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Abstract: The course of periodontal disease is affected by many factors; however, the most significant
are the dysbiotic microflora, showing different pathogenicity levels. Rapid colonization in the
subgingival environment can radically change the clinical state of the periodontium. This systematic
review aims to present an innovative technique of loop-mediated isothermal amplification for
rapid panel identification of bacteria in periodontal diseases. The decisive advantage of the loop-
mediated isothermal amplification (LAMP) technique in relation to molecular methods based on
the identification of nucleic acids (such as polymerase chain reaction (PCR or qPCR) is the ability
to determine more pathogens simultaneously, as well as with higher sensitivity. In comparison
with classical microbiological seeding techniques, the use of the LAMP method shortens a few days
waiting time to a few minutes, reducing the time necessary to identify the species and determine the
number of microorganisms. The LAMP technology requires only a small hardware base; hence it is
possible to use it in outpatient settings. The developed technique provides the possibility of almost
immediate assessment of periodontal status and, above all, risk assessment of complications during
the treatment (uncontrolled spread of inflammation), which can certainly be of key importance in
clinical work.

Keywords: loop-mediated isothermal amplification; periodontal disease; periodontal pathogen;
periodontal bacteria; periodontal diagnostics

1. Introduction

Periodontitis is a chronic inflammatory state leading to tooth-supporting apparatus
break-down, which as a consequence could lead to partial or total tooth loss. Dysbiotic
microbes along with environmental, genetic and host factors are the main components
influencing the initiation and progression of this disease [1]. Several systemic conditions
such as diabetes mellitus, stress, obesity and acquired immunodeficiency syndrome cause
an exacerbated inflammatory state promoting the development of periodontal inflamma-
tion. An excessive level of glucose, as well as the accumulation of advanced glycation
end-products (AGEs), cause a pro-inflammatory cascade [2]. Smoking leads to significant
microvascular constriction, masking the clinical signs of bleeding on probing [3]. Fur-
thermore, pharmacological agents can lead to gingival enlargement resulting in pseudo
pocketing. Vitamin C deficiency predisposes to an increased propensity for bleeding [4].
Although occlusal trauma was once considered a predisposing factor, it has only been
observed in an animal model, and there is a lack of evidence for such a phenomenon in
humans [5].

The clinical diagnosis of periodontal disease is substantially dependent on parameters
such as clinical attachment loss, pocket probing depth, bleeding on probing, plaque index,
mobility, furcation involvement, and radiographic evaluation of bone architecture. These
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indicators, however, do not display the current state of the disease and do not yield
information about the activity or risk for disease advancement [6,7].

Clinical diagnosis has its limitations and does not enable clinicians to determine the
cause, pathogenesis or prognosis in case of an advanced stage of the periodontal disease.
Therefore, it is thought that the utilization of available technology such as molecular
analysis could aid in the determination of the qualitative and quantitative composition of
periodontal pathogens. An exact determination of the composition of periodontopathic
microflora could be instrumental in the process of development of a detailed, accurate
therapeutic regimen [8].

In a healthy periodontal state, the count of intraoral bacteria averages around 1 × 109,
whereas in case of periodontal support break-down, these amounts exceed counts of
1 × 1087 [9]. Evaluation of subgingival biofilm composition by microbiological and molec-
ular methods has revealed an association with a large number of microbes, some of which
are capable of periodontal tissue destruction [10,11]. In 1998, Socransky and Hafajee
studied the behavior of bacteria and grouped them into several subclasses based on their
pathogenicity and colonization abilities within the subgingival environment [12]. They
postulated, that the initial colonizers, although usually non-pathogenic, belonging to
yellow, blue, green and purple complexes, act as the initiators of biofilm formation [13].
However, it has also been discovered that these species provide adhesive properties to
microbes from an orange complex. In turn, this could lead to ideal conditions for species
such as Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, part of the red
complex, known as a main culprit in chronic periodontal disease, causing increased pocket
probing and spontaneous bleeding [14]. Although “red complex” bacteria predominate
within periodontal pockets, another pathogen, A. actinomycetemcomitans, a Gram-negative
bacterium, especially serotypes A, B and C, plays a significant role in the rapid progression
of periodontal disease [15]. Amongst many other bacteria implicated in the progression
and development of periodontitis are Prevotella intermedia, Campylobacter rectus, Peptostrep-
tococcus micros, and Spirochetes species [16,17]. It was indicated also that various viral agents,
such as herpes viruses, are found to be actively involved in the process of aggressive
periodontitis [18]. Additionally, a plethora of various fungal agents including Candida
albicans have been isolated in individuals with primary and acquired immunodeficiencies,
playing a role in the destructive process of periodontal support in collaboration with other
periodontopathogens [19,20].

