date, many operators and operational rules of qROFSs correspond to specific

types of TNs and TCs and their operational rules, such as the Archimedean Bonferroni mean

operator [20], the Archimedean Muirhead mean operator [21] the Hamacher operational

rules [22], and the Frank operational rules [23]. (2) Yager [24] proposed the power average

(PA) operator, which is a new tool to aggregate input arguments by considering the relation-

ships among the attribute values. It allows attribute values to support and reinforce each other

and thus can reduce the negative influence of unreasonable arguments on the aggregation

result. To consider the relationships among the aggregated arguments, more than twenty
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different aggregation operators of qROFSs have been studied, such as weighted averaging (WA)

and weighted geometric (WG) operators [25], Bonferroni mean (BM) and geometric Bonfer-

roni mean (GBM) operators [26], power BM operators [27], partitioned BM and partitioned

GBM operators [28],extended BM operators [29], Maclaurin symmetric mean (MSM) and geo-

metric Maclaurin symmetric mean operators [30], partitioned MSM and power partitioned

MSM operators [31], power MSM operators [32], Hamy mean operators [33], Muirhead mean

(MM) and geometric MM operators [34], power MM operators [35], weighted point operators

[36], Heronian mean (HM) operators [37,38], geometric HM operators [37], and partitioned

HM (PHM) operators [38]. In the existing literature, Yu et al. [39] explained the advantages of

HM operators over BM operators in detail. Although these two aggregation operators can con-

sider the interrelationships among the aggregated parameters, they can only address decision-

making problems in which interrelationships occur only among attributes in the same partition,

not among attributes in different partitions. Liu et al. [38] proposed partitioned HM operators

based on qROFSs, and Liu et al. [40] proposed partitioned HM operators based on linguistic

intuitionistic fuzzy sets to overcome this shortcoming by dividing the attribute values into sev-

eral different sorts, such that multiple attributes in different classes are unrelated.

The recently proposed Dombi t-conorm and Dombi t-norm (DTT) [41], which are special

types of the Archimedean t-norm and t-conorm (ATT), are powerful tools for information

aggregation and have been applied to the aggregation of IFSs [42], hesitant fuzzy sets [43], and

single-valued neutrosophic information [44]. However, they have not yet been applied to the

aggregation of qROFSs. It is interesting to extend the operational rules of qROFNs based on

the DTT. In addition, there is no aggregation operator that combines the PA operator and the

partitioned HM operator to reflect the interrelationships among the input arguments and

reduce the impact of some evaluation values provided by decision makers that are too high or

too low due to lack of time and prior experience. It is also interesting to extend the PA operator

and the partitioned HM operator to qROFNs based on the DTT. Motivated by these consider-

ations, a q-rung orthopair fuzzy Dombi power partitioned HM operator and its weighted form

are presented in this paper, and a MAGDM method based on them is proposed.

The remainder of the paper is organized as follows. Section 2 briefly recalls some basic con-

cepts of q-rung orthopair fuzzy sets, the DTT, the PA operator, the PHM operator and the

operational rules of qROFNs based on the DTT. Section 3 presents a set of operators for

qROFNs. Section 4 proposes a novel MAGDM method based on the presented operators. Sec-

tion 5 provides a practical example, a set of experiments, qualitative comparisons, quantitative

comparisons and further comparative analysis. The last section summarizes the paper.

Preliminaries

2.1 qROFSs

Definition 1 [14]. A qROFS Q in a finite universe of discourse X is:

Q ¼ fhx; mQðxÞ; vQðxÞijx 2 Xg ð1Þ

where μQ: X! [0, 1] denotes the degree of membership of the element x 2 X to the set Q and

νQ: X! [0, 1] denotes the degree of nonmembership of the element x 2 X to the set Q, with

the condition that 0� (μQ(x)q + νQ(x)q)� 1 (q = 1, 2, 3, . . .). The degree of hesitancy (indeter-

minacy) of the element x2 X to the set Q is:

pQðxÞ ¼ ð1 � ðmQðxÞÞ
q
� ðvQðxÞÞ

q
Þ

1
q ð2Þ
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For convenience, a pair (μQ(x), νQ(x)) is called a qROFN [14] and denoted Θ = (μ, v). To

compare two qROFNs, their scores and accuracies must be calculated. The following is the def-

initions of the score of a qROFN and the accuracy of a qROFN.

Definition 2 [14]. Let Θ = (μ, v) be a qROFN. Then, the score of Θ is:

SðYÞ ¼ mq � vq ð3Þ

where -1� S(Θ)�1.

Definition 3 [14]. Let Θ = (μ, v) be a qROFN. Then, the accuracy of Θ is:

AðYÞ ¼ mq þ vq ð4Þ

where 0� A(Θ)�1.

A method for comparing qROFNs based on S(Θ) and A(Θ)) is presented in [14]. The fol-

lowing is the definition of the method.

Definition 4 [14]. Let Θ1 = (μ1, v1) and Θ2 = (μ2, v2) be two arbitrary qROFNs; let S(Θ1)

and S(Θ2) be the scores of Θ1 and Θ2, respectively; and let A(Θ1) and A(Θ2) be the accuracies

of Θ1 and Θ2, respectively. Then,

1. If S(Θ1)> S(Θ2), then Θ1 > Θ2;

2. If S(Θ1) = S(Θ2), then

(1) If A(Θ1)> A(Θ2), then Θ1 > Θ2;

(2) If A(Θ1) = A(Θ2), then Θ1 = Θ2.

Definition 5 [17]. Let Θ1 = (μ1, v1) and Θ2 = (μ2, v2) be two arbitrary qROFNs; then, the

Minkowski-type distance between Θ1 and Θ2 is given by:

dðY1;Y2Þ ¼
1

2
jm1 � m2j

p
þ

1

2
jv1 � v2j

p
� �1=p

ðp > 1Þ ð5Þ

2.2 Dombi t-norm and conorm

In the following, a new operational rule of qROFNs is introduced based on the DTT [41] to

generate a t-norm (TN) and t-conorm (TC):

Dðx; yÞ ¼ �� 1
ð�ðxÞ þ �ðyÞÞ ð6Þ

(1) If f (x) is a monotonically increasing function such that:

f ðxÞ : ð0; 1� ! Rþ; f � 1ðxÞ : Rþ ! ð0; 1�; limx!1f ðxÞ� 1
¼ 0; f � 1ð0Þ ¼ 1;

then the TN T can be defined as T (x, y) = f -1 (f (x) + f (y)).

(2) If g (x) is a monotonically decreasing function such that:

gðxÞ : ð0; 1� ! Rþ; g � 1ðxÞ : Rþ ! ð0; 1�; limx!1gðxÞ� 1
¼ 1; g � 1ð0Þ ¼ 0;

then the TC S can be defined as S (x, y) = g-1 (g(x) + g(y)). According to [45], the relation-

ship of f(x) and g(x) is f (x) = g(1-x).
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Definition 6 [41]. Let λ be a positive real number and x, y2 [0, 1]. The DTT and their addi-

tive generators are defined as follows:

TD;lðx; yÞ ¼ f � 1ðf ðxÞ þ f ðyÞÞ ¼
1

1þ ðð1� xq

xq Þ
l
þ ð

1� yq

yq Þ
l
Þ

1
l

0

@

1

A

1
q

ð7Þ

SD;lðx; yÞ ¼ g � 1ðgðxÞ þ gðyÞÞ ¼ 1 �
1

1þ ðð xq

1� xqÞ
l
þ ð

yq

1� yqÞ
l
Þ

1
l

0

@

1

A

1
q

ð8Þ

f ðtÞ ¼ ð
1 � tq

tq
Þ
l
; gðtÞ ¼ ð

tq

1 � tq
Þ
l

ð9Þ

Then, the following can be obtained:

f � 1ðtÞ ¼
1

1þ t1
l

� �1
q

; g � 1ðtÞ ¼
t1
l

1þ t1
l

 !1
q

ð10Þ

2.3 Operational rules of qROFNs based on the DTT

On the basis of the DTT, a set of operational rules of qROFNs can be established as follows:

Definition 7. Let Θ = (μ, v), Θ1 = (μ1, v1) and Θ2 = (μ2, v2) be three arbitrary qROFNs, and

let δ and τ be two arbitrary positive real numbers. Then, the sum, product, multiplication and

power operations between qROFNs based on TD, λ (x, y) = f -1 (f (x) + f (y)) and SD, λ (x, y) = g-1

(g(x) + g(y)) can be defined as follows, respectively:

Y1 �Y2 ¼ ðg � 1ðgðm1Þ þ gðm2Þ; f � 1ðf ðv1Þ þ f ðv2ÞÞ

¼ 1 �
1

1þ ðð
m1

q

1 � m1
q
Þ
l
þ ð

m2
q

1 � m2
q
Þ
l
Þ

1

l

0

B
B
B
B
@

1

C
C
C
C
A

1

q

;
1

1þ ðð
1 � v1

q

v1
q
Þ
l
þ ð

1 � v2
q

v2
q
Þ
l
Þ

1

l

0

B
B
B
B
@

1

C
C
C
C
A

1

q

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

ð11Þ

Y1 �Y2 ¼ ðf � 1ðf ðm1Þ þ f ðm2ÞÞ; g � 1ðgðv1Þ þ gðv2ÞÞÞ

¼
1

1þ ðð
1 � m1

q

m1
q
Þ
l
þ ð

1 � m2
q

m2
q
Þ
l
Þ

1

l

0

B
B
B
B
@

1

C
C
C
C
A

1

q

; 1 �
1

1þ ðð
v1

q

1 � v1
q
Þ
l
þ ð

v2
q

1 � v2
q
Þ
l
Þ

1

l

0

B
B
B
B
@

1

C
C
C
C
A

1

q

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð12Þ
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dY ¼ ðg � 1ðdgðmÞÞ; f � 1ðdf ðvÞÞÞ

¼ 1 �
1

1þ ðdð
mq

1 � mq
Þ
l
Þ

1

l

0

B
B
B
B
@

1

C
C
C
C
A

1

q

;
1

1þ ðdð
1 � vq

vq
Þ
l
Þ

1

l

0

B
B
B
B
@

1

C
C
C
C
A

1

q

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð13Þ

Y
t
¼ ðf � 1ðtf ðmÞÞ; g � 1ðtgðvÞÞÞ

¼
1

1þ ðtð
1 � mq

mq
Þ
l
Þ

1

l

0

B
B
B
B
@

1

C
C
C
C
A

1

q

; 1 �
1

1þ ðtð
vq

1 � vq
Þ
l
Þ

1

l

0

B
B
B
B
@

1

C
C
C
C
A

1

q

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð14Þ

By using Eqs (11)–(14), it is easy to obtain the following rules:

Y1 �Y2 ¼ Y2 �Y1 ð15Þ

Y1 �Y2 ¼ Y2 �Y1 ð16Þ

dðY1 �Y2Þ ¼ dY1 � dY2 ð17Þ

dY� tY ¼ ðdþ tÞY ð18Þ

Y
d

1
�Y

d

2
¼ ðY1 �Y2Þ

d
ð19Þ

Y
d
�Y

t
¼ Y

tþd
ð20Þ

For the proofs of Eqs (15)–(20), please refer to Appendix A.

