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Abstract: Neurodegenerative diseases are inseparably linked with aging and increase as life expectancy
extends. There are common dysfunctions in various cellular events shared among neurogenerative dis-
eases, such as calcium dyshomeostasis, neuroinflammation, and age-associated decline in the autophagy-
lysosome system. However, most of all, the prominent pathological feature of neurodegenerative
diseases is the toxic buildup of misfolded protein aggregates and inclusion bodies accompanied by an
impairment in proteostasis. Recent studies have suggested a close association between endoplasmic retic-
ulum (ER) stress and neurodegenerative pathology in cellular and animal models as well as in human
patients. The contribution of mutant or misfolded protein-triggered ER stress and its associated signaling
events, such as unfolded protein response (UPR), to the pathophysiology of various neurodegenerative
disorders, including Alzheimer’s, Parkinson’s, and Huntington’s disease, amyotrophic lateral sclerosis,
and prion disease, is described here. Impaired UPR action is commonly attributed to exacerbated ER
stress, pathogenic protein aggregate accumulation, and deteriorating neurodegenerative pathologies.
Thus, activating certain UPR components has been shown to alleviate ER stress and its associated
neurodegeneration. However, uncontrolled activation of some UPR factors has also been demonstrated
to worsen neurodegenerative phenotypes, suggesting that detailed molecular mechanisms around ER
stress and its related neurodegenerations should be understood to develop effective therapeutics against
aging-associated neurological syndromes. We also discuss current therapeutic endeavors, such as the
development of small molecules that selectively target individual UPR components and address ER
stress in general.

Keywords: endoplasmic reticulum; ER stress; neurodegenerative disease; Alzheimer’s disease; Parkin-
son’s disease; Huntington’s disease; amyotrophic lateral sclerosis; prion disease; misfolded protein;
unfolded protein response

1. Introduction

Most neurodegenerative disorders have common pathological features associated
with the abnormal aggregation of misfolded proteins and inclusion bodies in neurons. The
toxic buildup of protein aggregates leads to progressive neuronal impairment and loss,
culminating in neurodegeneration. Accumulating evidence indicates that alterations of
subcellular organelles, particularly the endoplasmic reticulum (ER), are critically involved
in pathological neurodegenerative events. In eukaryotic cells, the ER is responsible for
around one-third of the total protein synthesis and is highly specialized in the folding
and maturation of proteins. The ER also plays a role in protein quality control, a defense
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mechanism that prevents misfolded proteins from aggregating. However, various envi-
ronmental challenges can interfere with these ER functions, leading to the accumulation
of unfolded or misfolded proteins in the ER lumen, which generates ER stress. In many
neurodegenerative diseases, ER stress and the presence of inclusion bodies composed of
misfolded protein aggregates are observed early in the symptomatic stage, implying that
failure of protein quality control in the ER and disrupted protein homeostasis (proteostasis)
contribute to neurodegeneration. Indeed, in animal models, genetic manipulations of ER
unfolded protein response (UPR) components have revealed the contribution of the ER
stress response in a variety of neurodegenerative disorders. This shows that rectifying ER
stress could be a promising therapeutic target for neurodegenerative diseases.

The influence of ER stress on many neurodegenerative diseases, as well as the sup-
porting scientific findings, will be discussed in this review.

2. The Neurodegenerative Diseases and Their Common Cellular Events
2.1. The Basic Etiologies of the Neurodegenerative Diseases
2.1.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a gradual and irreversible neurodegenerative disease
representing the most prevalent form of dementia. The main clinical features of AD
are the progressive deterioration of cognitive functions involving loss of memory and
executive function caused by synaptic failure and neuronal loss [1,2]. AD is referred to as a
protein misfolding disorder since the prominent neuropathological hallmark of AD is the
aggregation and accumulation of misfolded proteins (the formation of amyloid plaques
and neurofibrillary tangles) in the brain. The major lesions in AD, leading to synaptic
loss and consequential neuronal death, are composed of neurofibrillary tangles (the highly
stable polymers of intracellular protein aggregates composed of hyperphosphorylated
microtubule-associated tau) and senile plaque (extracellular deposits of insoluble fibrillary
amyloid-β (Aβ) peptide, a proteolytic product of amyloid-β precursor protein (APP)) [3,4].