Culturing methods were once coined as a golden standard. As with any procedures,
traditional microbiological methods have their advantages, but also several limitations.
Most of the pathogens present in deep periodontal pockets are anaerobic and require
specific growth conditions, implying issues with cultivation, sampling and transportation,
potentially resulting in erroneous diagnostic outcome. Difficulties also include bacterial
vitality maintenance, extensive waiting periods before diagnosis, inability to discriminate
between closely related taxa, and low detection values of 103–104 bacterial cells. Cultivation
methods are capable of identifying oral pathogens, although they fail to do so for a known
putative periodontopathogen such as T. forsythia [21,22].

A growing need for precision, rapid detection, and quantification of periodontal
pathogens required other methods to be designed. Techniques such as flow cytometry,
DNA–DNA hybridization, immunochemical assays, or enzymatic methods have been
utilized. Unfortunately, their questionable specificity and sensitivity deemed these tests
unreliable [23,24].

As molecular techniques emerged, polymerase chain reaction (PCR) was developed
as a diagnostic tool for a more accurate, sensitive and rapid assay for multiple periodontal
pathogens such as A. actinomycetemcomitans, P. gingivalis, P. intermedia, T. forsythensis and T.
denticola [25,26].

Although PCR is a sensitive method for the detection of microbes, is it prone to errors
due to the presence of DNA polymerase inhibitors, present in clinical samples. Hemoglobin,
heparin and EDTA (ethylenediaminetetraacetic acid) present during sample acquisition,



J. Clin. Med. 2021, 10, 1189 3 of 14

and alcohols, detergents and salts present throughout the DNA isolation process, can
lower the efficiency of the reaction and even inhibit it. Also, excessive de-thawing can
significantly alter its diagnostic potential. Another limitation is the need for expensive
specialized equipment, which besides its high cost, is disqualified from usage outside of
well-controlled laboratory conditions [27,28].

For many years the CR technique has undergone many modifications, enabling expan-
sion of its capabilities. Some of these adjustments include RT-PCR (reverse transcription-
PCR)—a technique combining reverse transcription of RNA fragment; and PCR-RFLP
(PCR-Restriction Fragment Length Polymorphism)—PCR reaction combined with restric-
tion analysis of the amplification products.

The advent of this powerful assay has led to a more accurate tool for identification of
total pathogen count through the development of species-specific primers, which do not
amplify non-target sequences. The qPCR with species-specific primers provides accurate
quantification of individual microbial species and total bacterial count in dental plaque
samples. This method has been deemed a gold standard for the identification of etiological
factors involved in the progression of periodontal diseases [29–31].

As technology became more advanced, a new method of combining reverse transcrip-
tion with qPCR, qRT-PCR, has been designed. Besides its capability in detecting anaerobic
oral bacteria, it enabled detection of DNA of viable and non-viable cells, providing more
information pertaining to the activities and current states of microbiota, and by doing so
providing very accurate feedback as to the current status of the disease [32].

The loop-mediated isothermal amplification (LAMP) technique has been developed
by Notomi et al. [33]. This novel molecular tool has been utilized for bacterial identification
due to its superior specificity, efficiency, and ease of management. Lately, various com-
mercial LAMP kits have been introduced to the market, including tests for detection of
Salmonella, Escherichia coli, and Listeria monocytogenes [34]. Identification through LAMP
was also performed for DNA viruses such as HSV, Adenovirus, HBV, HSV-1, HSV-2, and
VZV-1. RNA viruses were detected through the incorporation of a reverse transcriptase
enzyme to detect the envelope capsid protein of a West Nile virus [35–37]. Additionally,
this technique has been employed for parasite detection, e.g., Toxoplasma [38]. Interestingly,
it has also been developed for bovine sex type identification using ethidium bromide and
CuSO4, and detection of genetically modified food by combining LAMP with immunochro-
matography [39].