2.4 HM operator and PA operator

Definition 8 [46]. Let xi (i = 1, 2, . . ., n) be a series of crisp numbers. If

HMa;bðx1; x2; . . . ; xnÞ ¼
2

nðnþ 1Þ

Xn

i¼1

Xn

j¼i

xa
i xb

j

 ! 1
aþb

ð21Þ

where a, b� 0, then HMa,b is called the HM operator.

Definition 9 [46]. Let Xhi (i = 1, 2, . . ., n) be a collection of arguments that is partitioned

into d distinct sorts P1, P2, . . .,Pd, where Ph = {Xh1, Xh2,. . ., Xh|Ph|} (h = 1,2,. . .,d) and

Xd

h¼1
jPhj ¼ mandjPhj denotes the cardinality of Ph. For any a, b� 0, the aggregation
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function

PHMa;bðw1; w2; . . . ; wnÞ ¼
1

d

Xd

h¼1

2

jPhjðjPhj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

wa
hiw

b
hj

 ! 1
aþb

0

@

1

A ð22Þ

is called the PHM operator.

Definition 10 [24]. Let ai (i = 1, 2, . . ., n) be a collection of nonnegative real numbers. Then

PAða1; a2; . . . ; anÞ ¼

Xn

i¼1

ðð1þ TðaiÞÞaiÞ

Xn

i¼1

ð1þ TðaiÞÞ

ð23Þ

is called the power average (PA) operator, where

TðaiÞ ¼
Xn

j¼1

j6¼i

Supðai; ajÞ ð24Þ

and Sup (a, b) denotes the support for a from b, which satisfies the following three conditions:

(1) Sup(a,b) = [0,1];

(2) Sup(a,b) = Sup(b,a);

(3) Sup(a,b)�Sup(x,y), if |a−b|�|x−y|

To simplify Eq (23), let Vi = 1 + T(ai) and wi ¼
ViXn

i¼1
Vi

; then

PAða1; a2; . . . ; anÞ ¼
Xn

i¼1

ðwiaiÞ ð25Þ

3. Dombi power partitioned Heronian mean operators of qROFNs

3.1 q-Rung orthopair fuzzy Dombi partitioned Heronian mean operators

In this section, PHM is extended to the q-rung orthopair fuzzy environment, and a q-rung

orthopair fuzzy Dombi partitioned Heronian mean (qROFDPHM) operator and a q-rung

orthopair fuzzy Dombi weighted partitioned Heronian mean (qROFDWPHM) operator are

presented. Their properties are explored.

Definition 11. Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a collection of

qROFNs (q = 1, 2, . . .) that is partitioned into d distinct sorts P1,P2,. . .,Pd, where Ph = {Θh1,

Θh2,. . ., Θh|Ph|} (h = 1, 2, . . ., d) and |P1|+|P2|+. . .+|Pd| = n. For any two real numbers a and b
such that a, b� 0 but a and b are not zero simultaneously, the qROFDPHM operator is

defined as:

qROFDPHMa;bðY1;Y2; . . . ;YnÞ ¼
1

d
�
d

h¼1

2

jPhjðjPhj þ 1Þ
�
jPh j

i¼1
�
jPhj

j¼i
Y

a
hi �Y

b
hj

� �� � 1
aþb

ð26Þ

Based on Eqs (11)–(14) and (26), the following theorem is obtained:

Theorem 1. Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a collection of

qROFNs (q = 1, 2, . . .) that is partitioned into d distinct sorts P1,P2,. . .,Pd, where Ph = {Θh1,

Θh2,. . ., Θh|Ph|} (h = 1, 2, . . ., d) and |P1|+|P2|+. . .+|Pd| = n; let a and b be two real numbers

such that a, b� 0 but a and b are not zero simultaneously, and let λ be a positive real number.
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Then, the aggregated value produced by qROFDHM is still a qROFN, and

qROFDPHMa;bðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ
ÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q
;

1= 1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðagðvhiÞ þ bgðvhjÞÞ
ÞÞ

1

l

0

@

1

A

0

@

1

A

1

q

! ð27Þ

where f ðmhiÞ ¼ ð
1� mq

hi
mq

hi
Þ
l
; f ðmhjÞ ¼ ð

1� mq
hj

mq
hj
Þ
l
; gðvhiÞ ¼ ð

vq
hi

1� vq
hi
Þ
l and gðvhjÞ ¼ ð

vq
hj

1� vq
hj
Þ
l
.

For the proof of Theorem 1, please refer to Appendix B.

Theorem 2 (Idempotency). Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a

collection of qROFNs (q = 1, 2, . . .), and let a and b be two real numbers such that a, b� 0 but

a and b are not zero simultaneously. If Θi = Θ = (μ, v) for all i = 1, 2, . . ., n, then

qROFDPHMa;bðY1;Y2; . . . ;YmÞ ¼ Y ð28Þ

Proof.

Let qROFDPHMa,b(Θ1,Θ2,. . .,Θn) = (μα,vα). It is shown that

qROFDPHMa;bðY1;Y2; . . . ;YnÞ ¼ ðm; vÞ:

Since Θhi = Θ = (μ,v) and Θhj = Θ = (μ,v), we have:

ma ¼ 1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaf ðmhiÞ þ bf ðmhjÞÞ
ÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q

¼ 1 � 1=ð1þ
1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaf ðmÞ þ bf ðmÞÞ

1

l
Þ

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

q

¼ 1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaþ bÞf ðmÞÞ
ÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q

¼ 1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
1

f ðmÞ
ÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q

¼ 1 � 1=ð1þ
1

ðf ðmÞÞ
1

l

Þ

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

q

¼ ð1 � 1þ mqÞ

1

q

¼ m

where f ðmhiÞ ¼ ð
1� mq

hi
mq

hi
Þ
l
; f ðmhjÞ ¼ ð

1� mq
hj

mq
hj
Þ
l
; gðvhiÞ ¼ ð

vq
hi

1� vq
hi
Þ
l and gðvhjÞ ¼ ð

vq
hj

1� vq
hj
Þ
l
:
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Similarly, it can also be shown that vα = v. Thus

qROFDPHMa;bðY1;Y2; . . . ;YnÞ ¼ ðma; vaÞ ¼ ðm; vÞ;

which completes the proof of Theorem 2.

Theorem 3 (Monotonicity). Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi)) (i = 1, 2, . . ., n)

and {Θ1’, Θ2’, . . ., Θn’} (where Θi’ = (μi’, vi’)) (i = 1, 2, . . ., n) be two collections of qROFNs

(q = 1, 2 . . .), and let a and b be two real numbers such that a, b� 0 but a and b are not zero

simultaneously. If μi� μi’ and vi� vi’ for all i = 1, 2, . . ., n, then

qROFDPHMa;bðY1;Y2; . . . ;YnÞ � qROFDPHMa;bðY
0

1
;Y

0

2
; . . . ;Y

0

nÞ ð29Þ

Proof.

Let

qROFDPHMa;bðY1;Y2; . . . ;YnÞ ¼ ðma; vaÞ

qROFDPHMa;bðY
0

1
;Y

0

2
; . . . ;Y

0

nÞ ¼ ðm
0; v0Þ

Since mhi � m
0
hi and mhj � m

0
hi, f(t),f−1(t) are monotonically decreasing, and g(t),g−1(t) are

monotonically increasing, it follows that

1 � m
q
hi

m
q
hi
�

1 � m
0q
hi

m
0q
hi

;
1 � m

q
hj

m
q
hj
�

1 � m
0q
hj

m
0q
hj

Therefore,

ðaf ðuhiÞ þ bf ðuhjÞÞ � ðaf ðu0hiÞ þ bf ðu0hjÞÞ

1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPhj

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ

 ! !

�
1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ

 ! !

and

1þ
1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ

 ! !

� 1þ
1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ

 ! !

1= 1þ
1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ

 ! ! !

� 1= 1þ
1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPhj

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ

 ! ! !
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Then

ma ¼ 1 � 1= 1þ
1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ

 ! ! ! !
1

q
�

1 � 1= 1þ
1

d

Xd

h¼1

2ðaþ bÞ
jphjðjphj þ 1Þ

XjPhj

i¼1

XjPh j

j¼i

1

ðaf ðuhiÞ þ bf ðuhjÞÞ

 ! ! ! !
1

q
¼ m

Thus μα�μ0. Similarly, it can be proved that vα�v0.
Thus,

qROFDPHMa;bðY1;Y2; . . . ;YnÞ ¼ ðma; vaÞ � qROFDPHMa;bðY
0

1
;Y

0

2
; . . . ;Y

0

nÞ ¼ ðm; vÞ,
which completes the proof of Theorem 3.

Theorem 4 (Boundedness). Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi)) (i = 1, 2,. . ., n) be a

collection of qROFNs (q = 1, 2, . . .), and let a and b be two real numbers such that a, b� 0 but

a and b are not zero simultaneously. If ΘS = (max(μi), min(vi)) and ΘI = (min(μi), max(vi)),

then

YI � qROFDPHMa;bðY1;Y2; . . . ;YnÞ � YS ð30Þ

Proof.

From Theorem 2, we have:

qROFDPHMa;bðYI;YI; . . . ;YIÞ ¼ YI; qROFDPHMa;bðYS;YS; . . . ;YSÞ ¼ YS:

From Theorem 3, we have:

qROFDPHMa;bðYI;YI; . . . ;YIÞ � qROFDPHMa;bðY1;Y2; . . . ;YnÞ

� qROFDPHMa;bðYS;YS; . . . ;YSÞ:

Therefore, it follows that ΘI�qROFDPHMa,b(Θ1,Θ2,. . .,Θn)�Θs which completes the proof

of Theorem 4.

The following are some special cases of the proposed qROFDPHM operator:

(1) Special cases with respect to parameters a and b.

1) When b!0, Eq (27) reduces to

qROFDPHMa;0ðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
2

jphjðjphj þ 1Þ

XjPh j

i¼1

ðjPhj � iþ 1Þ �
1
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ÞÞ

1
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0

@
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A

0

@

1

A

1

q
;

1= 1þ ð
1

d

Xd

h¼1

ð
2

jphjðjphj þ 1Þ

XjPhj

i¼1

ðjPhj � iþ 1Þ �
1

gðvhiÞ
ÞÞ

1

l

0

@

1

A

0

@

1

A

1

q

! ð31Þ

which is a q-rung orthopair fuzzy Dombi partitioned heavy averaging operator.
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2) When b!0 and all the qROFNs are partitioned into one sort (d = 1), then Eq (27) reduces

to

qROFDPHMa;0ðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
2

nðnþ 1Þ

Xn

i¼1

ðn � iþ 1Þ �
1
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Þ

1
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1

q
;

1= 1þ ð
2
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1
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Þ

1

l

0

@

1

A

0

@

1

A

1

q

! ð32Þ

which is a q-rung orthopair fuzzy Dombi heavy averaging operator.