2.1.2. Parkinson’s Disease

Parkinson’s disease (PD) is another prevalent neurodegenerative disease, and more
than 90% of patients with PD are sporadic cases. The major clinical features of PD are motor
symptoms, including muscle rigidity, tremors, and impaired balance and coordination.
Furthermore, dementia is accompanied in many cases. The neuropathophysiological hall-
marks of PD are the depletion of striatal dopamine resulting from dopaminergic neuronal
loss in the substantia nigra pars compacta (SNpc) and the presence of insoluble cytoplasmic
inclusions (called Lew bodies (LB)) that contain misfolded α-synuclein (α-syn) fibrils in
the neuron [5,6]. α-syn is a neuronal protein located in the axon terminal of presynaptic
neurons and plays a crucial role in synaptic vesicle trafficking and neurotransmitter re-
lease [7]. However, if the protein quality control for α-syn is impaired, α-syn assembles to
the oligomers and the aggregates, forming insoluble neurotoxic inclusions. The presence
of α-syn inclusions is strongly correlated with neuronal damage, and this association is
referred to as synucleinopathies.

Cytotoxic α-syn accumulation leads to many cellular defects, including mitochondrial
dysfunction, accumulation of lipid droplets, ROS production, and impaired ubiquitin-
proteasomal degradation [8]. Similar to other neurodegenerative diseases, α-syn inclusions
give rise to ER stress by altering synaptic vesicle transport, Ca2+ homeostasis, intracellular
protein trafficking, and ERAD machinery and ultimately result in neurodegeneration [9–11].

2.1.3. Huntington’s Disease

Huntington’s disease (HD) is a monogenic neurodegenerative disease inherited in
an autosomal-dominant manner. HD is clinically characterized by progressive cognitive
decline, behavioral and psychiatric disturbances, and motor dysfunction exemplified by
involuntary movements throughout the body [12,13]. The pathogenesis of HD proceeds
from the accumulation of the large inclusions generated by mutant Huntington protein
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(huntingtin). The genetic mutation in HD is typically an expansion of CAG trinucleotide
repeats in the first exon of the Huntington gene (HTT), leading to the translation of abnor-
mally long stretches of aggregation-prone polyglutamine (PolyQ) tract in the N-terminus
of the protein. The mutant huntingtins cause neuronal cell death preferentially in the
striatum [14,15], a part of the basal ganglia network involved in the execution of cerebral
cortex function and motor function. HD disease primarily affects GABAergic neurons in
the dorsal striatum, resulting in psychological symptoms such as depression, anxiety, and
memory loss [16].

2.1.4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) (also known as motor neuron disease or Lou
Gehrig’s disease) is a neurodegenerative disorder characterized by the progressive de-
generation of corticospinal and somatic motor neurons. The selective vulnerability of
motor neurons to their denervation results in muscle atrophy, lack of coordination, paral-
ysis of voluntary muscles, and respiratory failure, predisposing to uniform lethality in
ALS [17,18]. While the majority of cases (~90%) are classified as adult-onset sporadic ALS
(sALS), about 10% of cases are directly inherited familial ALS (fALS) [17,19], affected by
more than 50 types of mutation in human genes. The most prevalent genetic mutations
are found in superoxide dismutase (SOD1), fused in sarcoma (FUS), TAR DNA binding
protein (TARDBP/TDP-43), and chromosome 9 open reading frame (C9ORF72) [18–20].