Modern periodontology is accelerating at a spectacular speed in the scientific and tech-
nological areas concerning diagnosis (e.g., in-office molecular tests [40,41]) and treatment
(e.g., use of stem cells with nanomaterials for bone regeneration [42,43]).

The present systematic review has been designed to answer the question “Is the loop-
mediated isothermal amplification technique useful for diagnosis of periodontal diseases?”,
formulated according to PICO (“Population”, “Intervention”, “Comparison”, “Outcome”).

2. Results

In this systematic review, nine studies following the search criteria were included.
Figure 1 shows the detailed selection strategy of the articles. The inclusion and exclusion
criteria are presented in section Materials and Methods.
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Figure 1. PRISMA flow diagram presenting the detailed search strategy.

From each study included in the present review, data on its general characteristics
such as year of publication and setting, participants involved, methods of sample collection
and storing, and detected periodontal bacteria, are reported in Table 1. Table 2 presents
LAMP parameters such as the composition of the reaction mixture, reaction conditions and
methods for the detection of products. Additionally, the evaluation of LAMP sensitivity
and specificity for particular pathogens is discussed in Section 3.2.

The presented results confirm the usefulness of the LAMP technique for the diagnosis
of selected perio-pathogens.
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Table 1. General characteristics of included studies.

Author, Year, Setting Study Group Subgingival Plaque Samples Detected Bacteria

Maeda et al., 2005, Japan [44] periodontitis patients by inserting paper points (#45) into
periodontal pockets; stored at −20 ◦C Porphyromonas gingivalis

Yoshida et al., 2005, Japan [45] 10 periodontitis patients by inserting a sterile endodontic paper point
into the subgingival site for 10 s; NR

Porphyromonas gingivalis, Tannerella forsythia,
Treponema denticola

Osawa et al., 2007, Japan [46] 8 periodontitis patients by inserting a sterile endodontic paper point
into the subgingival site for 10 s; NR Aggregatibacter actinomycetemcomitans

Miyagawa et al., 2008, Japan [47] periodontitis patients by inserting paper points (#45) into
periodontal pockets; stored at −30 ◦C

Aggregatibacter actinomycetemcomitans,
Campylobacter rectus, Eikenella corrodens,
Fusobacterium nucleatum, Porphyromonas
gingivalis, Prevotella intermedia, Treponema
denticola, Tannerella forsythia

Seki et al., 2008, Morocco [48] adolescent periodontitis patients on paper points; stored at −20 ◦C Aggregatibacter actinomycetemcomitans

Elamin et al., 2011, Sudan [49]
17 subjects with localized aggressive periodontitis and
17 subjects with no clinical periodontal attachment loss

(controls); any antibiotics for the past 3 months

collected from the deepest periodontal pocket,
one sample from each quadrant; by inserting
two paper points (#35) into periodontal
pockets; stored at −80 ◦C

Aggregatibacter actinomycetemcomitans

Elamin et al., 2017, Sudan [50] the same as above the same as above
Aggregatibacter actinomycetemcomitans,
Porphyromonas gingivalis, Tannerella forsythia,
Treponema denticola

Hamzan et al., 2018, Malaysia [51]

clinical signs of periodontitis, presented with
periodontal pocket depth equal or exceeding 4 mm

with radiographic evidence of alveolar loss; any
antibiotics for the past 3 months prior to the sample

collection

collected by vertical stroke of curette and
transferred on ice

Porphyromonas gingivalis, Aggregatibacter
actinomycetemcomitans

Su et al., 2019, China [52]
40 patients with periodontitis (20 males and 20

females), ranging from 35 to 55 years of age, selected
from those referred for scaling and root planning

collected from the roots of teeth, beyond the
gingival margin, using a special brush and
delivered to the laboratory on ice; stored at
−20 ◦C

Porphyromonas gingivalis

Legend: NR, not reported.
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Table 2. The parameters of the conducted loop-mediated isothermal amplification (LAMP) analyses.