3) When b!0 and all the qROFNs are partitioned into n sorts (d = n), then Eq (27) reduces to

qROFDPHMa;0ðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
1
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h¼1

1
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Þ

1
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0
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1

q
;
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n
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1
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1
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A

0

@

1

A

1

q

! ð33Þ

which is a q-rung orthopair fuzzy Dombi generalized averaging operator.

4) When a!0, then Eq (27) reduces to

qROFDPHM0;bðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
1
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q
;
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i¼1

XjPh j

j¼i

1
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1

l
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q

! ð34Þ

which is a q-rung orthopair fuzzy Dombi partitioned heavy averaging operator.

5) When a = b = 1, then Eq (27) reduces to

qROFDPHM1;1ðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
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Xd
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XjPh j

i¼1

XjPh j

j¼i

1

f ðuhiÞ þ f ðuhjÞ
ÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q
;

1= 1þ ð
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1
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ÞÞ
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q

! ð35Þ

which is a q-rung orthopair fuzzy partitioned line HM operator.

(2) Some special cases with respect to parameter q.
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1) When q = 1, the qROFDPHM operator reduces to an intuitionistic fuzzy Dombi PHM

(IFDPHM) operator:

qROFDPHMa;bðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
1

d

Xd
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j¼i

1
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l
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A
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where f ðmhiÞ ¼ ð
1� mhi
mhi
Þ
l
; f ðmhjÞ ¼ ð

1� mhj
mhj
Þ
l
; gðvhiÞ ¼ ð

vhi
1� vhi
Þ
l and gðvhjÞ ¼ ð

vhj
1� vhj
Þ
l
:

2) When q = 2, the operator reduces to a Pythagorean fuzzy Dombi PHM (PFDPHM) opera-

tor:

qROFDPHMa;bðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
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;
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l

0

@
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A
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@

1
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1

2

! ð37Þ

where f ðmhiÞ ¼ ð
1� m2

hi
m2

hi
Þ
l
; f ðmhjÞ ¼ ð

1� m2

hj
m2

hj
Þ
l
; gðvhiÞ ¼ ð

v2

hi
1� v2

hi
Þ
l and gðvhjÞ ¼ ð

v2

hj
1� v2

hj
Þ
l
.

3.2 q-Rung orthopair fuzzy Dombi weighted partitioned Heronian mean

operators

The qROFDPHM operator has the advantages of offering flexibility in describing fuzzy infor-

mation, generating versatile operational rules for aggregating fuzzy information, and reflecting

the interrelationships among different attributes. However, it does not consider the relative

importance of attributes. To address this issue, weights are introduced, and a weighted

qROFDPHM operator is presented. The formal definition of this operator is as follows:

Definition 12. Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a collection of

qROFNs (q = 1, 2, . . .) that is partitioned into d distinct sorts P1,P2,. . .,Pd, where Ph = {Θh1,

Θh2,. . ., Θh|Ph| } (h = 1, 2, . . ., d) and |P1|+|P2|+. . .+|Pd| = n, and let wi denote the weight of Θi,

where wi 2 [0, 1] and w1 + w2 + . . . + wn = 1. For any two real numbers a and b such that a,

b� 0 but a and b are not zero simultaneously, the q-rung orthopair fuzzy Dombi weighted

partitioned Heronian mean (qROFDWPHM) operator is defined as follows:

qROFDWPHMa;bðY1;Y2; . . . ;YnÞ ¼
1

d
�
d

h¼1

2

jPhjðjPhj þ 1Þ
�
jPh j

i¼1
�
jPh j

j¼i
ðwhiYhiÞ

a
� ðwhjYhjÞ

b
� �� � 1

aþb

ð38Þ

Theorem 5. Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a collection of

qROFNs (q = 1, 2, . . .) that is partitioned into d distinct sorts P1,P2,. . .,Pd, where Ph = {Θh1,

Θh2, . . ., Θh|Ph| }, (h = 1, 2, . . ., d) and |P1|+|P2|+. . .+|Pd| = n, let a and b be two real numbers

such that a, b� 0 but a and b are not zero simultaneously; let λ be a positive real number, and

let wi denote the weight of Θi, where wi 2 [0, 1] and w1 + w2 . . . + wn = 1. Then, the aggregated
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value produced by qROFDWPHM is still a qROFN and

qROFDWPHMa;bðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
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where f ðmhiÞ ¼ ð
1� mq

hi
mq
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Þ
l
; f ðmhjÞ ¼ ð

1� mq
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mq
hj
Þ
l
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vq
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1� vq
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Þ
l
; and gðvhjÞ ¼ ð
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1� vq
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Þ
l
.

The proof of this theorem is similar to the proof of Theorem 1; please refer to Appendix C.

In addition, it is easy to prove that the qROFDWPHM operator satisfies the properties of

monotonicity and boundedness. The proofs of these facts are omitted.

3.3 q-Rung orthopair fuzzy Dombi power partitioned Heronian mean

operators

In practice, during the MAGDM process, decision makers may assign some unreasonable eval-

uation values to the attributes. The negative effects of such values on the aggregation results

can be reduced by incorporating the PA operator. Thus, a q-rung orthopair fuzzy Dombi

power partitioned Heronian mean (qROFDPPHM) operator and a q-rung orthopair fuzzy

Dombi weighted power partitioned Heronian mean (qROFDWPHM) operator are presented.

Definition 13. Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a collection of

qROFNs (q = 1, 2, . . .) that is partitioned into d distinct sorts P1,P2,. . .,Pd, where Ph = {Θh1,

Θh2,. . ., Θh|Ph|} (h = 1, 2, . . ., d) and |P1|+|P2|+. . .+|Pd| = n. For any two real numbers a and b
such that a, b� 0 but a and b are not zero simultaneously, the q-rung orthopair fuzzy Dombi

power partitioned Heronian mean (qROFDPPHM) operator is defined as follows:

qROFDPPHMa;bðY1;Y2; . . . ;YnÞ ¼

1

d
�
d

h¼1

2

jPhjðjPhj þ 1Þ
�
jPh j

i¼1
�
jPh j

j¼i

nð1þ TðYhiÞÞ

Xn

k¼1

ð1þ TðYkÞÞ

Yhi

0

B
B
B
@

1

C
C
C
A

a

�
nð1þ TðYhjÞÞ

Xn

k¼1

ð1þ TðYkÞÞ

Yhj

0

B
B
B
@

1

C
C
C
A

b0

B
B
B
@

1

C
C
C
A

0

B
B
B
@

1

C
C
C
A

1

aþ b
ð40Þ

where TðYhiÞ ¼
Xn

j¼1;j6¼i
; SupðYhi;YhjÞ, Sup(Θhi,Θhj) = 1−d(Θhi,Θhj) is the Minkowski-type

distance between Θhi and Θhj Sup(Θi,Θj) satisfies the following properties:

(1) Sup(Θi,Θj)2[0,1];

(2) Sup(Θi,Θj) = Sup(Θj,Θi)

(3) Sup(Θi,Θj)> Sup(Θh,Θl), if d(Θi,Θj)< d(Θh,Θl).
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To simplify Eq (40), let

w0i ¼
1þ TðYiÞXn

i¼1
ð1þ TðYiÞÞ

ð41Þ

Then, wi’ 2 [0, 1] and
Xn

i¼1
w0i ¼ 1. Using this notation, Eq (40) can be expressed as:

qROFDPPHMa;bðY1;Y2; . . . ;YnÞ ¼
1

d
�
d

h¼1

2

jPhjðjPhj þ 1Þ
�
jPh j

i¼1
�
jPh j

j¼i
ðnw0hiYhiÞ

a
� ðnw0hjYhjÞ

b
� �� � 1

aþb

ð42Þ

Theorem 6. Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a collection of

qROFNs (q = 1, 2, . . .) that is partitioned into d distinct sorts P1,P2,. . .,Pd, where Ph = {Θh1,

Θh2,. . ., Θh|Ph|} (h = 1, 2, . . ., d) and |P1|+|P2|+. . .+|Pd| = n, let a and b be two real numbers

such that a, b� 0 but a and b are not zero simultaneously, and let λ be a positive real number.

Then, the aggregated value produced by qROFDPPHM is still a qROFN and

qROFDPPHMa;bðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

a=ðnw0hif ðuhiÞÞ þ b=ðnw0hjf ðuhjÞÞ
ÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q
;

1= 1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

a=ðnw0higðvhiÞÞ þ b=ðnw0hjgðvhjÞÞ
ÞÞ

1

l

0

@

1

A

0

@

1

A

1

q

!
ð43Þ

where

f ðmhiÞ ¼ ð
1 � mq

hi

mq
hi

Þ
l
; f ðmhjÞ ¼ ð

1 � mq
hj

mq
hj

Þ
l
; gðvhiÞ ¼ ð

vq
hi

1 � vq
hi

Þ
l
; gðvhjÞ ¼ ð

vq
hj

1 � vq
hj

Þ
l and w0i ¼

1þ TðYiÞXn

k¼1
ð1þ TðYkÞÞ

:

The proof of this theorem is similar to the proof of Theorem 5. It is omitted.

Theorem 7 (Idempotency). Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a

collection of qROFNs (q = 1, 2, . . .), and let a and b be two real numbers such that a, b� 0 but

a and b are not zero simultaneously. If Θi = Θ = (μ, v) for all i = 1, 2, . . ., n, then

qROFDPPHMa;bðY1;Y2; . . . ;YmÞ ¼ Y ð44Þ

Theorem 8 (Monotonicity). Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n)

and {Θ1’, Θ2’, . . ., Θn’} (where Θi’ = (μi’, vi’) (i = 1, 2, . . ., n) be two collections of qROFNs

(q = 1,2, . . .) ,,..), and let a and b be two real numbers such that a, b� 0 but a and b are not

zero simultaneously. If μi� μi’ and vi� vi’ for all i = 1, 2, . . ., n, then

qROFDPPHMa;bðY1;Y2; . . . ;YnÞ � qROFDPPHMa;bðY
0

1
;Y

0

2
; . . . ;Y

0

nÞ ð45Þ

Theorem 9 (Boundedness). Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a

collection of qROFNs (q = 1, 2, . . .), let a and b be two real numbers such that a, b� 0 but a
and b are not zero simultaneously, and let ΘS = (max(μi), min(vi)) and ΘI = (min(μi), max(vi)).

Then

YI � qROFDPPHMa;bðY1;Y2; . . . ;YnÞ � YS ð46Þ
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The proofs of Theorem 7, Theorem 8 and Theorem 9 are similar to the proofs of Theorem

2, Theorem 3 and Theorem 4, respectively. They are omitted. The following are some special

cases of the proposed qROFDPPHM operator:

(1) Special cases with respect to parameters a and b.