A common feature of both fALS and sALS is altered proteostasis and the formation
of protein inclusions in degenerating motoneurons, among a variety of perturbations of
cellular functions in ALS (e.g., altered mRNA metabolism, Ca2+ dysregulation, impaired
energy production, altered axonal transport, and excessive excitatory tone) [18]. As with
other protein folding disorders, ALS-related aberrant protein folding and oligomerization
cause ER malfunction and UPR activation, especially in motoneurons [21].

2.1.5. Prion Disease

Prion diseases or transmissible spongiform encephalopathies (TSEs) are a category of
fatal neurodegenerative disorders caused by the accumulation of structurally abnormal
and modified scrapie isoform of prion protein (PrPSc) in the central nervous system [22].
The most remarkable phenomenon in the pathogenesis of prion diseases is the conversion
of normal cellular α-helical prion proteins (PrPC) into the protease-resistant, misfolded
β sheet-rich PrPSc [23] and the resulting neuronal loss and spongiform degeneration of
the brain [24]. Moreover, PrPSc binds to PrPC and catalyzes its conversion into a cy-
totoxic modified isoform, accelerating the formation of large PrPSc aggregates. While
this proteinopathy develops throughout the brain, symptoms vary depending on which
brain regions are affected by the presence of toxic PrPSc, such as the thalamus in famil-
ial insomnia, the cerebral cortex in Creutzfeldt-Jakob disease (CJD), the cerebellum in
Gerstmann-Sträussler-Scheinker syndrome (GSS), and the brain stem in dementia and
Bovine spongiform encephalopathy (BSE) with psychotic behavior [22]. It has been pro-
posed that the buildup of PrPSc triggers UPR and causes ER stress-induced cytotoxicity in
neurons, leading to prion-associated neurodegeneration similar to other protein misfolding
disorders [25].

2.2. The Common Cellular Events in the Neurodegenerative Diseases
2.2.1. Calcium Dyshomeostasis

Calcium is critically involved in various intracellular events, functioning as a second
messenger; therefore, its concentration is maintained extremely low by actively transport-
ing cytoplasmic calcium out of cells or storing it in the ER or mitochondria. Impaired
calcium homeostasis has been implicated in various neurological disorders. In AD, the
extracellular Aβ oligomers have been reported to induce extracellular Ca2+ influx through
the plasma membrane-localized NMDAR and VGCC, contributing to increasing cytoplasmic
Ca2+ levels and affecting ER Ca2+ levels [26,27]. Accordingly, in mature hippocampal
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neurons, treatment of Aβ oligomers provoked cytosolic Ca2+ dyshomeostasis, ER dysfunc-
tion, and ER stress-mediated apoptosis [28]. Furthermore, Aβ and presenilin mutations
lead to Ca2+ dyshomeostasis by inducing ER Ca2+ release through ER Ca2+ channels, ryan-
odine receptor (RyR), and inositol 1,4,5-triphosphate receptor (IP3R) [29–31]. Memantine,
an NMDAR blocker, was approved and is utilized to improve cognitive function in people
with advanced AD. Through the aforementioned ways, Ca2+ dyshomeostasis by elevation
of cytoplasmic Ca2+ levels under AD eventually results in ER stress and neuronal cell death,
further deteriorating AD.

Furthermore, in PD, α-syn oligomers in the plasma membrane form Ca2+-permeable
pores, allowing Ca2+ influx and resulting in PD pathologies and cell death [32]. Additionally,
elevated Cav1.3 was observed in dopamine neurons in the SNpc of PD patients, suggesting
increased Ca2+ influx via Cav1.3 [33]. Accordingly, isradipine, a calcium channel blocker,
has been demonstrated to protect dopamine neurons from the toxicity of α-syn oligomers or
mitochondrion-targeting neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) [34,35]. Furthermore, PD-associated genes such as BST1, ITPKB, and PLA2G6 have
been implied to regulate ER Ca2+ levels [36–38]. Mutation of LRRK2, a late-onset familial
PD gene, upregulates the expression of mitochondrial Ca2+ transporters such as MCU
and MICU [39], and accordingly, genetic and pharmacological inhibition of MCU protects
dopamine neurons from their loss in mutant PINK1-expressing zebrafish [40].