Study Reaction Mixture (25-µL Volume) Reaction Conditions Detection of Products

Maeda et al., 2004 [44]
40 pmol each FIP and BIP, 5 pmol each F3 and B3c, 1 µL Bst DNA
polymerase, 2 µL extracted DNA, and 12.5 µL reaction mix; for the
acceleration 20 pmol each LFc and LB

incubated at 60, 62, 64 or 66 ◦C for 30 or 60 min;
terminated by heating at 80 ◦C for 2 min

naked-eye inspection 1.0 µL of 10−1 or 10−3-diluted
SYBR Green I; white turbidity by magnesium
pyrophosphate; 2% agarose gel electrophoresis with
ethidium bromide staining

Yoshida et al., 2005 [45]

1.6 µM each FIP and BIP, 0.2 µM each F3 and B3, 0.8 µM each LF
and LB, 8 U Bst DNA polymerase, 1.4 mM each dNTPs, 0.8 M
betaine, 20 mM Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH4)2SO4,
8 mM MgSO4, 0.2% Tween 20, and 5 µL target DNA

incubated at 65 ◦C; terminated by heating at >80 ◦C
for 2 min

naked-eye inspection 1.0 µL of 10−1-diluted SYBR
Green I; white turbidity by magnesium
pyrophosphate; 2% agarose gel electrophoresis

Osawa et al., 2007 [46] the same as above incubated at 67 ◦C; terminated by heating at >80 ◦C
for 2 min the same as above

Miyagawa et al., 2008 [47]
40 pmol each FIP and BIP, 5 pmol each F3 and B3, 1 µL Bst DNA
polymerase (8 U), 2 µL template DNA, and 12.5 µL reaction
mixture; for acceleration 20 pmol LB or each LF and LB

incubated at 62, 64 or 66 ◦C for 60 min; terminated
by heating at 80 ◦C for 2 min

naked-eye inspection 10−1-diluted SYBR Green I;
2% agarose gel electrophoresis with ethidium
bromide staining

Seki et al., 2008 [48]

1.6 µM each FIP and BIP, 0.2 µM F3 and B3, 0.4 µM LF and LB, 8 U
Bst DNA polymerase, 1.4 mM each four dNTPs, 0.8 M betaine, 20
mM Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH4)2SO4, 8 mM
MgSO4, 0.1% Tween 20, and template DNA up to 5 µL

incubated at 63 ◦C for 60 min; terminated by
heating at 80 ◦C for 2 min

white turbidity by magnesium pyrophosphate; 3%
agarose gel electrophoresis with ethidium bromide
staining

Elamin et al., 2011 [49] the same as above the same as above the same as above

Elamin et al., 2017 [50] the same as above, except template DNA up to 5.5 µL incubated at 63, 64 and 65 ◦C for 60 min; terminated
by heating at 80 ◦C for 2 min

white turbidity by magnesium pyrophosphate; 2%
agarose gel electrophoresis with ethidium bromide
staining

Hamzan et al., 2018 [51]

1.6 µM each FIP and BIP, 0.2 µM each F3 and B3, 0.4 µM each LF
and LB, 320 U/mL Bst DNA polymerase, 1.4 mM each dNTPs, 20
mM Tris-HCl (pH 8.8), 150 mM KCl, 10 mM (NH4)2SO4, 8 mM
MgSO4, 0.1% Tween 20, and 2 µL crude template

incubated at 65 ◦C for 30 min; terminated by
heating at 95 ◦C for 2 min

naked-eye inspection 1.0 µL of 10−1-diluted SYBR
Green I; white turbidity by magnesium
pyrophosphate; 2% agarose gel electrophoresis with
SYBR Safe staining

Su et al., 2019 [52]

40 pmol FIP and BIP, 5 pmol F3 and B3, 20 pmol LF, 8 pmol LB, 8 U
Bst DNA polymerase, 1.4 mM dNTPs, 0.8 M betaine, 20 mM
Tris-HCl (pH 8.8), 10 mM KCl, 10 mM (NH4)2SO4, 8 mM MgSO4,
0.1% Tween 20, and 2 µL template DNA

incubated at 65 ◦C; NR turbidimeter (MB-LAMP)