1) When a!0 or b!0 and a + b>0, then Eq (43) reduces to

qROFDPPHMa;0ðY1;Y2; . . . ;YnÞ ¼ qROFDPPHM0;bðY1;Y2; . . . ;YnÞ

¼

 

1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
2

jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

nw0hif ðuhiÞÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q
;

1= 1þ ð
1

d

Xd

h¼1

ð
2

jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

nw0higðvhiÞÞÞ

1

l

0

@

1

A

0

@

1

A

1

q

!

:

ð47Þ

which is a q-rung orthopair fuzzy Dombi partitioned power generalized heavy averaging

operator.

2) When b!0 and all the qROFNs are partitioned into one sort, then Eq (43) reduces to

qROFDPPHMa;0ðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
2

nðnþ 1Þ

Xn

i¼1

Xn

j¼i

nw0hif ðuhiÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q
;

1= 1þ ð
2

nðnþ 1Þ

Xn

i¼1

Xn

j¼i

nw0higðvhiÞÞ

1

l

0

@

1

A

0

@

1

A

1

q

!

:

ð48Þ

3) When b!0 and all the qROFNs are partitioned into n sorts, then Eq (43) reduces to

qROFDPPHMa;0:ðY1;Y2; . . . ;YnÞ ¼

1 � 1= 1þ
1

n

Xn

h¼1

ðnw0hf ðuhÞÞ

 !
1

l

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

q

; 1= 1þ
1

n

Xn

h¼1

ðnw0hgðvhÞÞ

 !
1

l

0

B
B
@

1

C
C
A

0

B
B
@

1

C
C
A

1

q

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:
ð49Þ

4) When a!1 and b!1, then Eq (43) reduces to

qROFDPPHM1;1ðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
4

jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

nw0hif ðuhiÞw0hjf ðuhjÞ

w0hif ðuhiÞ þ w0hjf ðuhjÞ
ÞÞ

1

lÞ

0

@

1

A

0

@

1

A

1

q
;

1= 1þ ð
1

d

Xd

h¼1

ð
4

jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

nw0higðuhiÞw0hjgðuhjÞ

w0higðuhiÞ þ w0hjgðuhjÞ
ÞÞ

1

l

0

@

1

A

0

@

1

A

1

q

!

:

ð50Þ
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(2) Special cases with respect to parameter q.

1) When q = 1, the qROFDPPHM operator reduces to an intuitionistic fuzzy Dombi power

PHM (IFDPPHM) operator:

qROFDPPHMa;bðY1;Y2; . . . ;YnÞ ¼
 

1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

a=ðnw0hif ðuhiÞÞ þ b=ðnw0hjf ðuhjÞÞ
ÞÞ

1

lÞ

0

@

1

A

0

@

1

A;

1= 1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

a=ðnw0higðvhiÞÞ þ b=ðnw0hjgðvhjÞÞ
ÞÞ

1

l

0

@

1

A

0

@

1

A

!
ð51Þ

where

f ðmhiÞ ¼ ð
1 � m

hi

m
hi

Þ
l
; f ðmhjÞ ¼ ð

1 � m
hj

m
hj

Þ
l
; gðvhiÞ ¼ ð

v
hi

1 � v
hi

Þ
l
; gðvhjÞ ¼ ð

v
hj

1 � v
hj

Þ
l and w0i ¼

1þ TðYiÞXn

k¼1
ð1þ TðYkÞÞ

:

2) When q = 2, the qROFDPPHM operator reduces to a Pythagorean fuzzy Dombi power

PHM (PFDPPHM) operator:

qROFDPPHMa;bðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

a=ðnw0hif ðuhiÞÞ þ b=ðnw0hjf ðuhjÞÞ
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1
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;

1= 1þ ð
1

d

Xd

h¼1

ð
2ðaþ bÞ
jphjðjphj þ 1Þ

XjPh j

i¼1

XjPh j

j¼i

1

a=ðnw0higðvhiÞÞ þ b=ðnw0hjgðvhjÞÞ
ÞÞ

1

l
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@

1

A

0

@

1

A

1
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!
ð52Þ

where

f ðmhiÞ ¼ ð
1 � m2

hi

m2

hi

Þ
l
; f ðmhjÞ ¼ ð

1 � m2

hj

m2

hj

Þ
l
; gðvhiÞ ¼ ð

v2

hi

1 � v2

hi

Þ
l
; gðvhjÞ ¼ ð

v2

hj

1 � v2

hj

Þ
l and w0i ¼

1þ TðYiÞXn

k¼1
ð1þ TðYkÞÞ

:

3.4 q-Rung orthopair fuzzy Dombi weighted power partitioned Heronian

mean operators

In this section, weights are introduced to capture the relative importance of attributes, and the

weighted form of the qROFDPPHM operator is proposed.

Definition 14. Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a collection of

qROFNs (q = 1, 2, . . .) that is partitioned into d distinct sorts P1,P2,. . .,Pd, where Ph = {Θh1,

Θh2,. . ., Θh|Ph|} (h = 1, 2, . . ., d) and |P1|+|P2|+. . .+|Pd| = n, and let wi denote the weight of Θi,

where wi 2 [0, 1] and w1 + w2 + . . . + wn = 1. For any two real numbers a and b such that a, b
� 0 but a and b are not zero simultaneously, the q-rung orthopair fuzzy Dombi weighted
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partitioned Heronian mean (qROFDWPHM) operator is defined as follows:

qROFDWPPHMa;bðY1;Y2; . . . ;YnÞ ¼

1

d
�
d

h¼1

2

jPhjðjPhj þ 1Þ
�
jPhj

i¼1
�
jPh j

j¼i

nwhið1þ TðYhiÞÞ
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C
C
C
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1

aþ b
ð53Þ

where TðYhiÞ ¼
Xn

j¼1;j6¼i
; SupðYhi;YhjÞ, Sup(Θhi,Θhj) = 1−d(Θhi,Θhj) and d(Θhi,Θhj) is the

Minkowski-type distance between Θhi and Θhj Sup(Θi,Θj) has the following properties:

(1) Sup(Θi,Θj)2[0,1];

(2) Sup(Θi,Θj) = Sup(Θj,Θi)

(3) Sup(Θi,Θj)> Sup(Θh,Θl), if d(Θi,Θj)< d(Θh,Θl).

To simplify Eq (53), let

w0i ¼
1þ TðYiÞXn

i¼1
ð1þ TðYiÞÞ

ð54Þ

Then, wi’ 2 [0, 1] and
Xn

i¼1
w0i ¼ 1. Using this notation, Eq (53) can be expressed as:

qROFDWPPHMa;bðY1;Y2; . . . ;YnÞ ¼

1

d
�
d

h¼1

2

jPhjðjPhj þ 1Þ
�
jPh j
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�
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aþ b ð55Þ

Theorem 10. Let {Θ1, Θ2, . . ., Θn} (where Θi = (μi, vi) (i = 1, 2, . . ., n) be a collection of

qROFNs (q = 1, 2, . . .) that is partitioned into d distinct sorts P1,P2,. . .,Pd, where Ph = {Θh1,

Θh2,. . ., Θh|Ph|} (h = 1, 2, . . ., d) and |P1|+|P2|+. . .+|Pd| = n. Let wi denote the weight of Θi,

where wi 2 [0, 1] and w1 + w2 + . . . + wn = 1, let a and b be two real numbers such that a, b� 0
but a and b are not zero simultaneously, and let λ be a positive real number. Then, the aggre-

gated value produced by qROFDPPHM is still a qROFN and

qROFDWPPHMa;bðY1;Y2; . . . ;YnÞ ¼

 

1 � 1=ð1þ
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d
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!
ð56Þ
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where

f ðmhiÞ ¼ ð
1 � mq

hi

mq
hi

Þ
l
; f ðmhjÞ ¼ ð

1 � mq
hj

mq
hj

Þ
l
; gðvhiÞ ¼ ð

vq
hi

1 � vq
hi

Þ
l
; gðvhjÞ ¼ ð

vq
hj

1 � vq
hj

Þ
l and w0i ¼

1þ TðYiÞXn

k¼1
ð1þ TðYkÞÞ

:

The proof of the above theorem is similar to the proof of Theorem 5. It is omitted.

4. Novel MAGDM method based on the presented operator

In this section, a novel MAGDM method is proposed based on the presented qROFDWPPHM

operator.

A MAGDM problem based on qROFNs can be described through a set of alternatives A =

{A1, A2, . . ., Am}, a set of attributes C = {C1, C2, . . ., Cn}, a set of weights w = {w1, w2, . . ., wn}

(where wi 2 [0,1] and w1 + w2 + . . . + wn = 1), and a group of decision makers D = {D1, D2, . . .,

Dt} whose weight vector is ω = {ω1, ω2, . . ., ωt} (where ωi 2 [0,1] (i = 1, 2, . . ., t) and ω1 +

ω2+ . . . + ωt = 1). Suppose that these n attributes (C1, C2, . . ., Cn) are divided into d different

classes P1, P2, . . ., Pd, that there is at least one and at most n attributes in each class, and that all

the attributes in each class are related to each other, while the attributes in different classes are

not related. The problem is always coupled with a q-rung orthopair fuzzy decision matrix

Mk = ½Y
k
ij�m;n, where i = 1, 2, . . ., m, j = 1, 2,. . .,n and Y

k
ij ¼ ðm

k
ij; v

k
ijÞ (k = 1, 2,. . .,t) is a qROFN

that stands for the evaluation value of alternative Ai with respect to attribute Cj given by deci-

sion maker Dk.

On the basis of the components above, the problem can be described as follows: Make a

decision with the help of a ranking of the elements of A based on Mk, w and ω. Using the

qROFDWPPHM operator, the problem is solved according to the following steps:

(1) Normalize the decision matrix. In real decision making, the attributes in each MAGDM

problem are divided into two types, i.e., cost attributes and benefit attributes, which have

positive and negative effects, respectively, on the aggregation results. To eliminate this dif-

ference in attribute types, it is necessary to convert the attributes to the same type. The fol-

lowing equation provides the rules for such conversion:

Mk
0 ¼

½mk
ij; v

k
ij�m;n; if Cj is a benefit attribute

½vk
ij; m

k
ij�m;n; if Cj is a cost attribute

ð57Þ

(

(2) Incorporate the evaluation information of the decision makers into the collective information.

Taking the normalized decision matrix Mk’ and the weight set ω as input, the collective infor-

mation of each alternative can be computed by the qROFDWPPHM operator as follows:

Yij ¼ qROFDWPPHMa;bðY
1

ij;Y
2

ij; . . . ;Y
t
ijÞ ð58Þ

(3) Incorporate the evaluation information of each attribute into the comprehensive evaluation

value of each alternative. Taking each of the columns of the collective information decision

matrix and the weight set as input, the collective information of each alternative can be

computed by the proposed qROFDWPPHM operator, which is shown as follows:

Yi ¼ qROFDWPPHMa;bðYi1;Yi2; . . . ;YinÞ ð59Þ

(4) In accordance with Eqs (3) and (4), calculate the score and accuracy of the comprehensive

evaluation value of each alternative.
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(5) Rank all the alternatives and select a proper alternative. In accordance with the comparison

rules in Definition 4, a ranking of the alternatives is generated. With the help of the gener-

ated ranking, an appropriate alternative can be selected by the decision maker.