Legend: NR, not reported; FIP, forward inner primer; BIP, backward inner primer; LF, loop F; LB, loop B; DNA, deoxyribonucleic acid; dNTPs, deoxy-nucleoside triphosphates.
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3. Discussion
3.1. Loop-Mediated Isothermal Amplification Method—Principles and Limitations

There is clearly an expanding demand for new methods not requiring advanced
equipment. LAMP is considered a potent tool due to its advantageous properties such as
the elimination of the DNA denaturation step, DNA polymerase exhibiting displacement
ability, high specificity due to four primers and enhancement of efficiency due to isothermal
conditions by eliminating time loss [33,53]. Other advantages include minimal investment
in a conventional heating block or a water bath necessary to acquire isothermal conditions
under which the LAMP reaction takes place. Its ability to rapidly detect bacteria without
significant influence of ever-present non-specific DNA sequences also makes it an ideal
solution [54,55]. LAMP, as well as other isothermal (60–70 ◦C) techniques, eliminates
the need for the DNA denaturation step through the use of GspSSD polymerase, due to
its capacity for strand displacement. It consists of a set of at least four specific primers,
including two outer primers F3 and B3, and two inner primers FIP and BIP along with
loop primers. A stem-loop DNA is constructed from sequences of DNA derived from the
internal primer structure. A 3′-prime terminus of the stem-loop is the initiation site for
the DNA synthesis. Subsequently, one inner primer binds the loop to the LAMP product
ensuring a strand displacement activity and in effect producing the original stem-loop
DNA along with a new stem-loop DNA twice the length of the original loop. The final
products are stem-loops of the original target DNA sequence generated in about an hour.
It also allows for very efficient and specific amplification of a given DNA fragment due
to the utilization of at least two complementary DNA primers, but if it necessary, up to
six primers could be used, providing extremely high specificity, due to hybridization to
100–250 basis pair (bp), allowing for quick pathogen identification: 109 copies created in
less than 30 min. Real-time monitoring and establishment of a number of DNA copies
in a closed tube system minimizes the risk of contamination. Furthermore, if necessary,
the final result of the reaction can be observed with the naked eye with an addition of a
fluorescent dye [53–55].

The majority of the above-mentioned methods can be performed in ideal laboratory
conditions with the use of sophisticated equipment under an extended working time.
However, the LAMP technique has utilized many methods for detection of its end-products.
One of the methods detects the turbidity achieved through the usage of magnesium
pyrophosphate, Mg2P2O7, as an end-product, at an optical density of 650. This method
has been used in the real-time monitoring process for the presence of microorganisms [56].
The drawbacks of this technique are the long incubation time (≥60 min), and the reception
product can be hard to visualize even under ideal conditions [57].

Other methods for direct detection of end-products utilize intercalating, calcein, SYBR
green I and HNB. Its addition prior to isothermal incubation creates an insoluble complex,
making a fluorescent manganese–pyrophosphate reaction. A positive reaction leads to the
formation of an orange color, whereas a negative end-result remains dark [58]. The use of
SYBR green I dye is another alternative. Although this intercalating agent has reported
good sensitivity, its drawbacks include LAMP inhibition by aerosol contamination. An
issue caused by aerosol contamination has been solved by the use of HNB (Hydroxy-
naphthol blue), yielding a blue final LAMP reaction. Unfortunately, this substance does
not exhibit a fluorescent activity; therefore, only color observation with the naked eye is
feasible [59].

Other drawbacks for calcein and hydroxy-naphthol blue include difficulty in color
change perception. Furthermore, calcein requires incorporation of the ionic form of man-
ganese, which can have an inhibitory effect on the polymerase reactions [60]. A further
negative aspect of these particular dyes is the prolonged reaction time and relatively
low sensitivity values of >100–1000 copies of DNA target [61,62]. Recently, however, an-
other method which incorporates pH-sensitive dyes has been successful at eliminating the
above-mentioned drawbacks.
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Throughout the process of deoxy-nucleoside triphosphate incorporation into the new
DNA strand, a DNA polymerase releases two by-products: a pyrophosphate moiety and
a hydrogen ion. The proton release during this process has been utilized as the basis of
various detection methods. An ability of the DNA polymerase to carry out its function
within a range of a 2–3 pH unit drop allowed for the rapid detection of LAMP amplification
without loss of effectiveness. This pH transition of an indicator dye is adequate for
visualization of the final amplification product [63–65].