5. Example, experiments and comparisons

In this section, the process of the proposed MAGDM method is first illustrated via a practical

example. Then, a set of experiments is carried out to explore the influence of different parame-

ter values on the aggregation results. Finally, the validity of the method is verified by compari-

sons with the existing MAGDM methods.

5.1 Example

A MAGDM problem about company location selection [8] is provided to illustrate the pro-

posed approach. In this example, an investment enterprise wants to invest some money into a

company. There are five possible companies, A1, A2, A3, A4, and A5. To make a proper decision,

the investment enterprise invites three experts D1, D2, and D3 to evaluate the alternatives with

respect to four attributes C1, C2, C3, and C4, where C1 denotes the risk analysis, C2 denotes the

growth analysis, C3 denotes the social-political impact analysis, and C4 denotes the environmen-

tal impact analysis. The relative importance of the four attributes and the three decision makers

is measured by the weights in w = {0.2,0.1,0.3,0.4} and ω = {0.35,0.40,0.25}, respectively. The

decision matrices of the attributes of the five companies provided by the decision makers D1,

D2, and D3 are shown in Tables 1–3. To make a reasonable decision, the interrelationships

among attributes should be considered. Therefore, assume that the attributes are divided into

two classes, P1 = {C1, C2} and P2 = {C3, C4}, and that there are interrelationships between the

two attributes in each class, whereas the attributes in P1 are not related to those in P2.

In the following, the proposed method is used to solve the MAGDM problem. The selection

process consists of the following five steps:

(1) Normalize the decision matrix. Since all attributes are benefit attributes, this step is

skipped. The normalized decision matrix Mk’ is equal to Mk, i.e., Mk’ = Mk.

Table 2. The q-rung orthopair fuzzy decision matrix M2 given by D2.

C1 C2 C3 C4

A1 (0.4,0.5) (0.6,0.2) (0.5,0.4) (0.5,0.3)

A2 (0.5,0.4) (0.6,0.2) (0.6,0.3) (0.7,0.3)

A3 (0.4,0.5) (0.3,0.5) (0.4,0.4) (0.2,0.6)

A4 (0.5,0.4) (0.7,0.2) (0.4,0.4) (0.6,0.2)

A5 (0.6,0.3) (0.7,0.2) (0.4,0.2) (0.7,0.2)

https://doi.org/10.1371/journal.pone.0222007.t002

Table 1. The q-rung orthopair fuzzy decision matrix M1 given by D1.

C1 C2 C3 C4

A1 (0.5,0.4) (0.5,0.4) (0.2,0.6) (0.4,0.4)

A2 (0.7,0.3) (0.7,0.3) (0.6,0.2) (0.6,0.2)

A3 (0.5,0.4) (0.6,0.4) (0.6,0.2) (0.5,0.3)

A4 (0.8,0.2) (0.7,0.2) (0.4,0.2) (0.5,0.2)

A5 (0.4,0.3) (0.4,0.2) (0.4,0.5) (0.4,0.6)

https://doi.org/10.1371/journal.pone.0222007.t001
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(2) Incorporate the evaluation information of the decision makers into the collective informa-

tion. Using Eq (57) and taking the normalized decision matrix Mk’ and the weight set ω as

input, the evaluation information of the three decision makers is aggregated into collective

information by the proposed qROFDWPPHM operator (let the values of the parameters be

a = 1, b = 2 and λ = 1.5, and let the decision matrices be divided into three classes P’
1 =

{M1}, P’
2 = {M2} and P’

3 = {M3}). The collective decision matrix is presented in Table 4.

(3) Incorporate the evaluation information of each attribute into the comprehensive evaluation

value of each alternative. Using Eq (58) and taking each of the columns of the collective

information decision matrix and the weight set w as input, the evaluation information of

the attributes is aggregated into a comprehensive evaluation value by the proposed

qROFDWPPHM operator. The comprehensive evaluation value is presented as follows:

Y1 ¼ ð0:1615; 0:7071Þ;Y2 ¼ ð0:3150; 0:5448Þ;Y3 ¼ ð0:1731; 0:6858Þ

Y4 ¼ ð0; 2683; 0:5262Þ;Y5 ¼ ð0:1779; 0:6704Þ;

(4) Calculate the score and accuracy of the comprehensive evaluation value of each alternative.

In accordance with Eqs (3) and (4), the score and accuracy of the comprehensive evaluation

value of each company is computed. The results are shown in Table 5.

(5) Rank all the alternatives and select a proper alternative. On the basis of the calculated

results in Table 5, a ranking of the five companies is obtained in accordance with Defini-

tion 4:

A2 > A4 > A5 > A3 > A1

Based on this ranking, company A2 will probably be selected by the investment enterprise.

5.2 Experiments

In the following, the effects of assigning different values to parameters on the ranking results

in the example are explored.

(1) Experiment 1 was carried out to show the effect of assigning different values to the

parameter q on the ranking results. The results of the experiment are the scores and rankings

Table 3. The q-rung orthopair fuzzy decision matrix M3 given by D3.

C1 C2 C3 C4

A1 (0.4,0.2) (0.5,0.2) (0.5,0.3) (0.5,0.2)

A2 (0.5,0.3) (0.5,0.3) (0.6,0.2) (0.7,0.2)

A3 (0.4,0.4) (0.3,0.4) (0.4,0.3) (0.3,0.3)

A4 (0.5,0.3) (0.5,0.3) (0.3,0.5) (0.5,0.2)

A5 (0.6,0.2) (0.6,0.4) (0.4,0.4) (0.6,0.3)

https://doi.org/10.1371/journal.pone.0222007.t003

Table 4. Collective q-rung orthopair fuzzy decision matrix.

C1 C2 C3 C4

A1 (0.8039,0.2729) (0.7619,0.4302) (0.9168,0.1879) (0.8252,0.3258)

A2 (0.6879,0.3648) (0.6453,0.4277) (0.7007,0.4844) (0.6770,0.4845)

A3 (0.8028,0.2720) (0.8193,0.2735) (0.7701,0.4222) (0.8784,0.2661)

A4 (0.6533,0.4221) (0.6130,0.5258) (0.8414,0.4073) (0.7629,0.5325)

A5 (0.8155,0.4044) (0.8109,0.5179) (0.8400,0.2570) (0.8073,0.1969)

https://doi.org/10.1371/journal.pone.0222007.t004
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of the five alternatives, which are shown in Table 6 (suppose a = 1, b = 2, λ = 1.5 and p = 3).

From the table, it can be found that the ranking will change as the value of the parameter

q changes. When q = 2, the ranking is A2 > A4 > A5 > A3 > A1. When q = 3,4,5,6,7, the rank-

ings are all A2 > A4 > A5 > A1 > A3. When q = 8, the ranking is A2 > A4 > A1 > A5 > A3.

Although the rankings have changed, the first and second alternatives remain the same. The

assignment of a reasonable value for q depends on the values of the attributes because these

attribute values must satisfy the condition that 0� vq + μq� 1. From Table 4, the values for

each criterion do not satisfy v + μ� 1 but do satisfy v2 + μ2� 1; thus, in this example, q should

be assigned a value of at least 2.

(2) Experiment 2 was carried out to show the effect of assigning different values to the

parameter p (p>1) on the ranking results. The results of the experiment are the scores and

rankings of the five alternatives, which are shown in Table 7 (suppose a = 1, b = 2, λ = 1.5 and

q = 2). From the table, it can be found that the rankings and the values of the score function

remain almost the same for different values of the parameter p, which indicates that using dif-

ferent values for p has no obvious influence on the ranking results in this example.

(3) Experiment 3 was carried out to show the effect of assigning different values to parame-

ters a and b on the ranking results. The results of the experiment are the scores and rankings

of the five alternatives, which are shown in Table 8 (suppose λ = 1.5, q = 2, p = 3). It can be

seen from the table that which alternative is best depends on the sum of a and b. When the

sum of a and b is less than 4, the best alternative is always A2, but when the sum of a and b is

greater than 4, the best alternative becomes A4. When the sum of a and b equals 4, the best

alternative depends on the value of b. When b> 1.8, the best alternative changes from A2 to

A4, and the order of the other choices remains the same. As the parameters a and b increase,

the interrelation among attribute values becomes stronger and stronger. Thus, the interaction

strength significantly affects the ranking results. In practice, the risk degree of decision makers

can be expressed by assigning reasonable parameters a and b. The greater the parameter is, the

Table 5. The calculated scores and accuracies.

Indicator A1 A2 A3 A4 A5

Score -0.5456 -0.2298 -0.5127 -0.2579 -0.4925

Accuracy 0.8686 0.8598 0.8989 0.7945 0.8483

https://doi.org/10.1371/journal.pone.0222007.t005

Table 6. The results of experiment 1.

q Scores of the five alternatives Ranking

q = 2 S1 = -0.3465, S2 = -0.0490, S3 = -0.3294,

S4 = -0.0642, S5 = -0.2566

A2>A4>A5>A3>A1

q = 3 S1 = = -0.1631, S2 = 0.0198, S3 = -0.1664,

S4 = 0.0082, S5 = -0.0886

A2>A4>A5>A1>A3

q = 4 S1 = = -0.0654, S2 = 0.0269, S3 = -0.0764,

S4 = 0.0179, S5 = -0.0270

A2>A4>A5>A1>A3

q = 5 S1 = -0.0228, S2 = 0.0200, S3 = -0.0335,

S4 = 0.0134, S5 = -0.0083

A2>A4>A5>A1>A3

q = 6 S1 = -0.0067, S2 = 0.0131, S3 = -0.0139,

S4 = 0.0086, S5 = -0.0029

A2>A4>A5>A1>A3

q = 7 S1 = -0.0027, S2 = 0.0085, S3 = -0.0052,

S4 = 0.0046, S5 = -0.0008

A2>A4>A5>A1>A3

q = 8 S1 = 0.0005, S2 = 0.0048, S3 = -0.0018,

S4 = 0.0025, S5 = 0.0000

A2>A4>A1>A5>A3

https://doi.org/10.1371/journal.pone.0222007.t006
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greater the risk. For example, in this case, if a decision maker prefers the fourth alternative, a

larger value can be assigned to b. Otherwise, smaller values are specified for a and b (to ensure

their sum at most 4).