Recently, a new two-color RT LAMP assay was developed for detecting SARS-CoV-2
viral RNA, utilizing a set of specific primers for the N gene. When comparing this assay
to the RT-qPCR, the detection rate of SARS-CoV-2 RNA was within the threshold (CT) of
up to 30, with a sensitivity and specificity of 97.5% and 99.7%, respectively. A swab assay
which did not require an RNA isolation step has also been developed. An assay sustained
a high specificity value of (99.5%) but exhibited a slightly diminished sensitivity value of
86% compared to the original RT-LAMP assay [66].

Unfortunately, like any other techniques, the LAMP has several limitations. Since
the final DNA product is composed of many large size concatemers and loop structures,
this impedes its usage in the process of cloning [67]. A challenge, behind LAMPs high
sensitivity and specificity, is that this is attained via the use of multiple (4–6) primers. A
difficulty lies in the ability to obtain a correct target sequence for amplification for the
relatively highly conserved region, specifically for a given microbe at 6–8 regions. The
utilization of such a high number of primers also increases the risk of a false positive
outcome due to primer–primer affinity, requiring further validation [33]. Since the stability
of the LAMP product is very high and very difficult to degrade, it may increase the chances
of contamination and, in effect, false-positive outcomes. Therefore, prevention of such a
scenario is achieved through the use of filtered tips, specifically designed pipettes and a
hood with a laminar flow of air. Moreover, the subjective nature of the turbidimetric and
colorimetric LAMP assay makes the visual determination of the LAMP reaction somewhat
challenging and relies on one’s perception of color [68]. Additionally, the ladder pattern of
the final product, rather than a specific band pattern observed in the classic PCR reaction,
makes product size determination impossible [67].

3.2. Loop-Mediated Isothermal Amplification Method in the Detection of Periopathogens

Despite these limitations, the LAMP technology could be utilized for the detection of
periodontal pathogens. In order to test the sensitivity level of periodontopathic species, one
of the research teams has utilized serial chromosomal serial dilutions to test the lower limit
of the assay’s sensitivity. Yoshida et al. [45] established that, during one hour reaction time,
the P. gingivalis primer set, without the loop primer set, had a limit of detection of 1 µg/tube.
However, when loop primers were added, a faster detection rate has been demonstrated.
For a 30-min reaction rate, the sensitivity was set at 1 µg/tube for chromosomal DNA.
Moreover, the detection limits for the T. forsythia primer set were 10 fg/tube in a 40-min
reaction without the loop primers and 10 fg/tube in a 20-min reaction with the loop primers,
and for the T. denticola primer set were 100 ng/tube and 10 µg/tube, respectively. The
added loop primers significantly improved the detection sensitivities for each bacterium.
The amplification specificity was evaluated by restriction endonuclease digestion with
NcoI (for the P. gingivalis amplicon), SnaBI (for the T. forsythia amplicon) and AluI (for the
T. denticola amplicon).

On the other hand, the research group of Maeda et al. [44], achieved quantification of P.
gingivalis by real-time monitoring of the LAMP reaction using SYBR Green I with linearity
in the range of 102–106 cells, showing nearly identical results to conventional real-time
PCR with the advantage of speed in favor of the LAMP method. They demonstrated
high efficacy and specificity for the LAMP, which could be suitable for rapid oral bacteria
screening and chairside diagnosis. In the study of Hamzan et al. [51], the detection limits
of LAMP for P. gingivalis and A. actinomycetemcomitans were 10-fold more sensitive than the
conventional PCR (for both perio-pathogens, at 1 ng and 10 ng, respectively). In a crude
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template of subgingival plaque, P. gingivalis and A. actinomycetemcomitans were detected by
LAMP in 80% and 60% of tested samples, respectively, whereas using PCR, P. gingivalis was
positive in 40% cases, and there is no significant detection rate for A. actinomycetemcomitans.