Table 7. The results of experiment 2.

p Scores of the five alternatives Ranking

p = 1.1 S1 = -0.3458, S2 = -0.0492, S3 = -0.3284,

S4 = -0.0638, S5 = -0.2564

A2>A4>A5>A3>A1

p = 1.5 S1 = -0.3461, S2 = -0.0491, S3 = -0.3287,

S4 = -0.0640, S5 = -0.2564

A2>A4>A5>A3>A1

p = 2 S1 = -0.3462, S2 = -0.0491, S3 = -0.3291,

S4 = 0.0640, S5 = -0.2564

A2>A4>A5>A3>A1

p = 3 S1 = -0.3465, S2 = -0.0490, S3 = -0.3294,

S4 = -0.0642, S5 = -0.2566

A2>A4>A5>A3>A1

p = 5 S1 = -0.3465, S2 = -0.4900, S3 = -0.3295,

S4 = -0.0642, S5 = -0.2565

A2>A4>A5>A3>A1

p = 10 S1 = -0.3466, S2 = -0.4900, S3 = -0.3298,

S4 = -0.0642, S5 = -0.2563

A2>A4>A5>A3>A1

p = 50 S1 = -0.3467, S2 = -0.4900, S3 = -0.3300,

S4 = -0.0644, S5 = -0.2563

A2>A4>A5>A3>A1

p = 100 S1 = -0.3467, S2 = -0.4900, S3 = -0.3301,

S4 = -0.0645, S5 = -0.2564

A2>A4>A5>A3>A1

https://doi.org/10.1371/journal.pone.0222007.t007

Table 8. The results of experiment 3.

a and b Scores of the five alternatives Ranking

a = 0, b = 1 S1 = -0.1407, S2 = 0.1217, S3 = -0.2255,

S4 = 0.0666, S5 = -0.1605

A2>A4>A1>A5>A3

a = 1, b = 0 S1 = -0.2142, S2 = 0.1034, S3 = -0.1507,

S4 = 0.0134, S5 = -0.1535

A2>A4>A3>A5>A1

a = 1, b = 1 S1 = -0.2888, S2 = 0.0172, S3 = -0.2718,

S4 = -0.0286, S5 = -0.2177

A2>A4>A5>A3>A1

a = 3, b = 1 S1 = -0.4097, S2 = -0.1024, S3 = -0.3451,

S4 = -0.1048, S5 = -0.2877

A2>A4>A5>A3>A1

a = 2.2, b = 1.8 S1 = -0.4050, S2 = -0.1028, S3 = -0.3602,

S4 = -0.1029, S5 = -0.2874

A2>A4>A5>A3>A1

a = 2, b = 1.9 S1 = -0.3997, S2 = -0.0979, S3 = -0.3585,

S4 = -0.0993, S5 = -0.2846

A2>A4>A5>A3>A1

a = 2.1, b = 1.9 S1 = -0.4042, S2 = -0.1028, S3 = -0.3616,

S4 = -0.1026, S5 = -0.2876

A4>A2>A5>A3>A1

a = 2, b = 2 S1 = -0.4034, S2 = -0.1028, S3 = -0.3631,

S4 = -0.1022, S5 = -0.2875

A4>A2>A5>A3>A1

a = 1, b = 3 S1 = -0.3923, S2 = -0.1022, S3 = -0.3739,

S4 = -0.0954, S5 = -0.2863

A4>A2>A5>A3>A1

a = 3, b = 3 S1 = -0.4760, S2 = -0.1849, S3 = -0.4296,

S4 = -0.1558, S5 = -0.3367

A4>A2>A5>A3>A1

a = 1, b = 5 S1 = -0.4628, S2 = -0.1858, S3 = -0.4431,

S4 = -0.1490, S5 = -0.3339

A4>A2>A5>A3>A1

a = 5, b = 1 S1 = -0.4820, S2 = -0.1823, S3 = -0.4037,

S4 = -0.1560, S5 = -0.3381

A4>A2>A5>A3>A1

a = 3, b = 5 S1 = -0.5241, S2 = -0.2501, S3 = -0.4874,

S4 = -0.1975, S5 = -0.3747

A4>A2>A5>A3>A1

a = 5, b = 5 S1 = -0.5658, S2 = -0.3020, S3 = -0.5235,

S4 = -0.2331, S5 = -0.4085

A4>A2>A5>A3>A1

https://doi.org/10.1371/journal.pone.0222007.t008
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(4) Experiment 4 was carried out to show the effect of assigning different values to parame-

ter λ on the ranking results. The results of the experiment are the scores and rankings of the

five alternatives, which are shown in Table 9 (suppose a = 1, b = 2, q = 2 and p = 3). As seen

from the table, the top-ranking alternative is A4 when λ< 1, the top-ranking alternative

becomes A2 when λ� 1, and the scores of A1, A2, A3, A4 and A5 gradually increase as λ
increases. This indicates that the parameter λ can be regarded as the “decision maker’s atti-

tude”. The smaller the value of the parameter λ is, the more pessimistic the decision maker,

and vice versa. When the decision maker’s attitude is pessimistic to a certain extent (λ< 1),

the best alternative will change, that is, the original first-place attribute will drop to second

place. We can divide the attitudes of the three decision makers according to the following

rankings and the range of their corresponding parameter λ: pessimistic (0 < λ� 1), neutral

(1< λ�5) and optimistic (λ>5).

5.3 Comparisons

In this subsection, seven existing representative MAGDM methods and the proposed

MAGDM method are qualitatively and quantitatively compared to verify the feasibility and

effectiveness of the proposed method. In addition, to verify the ability of the proposed method

to reduce the negative effect of extreme attribute values, a comparative analysis considering

the interrelationships among attributes is carried out.

5.3.1 Qualitative comparison. In general, a qualitative comparison among different

MAGDM methods can be carried out by comparing their characteristics. For the existing

seven methods and the proposed method, the comparison characteristics selected are: whether

information is expressed by qROFNs, the flexibility in the aggregation of qROFNs or IFNs,

whether interrelationships of multiple attributes are considered, whether the partitioned input

Table 9. The results of experiment 4.

λ Scores of the five alternatives Ranking

λ = 0.5 S1 = -0.8925, S2 = -0.7335, S3 = -0.8641,

S4 = -0.7057, S5 = -0.8707

A4>A2>A3>A5>A1

λ = 0.9 S1 = -0.5907, S2 = -0.2855, S3 = -0.5427,

S4 = -0.2739, S5 = -0.5233

A4>A2>A5>A3>A1

λ = 1 S1 = -0.5334, S2 = -0.2247, S3 = -0.4893,

S4 = -0.2196, S5 = -0.4591

A4>A2>A5>A3>A1

λ = 2 S1 = -0.2467, S2 = -0.2467, S3 = -0.2522,

S4 = 0.0130, S5 = -0.1594

A2>A4>A5>A1>A3

λ = 3 S1 = -0.1399, S2 = 0.1132, S3 = -0.1743,

S4 = 0.0950, S5 = -0.0783

A2>A4>A5>A1>A3

λ = 4 S1 = -0.0802, S2 = 0.1499, S3 = -0.1327,

S4 = 0.1358, S5 = -0.0471

A2>A4>A5>A1>A3

λ = 5 S1 = -0.0410, S2 = 0.1708, S3 = -0.1070,

S4 = 0.1569, S5 = -0.0294

A2>A4>A5>A1>A3

λ = 6 S1 = -0.0130, S2 = 0.1851, S3 = -0.0893,

S4 = 0.1684, S5 = -0.0167

A2>A4>A1>A5>A3

λ = 10 S1 = 0.0489, S2 = 0.2157, S3 = -0.0534,

S4 = 0.1871, S5 = 0.0155

A2>A4>A1>A5>A3

λ = 20 S1 = 0.1033, S2 = 0.2423, S3 = -0.0265,

S4 = 0.1993, S5 = 0.0435

A2>A4>A1>A5>A3

λ = 50 S1 = 0.1370, S2 = 0.2587, S3 = -0.0107,

S4 = 0.2057, S5 = 0.0595

A2>A4>A1>A5>A3

λ = 100 S1 = 0.1486, S2 = 0.2644, S3 = -0.0051,

S4 = 0.2079, S5 = 0.0649

A2>A4>A1>A5>A3

https://doi.org/10.1371/journal.pone.0222007.t009
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arguments are considered, and the ability of the method to reduce the negative influence of

unduly high or unduly low attribute values on the aggregation results. The results of the com-

parison are shown in Table 10.

The information is expressed by q-rung orthopair fuzzy numbers, and the aggregation is

based on the operation of the DTT family of ATT. Therefore, the feasible space of the proposed

method is larger than that of the other methods, and the modeling of fuzzy and uncertain

information is more flexible and accurate. The Heronian mean operator has been used to con-

sider interrelationships among multiple attributes. The partitioned Heronian mean can model

interrelationships among attributes more accurately than the Heronian mean operator due to

the incorporation of the partitioned average operator, which can handle situations where there

is no correlation between attributes. In addition, because the proposed method incorporates

the PA operator, it has the ability to reduce the negative effect of extreme attribute values. To

summarize the qualitative comparison above, the proposed method has desirable flexibility in

both aggregating the q-rung orthopair fuzzy information and dealing with the interrelation-

ships of attributes and has the ability to reduce the negative effect of the deviation in some

attribute values.

5.3.2 Quantitative comparison. In the following, to verify the effectiveness of the pro-

posed method and to explore its advantages, seven representative methods are applied to the

example in subsection 5.1 and compared with the proposed method. They are the IFWAHA,

IFFPA, qROFWA, qROFWBM, qROFWPBM, qROFWGHM and qROFWPHM methods. The

comparison results are shown in Table 11 (suppose λ = 1.5, q = 2, p = 3, a = 1 and b = 2).

(1) Comparison with Liu and Chen’s method [8] based on the intuitionistic fuzzy weighted

Archimedean Heronian aggregation (IFWAHA) operator: The proposed method obtains the

same first three alternatives as Liu and Chen’s method, even though the rankings are slightly

different. This shows the effectiveness and validity of the proposed method. In the following,

the characteristics of the proposed method and of Liu and Chen’s method are compared; the

characteristics being compared are the expressiveness of fuzzy information, whether the inter-

relationships among different attributes are considered, and whether the attitudes of the deci-

sion makers are considered.

1) Expressiveness: The proposed method is based on qROFNs, whereas Liu and Chen’s

method is based on IFNs, which are a special case of qROFNs (q = 1). The expressiveness of

fuzzy information of Liu and Chen’s method is limited to IFNs, whereas the proposed

method can express fuzzy information more widely via assigning different values to q.

Thus, the proposed method is more flexible for MAGDM problems.

Table 10. The results of qualitative comparison.

Methods Information by

qROFNs

Flexibility Whether considers

interrelationships of multiple

attributes

Ability to reduce the

negative effect

Whether considers the partitioned input

arguments

IFWAHA [8] No Satisfactory Yes No No

IFFPA [23] No Limited Yes Yes No

qROFWA [25] Yes Limited No No No

qROFWBM [26] Yes Limited Yes No No

qROFWPBM

[28]

Yes Limited Yes No Yes

qROFWGHM

[37]

Yes Limited Yes No No

qROFWPHM[38] Yes Limited Yes No Yes

qROFDWPPHM Yes Satisfactory Yes Yes Yes

https://doi.org/10.1371/journal.pone.0222007.t010
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2) Interrelationships: The proposed method is based on the PHM operator, whereas Liu and

Chen’s method is based on the HM operator. Both the HM and PHM operators have the

ability to describe the interrelationships among different attributes, but the PHM operator

inherits all features of the HM operator and partitions attributes into different parts. In

addition, the proposed method also uses the PA operator, which can reduce the influence

of unreasonable data. Thus, the proposed method can obtain more reliable aggregation

results via considering the interrelationships of attributes and partitioned attributes.

3) Attitudes: The decision maker’s attitude usually has an important influence on the results of

decision making. In Liu and Chen’s method, attitudes are reflected by a parameter (λ) in

the Hamacher operator. As the value of λ increases, the attitude will shift from pessimistic

to optimistic. Although λ can represent the attitudes of a decision maker, how to set a desir-

able value to λ is not specified. In the proposed method, 0< λ� 1 for pessimistic decision

makers, 1< λ�5 for neutral decision makers, and λ>5 for optimistic decision makers.

Thus, the proposed method can use different values of λ to set different levels for the atti-

tudes of decision makers.

(2) Comparison with Zhang et al.’s method [23] based on the intuitionistic fuzzy frank

power aggregation (IFFPA) operator: The proposed method obtains the same first three alter-

natives as Zhang et al.’s method, even though the rankings of A1 and A3 are opposite. In the

following, the characteristics of the proposed method and Zhang et al.’s method are compared;

the characteristics being compared are the expressiveness of fuzzy information and whether

the interrelationships among different attributes are considered.

1) Expressiveness: As with the method in comparison (1), the expressiveness of fuzzy informa-

tion of Zhang et al.’s method is limited to IFNs, whereas the proposed method can express

fuzzy information more widely via assigning different values to q. Thus, the proposed

method is more flexible for MAGDM problems.

2) Interrelationships: The proposed method is based on the PHM operator, which has the abil-

ity to describe the interrelationships among different attributes, and the PA operator, which

can reduce the influence of unreasonable data and consider the relationships among the

input values of attributes, whereas Zhang et al.’s method is based on the PA operator. Thus,

Table 11. The results of quantitative comparison.

Operator Scores of the five alternatives Ranking

IFWAHA [8] S1 = 0.1800, S2 = 0.4040, S3 = 0.0880,

S4 = 0.3030, S5 = 0.2800

A2>A4>A5>A1>A3

IFFPA [23] S1 = 0.5570, S2 = 0.6860, S3 = 0.5180,

S4 = 0.6390, S5 = 0.6120

A2>A4>A5>A1>A3

qROFWA[25] S1 = 0.0881, S2 = 0.3222, S3 = 0.0390,

S4 = 0.2420 S5 = 0.2028

A2>A4>A5>A1>A3

qROFWBM[26] S1 = -0.5979, S2 = -0.4809, S3 = -0.6220,

S4 = -0.5051, S5 = -0.5480

A2>A4>A5>A1>A3

qROFWPBM[28] S1 = -0.4927, S2 = -0.3397, S3 = -0.4857,

S4 = -0.3194, S5 = -0.4073

A4>A2>A5>A3>A1

qROFWGHM [37] S1 = 0.2212, S2 = 0.4559, S3 = 0.1290,

S4 = 0.3248, S5 = -0.2866

A2>A4>A5>A1>A3

qROFWPHM [38] S1 = -0.7695, S2 = -0.6971, S3 = -0.7700,

S4 = -0.6711, S5 = -0.7176

A4>A2>A5>A1>A3

qROFDWPPHM S1 = -0.3465, S2 = -0.0490, S3 = -0.3294,

S4 = -0.0642, S5 = -0.2566

A2>A4>A5>A3>A1

https://doi.org/10.1371/journal.pone.0222007.t011
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the proposed method can obtain more reliable aggregation results by considering the inter-

relationships of attributes and partitioned attributes.

3) Comparison with Liu and Wang’s method [25] based on the q-rung orthopair fuzzy

weighted averaging (qROFWA) operator: It can be seen from Table 11 that the ranking

results of both methods are the same except for the two alternatives ranked fourth and fifth.

Although the two operators have the same results for this example, the qROFWA operator

can only perform simple weighted averaging operations on qROFNs, and it does not con-

sider the interrelationship among different input attribute values. As in the above example,

attribute C1 is related to attribute C2, and attribute C3 is related to attribute C4. The pro-

posed qROFDWPPHM operator in the paper can reflect the interrelationships among dif-

ferent attributes, especially in the case of the combination of the PA and PHM operators.

Thus, the proposed method is more reliable than Liu and Wang’s method because it consid-

ers the interrelationships of the different input arguments.

4) Comparison with Liu and Liu’s method [26] based on the q-rung orthopair fuzzy weighted

Bonferroni mean (qROFWBM) operator: It can be seen from Table 11 that the ranking

results of both methods are the same except for two alternatives ranked fourth (A1) and

fifth (A3). The qROFWBM operator is extended from the BM operator to aggregate

qROFNs, whereas the proposed operator is based on the HM operator. Yu et al. [39] dem-

onstrated that the HM operator has more advantages than the BM operator. In addition,

the qROFWBM operator assumes that each attribute is related to all the other attributes,

which obviously is not the case in most real situations. In contrast with the proposed

qROFWBM operator, the proposed qROFDWPPHM operator eliminates the effect of the

association of unrelated attributes on aggregation and ordering results. Thus, the proposed

method has more advantages than Liu and Liu’s method because it considers the irrelevant

relationships between input arguments in the real situations.

5) Comparison with Yang and Pang’s method [28] based on the q-rung orthopair fuzzy

weighted partitioned Bonferroni mean (qROFWPBM) operator: As shown in Table 11, the

ranking results of the alternatives obtained by Yang and Pang’s method are different from

those obtained by the proposed method. The qROFWPBM operator is extended from the

PBM operator to aggregate qROFNs, whereas the proposed operator is based on the PHM

operator. Thus, the common feature of these two operators is that they can reflect the rela-

tionships between properties; in particular, the relationships between unrelated properties

can be considered by partition. However, the operational rules of the proposed method are

based on the DTT rather than on the simple operational rules of qROFNs, and the proposed

method is further extended from the PHM operator to the power partitioned Heronian

mean operator by incorporating the PA operator. This is why the ranking results obtained

by the qROFWPBM operator are significantly different from those obtained by the

qROFDWPPHM operator. Thus, the proposed method is more suitable than Yang and

Pang’s method for dealing with the example mentioned in this paper.

6) Comparison with Wei et al.’s method [37] based on q-rung orthopair fuzzy weighted geo-

metric Heronian mean (qROFWGHM) operator: As can be seen from Table 11, the pro-

posed method obtains the same first three alternatives as Wei et al.’s method, even though

the rankings of A1 and A3 are reversed. However, the GHM operator assumes that each

attribute is related to all the other attributes and that there are some decision cases that do

not satisfy this precondition. As in the above investment selection example, the attributes

C1 (the risk analysis) and C2 (the growth analysis) have no relationship with the attributes

C3 (the social-political impact analysis) and C4 (the environmental impact analysis). Thus,

Dombi power partitioned Heronian mean operators of q-rung orthopair fuzzy numbers

PLOS ONE | https://doi.org/10.1371/journal.pone.0222007 October 22, 2019 26 / 37

https://doi.org/10.1371/journal.pone.0222007


the proposed method is more suitable than Wei et al.’s method for dealing with MAGDM

problems.

7) Comparison with Liu et al.’s method [38] based on q-rung orthopair fuzzy weighted parti-

tioned Heronian mean (qROFWPHM) operator: Table 11 shows that the proposed method

obtains different results from Liu et al.’s method for the first two alternatives, while the

other alternatives are the same. There are two reasons for this: operational rules and opera-

tors. First, Liu et al.’s method is based on simple operational rules of qROFNs, whereas the

operational rules of the proposed method are based on the DTT; the parameter λmakes the

information aggregation flexible. Second, the proposed qROFDWPPHM operator is based

on the PHM operator and combined with the PA operator, whereas Liu et al.’s method is

only based on the PHM operator. Thus, the proposed method is more powerful and flexible

than Liu et al.’s method because it considers the interrelationships of the aggregated

arguments.

5.3.3 Further comparative analysis. In the previous subsection, the proposed method

was compared with some current methods, and the advantages of the proposed method were

analyzed. However, the advantages of the proposed method are not obvious since the ranking

results are almost always the same. To show the advantages more intuitively, a further compar-

ison is carried out. By modifying specific inputs to compare with the actual ranking in the

example, it can be shown that the ranking result can be changed by reducing other evaluation

values of alternative A2. For example, the values of μ1 21 and μ1 22 are modified from 0.7 to

0.01, and the values of v1 21 and v1 22 are reduced from 0.3 to 0.99. That is, the evaluation val-

ues of A2 with respect to the attributes C1 and C2 are reduced from (0.7,0.3) to (0.01,0.99). To

clearly display the advantages of the proposed method, Liu et al.’s method [8] and Liu’s

method [22] (both of which were also compared in [8]) are considered in this comparison. Liu

et al.’s method and the proposed method are based on the HM operators, and Liu’s method is

based on the Hamacher operators. The former two methods can consider interrelationships

among attributes, while the latter method cannot. The scores and the ranking results of these

three methods are shown in Tables 12 and 13 (suppose λ = 5, q = 2, p = 3, a = 1 and b = 2).

It can be seen from Table 12 that as the degree of membership decreases and the degree of

nonmembership increases, the score S2 of alternative A2 decreases gradually, but the rate of

decrease is different. Among all three methods, the reduction rate of the proposed method is

the slowest, and the total reduction is only 0.01, while Liu et al.’s method has an amplitude of

0.099 and an amplitude of 0.432. This can be explained by the interrelationships among attri-

butes. The proposed method is based on the PA operator and the PHM operator, which can

take into account the relationships of the input data and classify the data in accordance with

the correlations between the attributes, while Liu’s method only uses the HM operator.

Although the correlation between attributes can also be considered, it is not sufficiently com-

prehensive, and Liu’s method does not consider the correlation. This shows that the proposed

method is more reasonable than the other two methods, especially in an actual situation. For

various reasons, decision makers may provide some unduly high or unduly low evaluation val-

ues, and the proposed operator can well reduce such a negative impact.

As can be seen from Table 13, the ranking results of the proposed method remain the same

as the attribute values change. The ranking given by Liu et al.’s method starts to change when

the attribute value changes to (0.05,0.95), and the ranking of alternatives A2 and A4 are

reversed. Liu’s method starts to change when the attribute value changes to (0.2,0.8). It can be

inferred intuitively from Tables 12 and 13 that when the attribute values in the fuzzy matrix of

decision maker D1 are changed from (0.7,0.3) to (0.01,0.99) and the corresponding attribute
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values of the other two matrices are (0.5,0.4) and (0.5,0.3), this set of fuzzy numbers is unrea-

sonable. It is further demonstrated that the other two methods are greatly affected by unrea-

sonable data, while the proposed method has a strong ability to process unreasonable input

data; that is, the proposed qROFDPPHM operator can consider the interrelationships among

attribute values and reduce the negative influence of biased attribute values.