In contrast, Osawa et al. [46] designed LAMP primers which successfully amplified
serotypes a–e of A. actinomycetemcomitans but no other periodontal bacteria. The ampli-
fication specificity was assessed by restriction endonuclease digestion with Sau3AI for
the A. actinomycetemcomitans amplicon. The detection limits for the real-time turbidimetry
were 5.8 × 102–5.8 × 107 copies per reaction tube. For the rapid LAMP detection of A.
actinomycetemcomitans in clinical specimens, the results were analogous to conventional
PCR. Furthermore, Seki et al. [48] suggested that only PCR techniques concurrently de-
tected non-JP2 types of A. actinomycetemcomitans. However, the presence of these strains
seems not to influence LAMP detection of the JP2 clone, associated with the progression of
aggressive periodontitis in adolescents of North and West African descent.

Similarly, Elamin et al. [49] examined the presence of A. actinomycetemcomitans in
Sudanese adolescents with aggressive periodontitis. The prevalence of JP2 clone and
non-JP2 genotypes were evaluated using LAMP and PCR. Non-JP2 types were detected in
70.6% of periodontitis patients, but the JP2 clone was not determined in either the cases or
the controls. Both identification methods showed identical results. This allows speculation
that the precise identity of the etiological perio-pathogens can be confused by population
differences with regard to ethnic, environmental and genetic factors. Additionally, in 2017,
the same authors [50] reported the highest risks of aggressive periodontitis in a case of
co-infection with A. actinomycetemcomitans and human cytomegalovirus or Epstein-Barr
virus type 1 (odds ratios 39.1 and 49.0, respectively).

Another study by Miyagawa et al. [47] investigated the presence of eight different
pathogens using the LAMP method. The 16s gene was used for the study, using six
separate DNA sequences, although it is important to note the fact that this gene tends to
be non-specific. LAMP products were detected by 2% agarose gel electrophoresis. DNA
amplification was observed in all LAMP reactions for each periodontal pathogen with the
extracted DNA template containing 103 cells of all tested species. In contrast, combining
the DNA of all seven templates of the individual strains (103 cells of each species) showed
no amplicon. The sensitivity of the 30-min LAMP declined compared with the 60-min
LAMP. For the 30-min reaction, 100 template cells were required to detect E. corrodens, and
ten cells in the case of the other seven perio-pathogens. LAMP only for P. gingivalis, A.
actinomycetemcomitans and P. intermedia was applied to the clinical plaque samples but with
sensitivity equal or higher than real-time PCR. The practicability for other periodontal
bacteria should be elucidated.

The development of a colorimetric method for the detection of Porphyromonas gingivalis,
Tannerella forsythia and Treponema denticola has been designed by Al-Hamdoni et al. [69].
They have used the classical phenotypic method and the LAMP colorimetric method using
four pairs of primers targeting the 16SrRNA genes along with loop primers with Colori-
metric Master Mix containing Bst DNA polymerase and phenol red to detect amplicon
formation. The phenotypic examination showed the diversity of the characteristics of
isolates of the same strain. In just 30 min, LAMP made it possible to identify individual
strains of perio-pathogens from both extracted DNA and directly from whole cells, in a
highly specific and rapid manner, through visual interpretation of the results.

A new isothermal detection method called MB-LAMP (molecular isothermal loop
amplification) that combines the advantages of LAMP and qPCR was developed by Liu
et al. [70]. The advantage of this assay was the application of a molecular warning probe,
LFP (Loop Forward Probe) or LBP (Loop Backward Probe), minimizing non-specific am-
plification of DNA fragments, enabling a higher specificity than the traditional LAMP
method. As reported by Su et al. [52], this offers an increased detection potential of P.
gingivalis by targeting a specific fragment of the P. gingivalis genome as well as obtaining
high sensitivity. Within 20 min, the limit of detection was only 10−4 pM or 10−7 ng/µL. An
important aspect of this method was the fact that the extension of the reaction time did



J. Clin. Med. 2021, 10, 1189 10 of 14

not allow the detection of lower concentrations of nucleic acids. Like the QPCR reaction,
which detected the lowest pure plasmid concentrations at 38 cycles, positive results were
generally considered to be false positives when the reaction time reached above 35 cycles.
The method showed no cross-reaction with 14 other pathogens. The test also showed high
diagnostic sensitivity (100%) and specificity (100%) compared to quantitative real-time
polymerase chain reaction (real-time qPCR). MB-LAMP turned out to be a much faster
method than real-time qPCR, which allowed for a more efficient diagnosis of the presence
of a given pathogen. The average reaction time of MB-LAMP and qPCR was 14.16 and
26.69 min, respectively.

3.3. Loop-Mediated Isothermal Amplification Method—Future Research Directions

Additionally, as the majority of diagnostic tests require each pathogen to be tested
individually, it would be of great value to design a multiplex LAMP assay which would
create a viable solution to detect multiple pathogens within the same test-tube. This would
significantly reduce the amount of time required for pathogen identification, consequently
leading to a more precise differential diagnosis and faster treatment implementation. The
multiplex LAMP has been developed for the detection of a Dengue virus. Four specific
primer sets targeting 30 noncoding regions were placed within a single test tube. A
colorimetric reaction utilizing an intercalating HNB dye was used, allowing for naked
eye visualization. No cross-reactivity has been reported [71]. In 2017, Stratakos et al. [72]
developed a multiplex LAMP for the detection of pathogenic and non-pathogenic E. coli
strains, targeting phoA and stx1 genes, respectively. Most importantly, no cross relations
were observed in 58 bacterial strains making this method a satisfactory monitoring device.
Recently detection of SFG Rickettsia spp. and Plasmodium spp. were also carried out utilizing
a loop-mediated isothermal amplification (LAMP) method combined with a dipstick
DNA chromatography technology. The targeted genes were detected simultaneously and
obtained a sensitivity of 1000 copies per reaction when synthetic nucleotides of Rickettsia
and Plasmodium genes were combined, whereas when native, genomic DNA has been
used, a significant drop of sensitivity has been observed. The sensitivity value was 100
and 10 genome equivalents per reaction for Rickettsia monacensis and Plasmodium falciparum,
respectively [73].

As multiplexing is an arduous process and its development requires the meticulous
arrangement of multiple primers, a multiplex assay for periodontal pathogen still needs to
be developed in order to obtain a more precise and fastidious method, aiding clinicians in
their daily practice.

4. Materials and Methods
4.1. Search Strategy and Data Extraction

This systematic review was conducted up to 30 November 2020, according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement
guidelines [74], using the databases PubMed, Scopus and Web of Science. The search
formula included “loop-mediated isothermal amplification” and “periodontal disease” or
“periodontal bacteria” or “periodontal pathogen” or “periodontal diagnostics” as terms
combined in PubMed Advanced Search Builder. In other databases, analogous combina-
tions of keywords were used.

Records were screened by the title, abstract and full text by two independent investiga-
tors. Studies included in this review matched all the predefined criteria according to PICOS
(“Population”, “Intervention”, “Comparison”, “Outcomes”, “Study design”)—Table 3. A
detailed search flowchart is presented in Figure 1 (in section Results).
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Table 3. Inclusion and exclusion criteria according to PICOS (“Population”, “Intervention”, “Comparison”, “Outcomes”,
“Study design”).

Parameter Inclusion Criteria Exclusion Criteria

Population patients with periodontal diseases, aged from 0 to 99
years, both sexes patients with other oral diseases

Intervention loop-mediated isothermal amplification method PCR techniques
Comparison not applicable

Outcomes detected pathogens of marginal periodontium detected pathogens of periapical periodontium
or other plaque bacteria

Study design case-control, cohort and cross-sectional studies literature reviews, case reports, expert opinion,
letters to editor, conference reports

published after 2000 not published in English

The heterogeneity of the detected perio-pathogens, as well as the mainly qualitative
character of LAMP results, did not allow us to perform a meta-analysis of the studies
included in the present systematic review.

4.2. Quality Assessment

The level of evidence was assessed using the classification of the Oxford Center for
Evidence-Based Medicine levels for diagnosis [75]. All of the included studies have a low
4th level of evidence (in this 5-graded scale).

5. Conclusions

The practicality, rapid use and ease of handling of the LAMP technique through a
simple isothermal water device could make it an ideal apparatus for in-office periodontal
pathogen screening and monitoring. Advances in LAMP technology, its high sensitivity,
and its ability for live monitoring of a reaction might make it a useful tool for proper
diagnostic purposes.
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