6. Conclusions

In this paper, a set of q-rung orthopair fuzzy operational rules is developed based on the

Dombi t-conorm and t-norm. Then, a qROFDPHM operator and a qROFDWPHM operator

Table 12. The scores of the three methods.

(Y
1

21
;Y

1

22
) The proposed method Liu et al.’s method [8] Liu’s method [22]

(0.7,0.3) S1 = -0.0410, S2 = 0.1708,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.327,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = 0.354,

S3 = -0.020, S4 = 0.227,

S5 = 0.153

(0.6,0.4) S1 = -0.0410, S2 = 0.1669,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.306,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = 0.333,

S3 = -0.020, S4 = 0.227,

S5 = 0.153

(0.5,0.5) S1 = -0.0410, S2 = 0.1622,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.288,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = 0.309

S3 = -0.020, S4 = 0.227,

S5 = 0.153

(0.4,0.6) S1 = -0.0410, S2 = 0.1610,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.272,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = 0.281,

S3 = -0.020, S4 = 0.227,

S5 = 0.153

(0.3,0.7) S1 = -0.0410, S2 = 0.1609,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.258,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = 0.247,

S3 = -0.020, S4 = 0.227,

S5 = 0.153

(0.2,0.8) S1 = -0.0410, S2 = 0.1609,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.246,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = 0202,

S3 = -0.020, S4 = 0.227,

S5 = 0.153

(0.1,0.9) S1 = -0.0410, S2 = 0.1608,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.236,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = 0.130,

S3 = -0.020, S4 = 0.227,

S5 = 0.153

(0.05,0.95) S1 = -0.0410, S2 = 0.1608,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.232,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = 0.063,

S3 = -0.020, S4 = 0.227,

S5 = 0.153

(0.01,0.99) S1 = -0.0410, S2 = 0.1608,

S3 = -0.1070, S4 = 0.1569,

S5 = -0.0294

S1 = -0.091, S2 = 0.228,

S3 = 0.023, S4 = 0.234,

S5 = 0.184

S1 = 0.065, S2 = -0.078,

S3 = -0.020, S4 = 0.227,

S5 = 0.153

https://doi.org/10.1371/journal.pone.0222007.t012

Table 13. The ranking results of the three methods.

(Y
1

21
;Y

1

22
) The proposed method Liu et al.’s method [8] Liu’s method [22]

(0.7,0.3) A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3

(0.6,0.4) A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3

(0.5,0.5) A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3

(0.4,0.6) A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3

(0.3,0.7) A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 A2>A4>A5>A1>A3

(0.2,0.8) A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 A4>A2>A5>A1>A3

(0.1,0.9) A2>A4>A5>A1>A3 A2>A4>A5>A1>A3 A4>A5>A2>A1>A3

(0.05,0.95) A2>A4>A5>A1>A3 A4>A2>A5>A1>A3 A4>A5>A2>A1>A3

(0.01,0.99) A2>A4>A5>A1>A3 A4>A2>A5>A1>A3 A4>A5>A1>A3>A2

https://doi.org/10.1371/journal.pone.0222007.t013
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are presented. To reduce the negative impact of unreasonable attribute values on aggregated

results, a qROFDPPHM operator and a qROFDWPPHM operator are presented via combining

the PHM operator with the PA operator based on qROFSs. Moreover, a MAGDM method

based on the proposed operators is also proposed. A practical example and a set of experiments

are provided to illustrate the proposed approach. A set of comparisons is performed to demon-

strate the effectiveness and feasibility of the proposed approach. The results of the experiments

and comparisons show that the proposed method is feasible, effective, and flexible. Compared

with the existing methods, the proposed method has the following advantages:

(1) It can consider the interrelationships of aggregated arguments;

(2) It has desirable flexibility in aggregating the q-rung orthopair fuzzy information;

(3) It can reduce the negative impact of unreasonable attribute values on aggregated results.

In future studies, other new types of ATT will be studied and extended to the power parti-

tioned Heronian aggregation operator based on qROFNs. In addition, the proposed operators

and method will be applied to some practical decision-making problems, such as recommen-

dation systems, performance evaluations, supplier selection evaluations and pattern recogni-

tion systems.

Appendix A. Proofs of Eqs (15)–(20)

Proof

Let Θ = (μ, v), Θ1 = (μ1, v1) and Θ2 = (μ2, v2). From (11), we have:

Y1 �Y2 ¼ ðg
� 1ðgðm1Þ þ gðm2Þ; f

� 1ðf ðv1Þ þ f ðv2ÞÞ

Y2 �Y1 ¼ ðg
� 1ðgðm2Þ þ gðm1Þ; f

� 1ðf ðv2Þ þ f ðv1ÞÞ:

Then, Θ1�Θ2 = Θ2�Θ1.

Thus, the proof of Eq (15) is completed.

According to (12), we have:

Y1 �Y2 ¼ ðf
� 1ðf ðm1Þ þ f ðm2ÞÞ; g

� 1ðgðv1Þ þ gðv2ÞÞÞ

Y2 �Y1 ¼ ðf
� 1ðf ðm2Þ þ f ðm1ÞÞ; g

� 1ðgðv2Þ þ gðv1ÞÞÞ

Then, Θ1�Θ2 = Θ2�Θ1.

Thus, the proof of Eq (16) is completed.

According to (11) and (13), we have:

dðY1 �Y2Þ ¼ dðg � 1ðgðm1Þ þ gðm2ÞÞ; f � 1ðf ðv1Þ þ f ðv2ÞÞÞ

¼ ðg � 1ðdðgðm1Þ þ gðm2ÞÞÞ; f � 1ðdðf ðv1Þ þ f ðv2ÞÞÞÞ
;

dY1 ¼ ðg
� 1ðdgðm1ÞÞ; f

� 1ðdf ðv1ÞÞÞ;

dY2 ¼ ðg
� 1ðdgðm2ÞÞ; f

� 1ðdf ðv2ÞÞÞ;

dY1 � dY2 ¼ ðg
� 1ðdðgðm1Þ þ gðm2ÞÞÞ; f

� 1ðdðf ðv1Þ þ f ðv2ÞÞÞÞ;

dY ¼ ðg � 1ðdgðmÞÞ; f � 1ðdf ðvÞÞÞ;

Dombi power partitioned Heronian mean operators of q-rung orthopair fuzzy numbers

PLOS ONE | https://doi.org/10.1371/journal.pone.0222007 October 22, 2019 29 / 37

https://doi.org/10.1371/journal.pone.0222007


tY ¼ ðg � 1ðtgðmÞÞ; f � 1ðtf ðvÞÞÞ;

dY� tY ¼ ðg � 1ðdgðmÞ þ tgðmÞÞ; f � 1ðdf ðvÞ þ tf ðvÞÞÞ;

and

ðdþ tÞY ¼ ðg � 1ððdþ tÞgðmÞÞ; f � 1ððdþ tÞf ðvÞÞÞ

¼ ðg � 1ðdgðmÞ þ tgðmÞÞ; f � 1ðdf ðvÞ þ tf ðvÞÞÞ
:

Thus, δ(Θ1�Θ2) = δ(Θ1� δ(Θ2 and δΘ�τΘ = (δ+τ)Θ.

Thus, the proofs of Eqs (17) and (18) are completed.

According to (12) and (14), we have:

Y1
d ¼ ðf � 1ðdf ðm1ÞÞ; g

� 1ðdgðv1ÞÞÞ;

Y2
d ¼ ðf � 1ðdf ðm2ÞÞ; g

� 1ðdgðv2ÞÞÞ;

Y1
d �Y2

d ¼ ðf � 1ðdf ðm1Þ þ df ðm2ÞÞ; g
� 1ðdgðv1Þ þ dgðv2ÞÞÞ;

and

ðY1 �Y2Þ
d
¼ ðf � 1ðdðf ðm1Þ þ f ðm2ÞÞÞ; g � 1ðdðgðv1Þ þ gðv2ÞÞÞÞ

¼ ðf � 1ðdf ðm1Þ þ df ðm2ÞÞ; g � 1ðdgðv1Þ þ dgðv2ÞÞÞ
:

Then, Y
d

1
�Y

d

2
¼ ðY1 �Y2Þ

d
.

Therefore,

Y
d
¼ ðf � 1ðdf ðmÞÞ; g � 1ðdgðvÞÞÞ;

Y
t
¼ ðf � 1ðtf ðmÞÞ; g � 1ðtgðvÞÞÞ

Thereafter,

Y
tþd
¼ ðf � 1ððtþ dÞf ðmÞÞ; g � 1ððtþ dÞgðvÞÞÞ;

and

Y
d
�Y

t
¼ ðf � 1ðdf ðmÞ þ tf ðmÞÞ; g � 1ðdgðvÞ þ tgðmÞÞÞ

¼ ðf � 1ððdþ tÞf ðmÞÞ; g � 1ððdþ tÞgðvÞÞÞ

Then, Θδ�Θτ = Θτ+δ.

Thus, the proofs of Eqs (19) and (20) are completed.

Appendix B. Proof of Theorem 1

Proof.

According to Definition 6, we have:

Y
a
hi ¼

1

1þ ðað1� m
q
hi

m
q
hi
Þ
l
Þ

1
l

0

B
@

1

C
A

1
q

; 1 �
1

1þ ðað vq
hi

1� vq
hi
Þ
l
Þ

1
l

0

B
@

1

C
A

1
q

0

B
B
@

1

C
C
A ¼

1

1þ a1
lð

1� m
q
hi

m
q
hi
Þ

0

B
@

1

C
A

1
q

; 1 �
1

1þ a1
lð

vq
hi

1� vq
hi
Þ

0

B
@

1

C
A

1
q

0

B
B
@

1

C
C
A
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Y
b
hj ¼

1

1þ ðbð
1� m

q
hj

m
q
hj
Þ
l
Þ

1
l

0

B
@

1

C
A

1
q

; 1 �
1

1þ ðbð
vq

hj

1� vq
hj
Þ
l
Þ

1
l

0

B
@

1

C
A

1
q

0

B
B
@

1

C
C
A ¼

1

1þ b1
lð

1� m
q
hj

m
q
hj
Þ
l

0

B
@

1

C
A

1
q

; 1 �
1

1þ b1
lð

vq
hj

1� vq
hj
Þ

0

B
@

1

C
A

1
q

0

B
B
@

1

C
C
A

Let
1� m

q
hi

m
q
hi
¼ f ðmhiÞ

1
l,

1� mq
hj

mq
hj
¼ f ðmhjÞ

1
l,

vq
hi

1� vq
hi
¼ gðvhiÞ

1
l, and

vq
hj

1� vq
hj
¼ gðvhjÞ

1
l; then

Y
a
hi ¼

1

1þ ðaf ðmhiÞÞ
1
l

 !1
q

; 1 �
1

1þ ðagðvhiÞÞ
1
l

 !1
q

0
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Thus, the proof of Theorem 1 is completed.
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Thus, the proof of Theorem 5 is completed.
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