Mutant proteins causing ALS, HD, and prion diseases also lead to an increase in
Ca2+ influx and also ER Ca2+ dyshomeostasis, which results in excitotoxicity and ER stress
in those affected neurons [41–43].

2.2.2. Neuroinflammation

Recent findings have documented that neuroinflammation involving glial cells such as
astrocytes and microglia critically contributes to neuronal pathologies in neurodegeneration.
Microglia are myeloid cells and are involved in the brain’s immune responses. As with
peripherally circulating macrophages, microglia exhibit pro-inflammatory (M1 classical
activation) or immunoregulatory (M2 alternative activation) responses. M1 microglia
express and release pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. On the
other hand, IL-4 and IL-13 activate M2 microglia, which then release anti-inflammatory
cytokines (e.g., IL-10 and TGF-β) [44]. Astrocytes are the most abundant glial cells and
are involved in various functions to uphold neuronal integrity and function, including the
maintenance of the blood-brain barrier, metabolic support of neurons, and recycling of ions
and neurotransmitters [45]. Similar to microglia, astrocytes also display pro-inflammatory
or immunoregulatory responses. Pro-inflammatory astrocytes (A1 astrocytes) produce
pro-inflammatory factors (e.g., TNF-α, IL-1β, and IL-6), while immunoregulatory astrocytes
(A2 astrocytes) make anti-inflammatory factors (e.g., Il-4, IL-10, and TGF-β) [44].

Microglia and astrocytes have been observed to be activated by their contact with neuro-
toxic aggregates (e.g., Aβ, tau, and α-syn) in vitro, in vivo rodent models, and in the brain
samples from human subjects with AD, PD, HD, ALS, or prion disease [44,46,47]. Their
activation could be neuroprotective by eliminating protein aggregates [44]. However, the
persistent activation of glial cells also results in neurological pathologies. Human genetics
studies have suggested that genes involved in the microglial function and other brain immune
systems are closely linked to neurodegeneration [48,49]. In addition, microglia and astrocytes
have been documented to eliminate synapses via their phagocytic activity [50,51], and acti-
vated microglia and astrocytes target neurons to remove synaptic connections and induce
neuronal death in vitro and in vivo experimental models of AD [51,52]. Furthermore, elevated
pro-inflammatory TNF-α levels are detected in the CSF of patients with AD, although other
pro-inflammatory cytokine levels are not so obviously different compared to people without
dementia [53,54]. Increased levels of brain cells that are immunoreactive to pro-inflammatory
cytokines such as TNF-α, IL-1β, and IL-6 have been found in PD patients [55]. Heightened
expression of pro-inflammatory cytokines was also reported in CJD patients’ brains and
CSF [47].
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Inflammation signaling pathways, including IKK/NF-κB, MAPK (e.g., JNK, p39
MAPK), JAK/STAT, and PI3K/Akt, are involved in producing pro-inflammatory cytokines
such as TNF-α and IL-6. On the other hand, IL-1β’s synthesis and release are controlled
by the inflammasome. Elevated inflammasome activity such as caspase-1 activity, IL-1β
production, and NLRP3 expression has been documented in microglia and neurons in AD,
PD, HD, ALS, and prion disease [56]. Furthermore, the activation of NLRP3 inflammasome
attenuates Aβ phagocytosis by microglia and promotes Aβ aggregation [57], and also
exacerbates tauopathies [58]. NLRP3 deficiency and inhibition of inflammasome activity
ameliorate neurodegenerative pathologies in AD and PD [56–58].

In sum, neuroinflammation, including glial cell’s action, could be protective against
toxic aggregate buildup; however, uncontrolled neuroinflammatory activations may con-
tribute to neurological pathologies.

2.2.3. Autophagy and Mitophagy

Macroautophagy (hereafter referred to as ‘autophagy’) eliminates large cytoplasmic
contents, including damaged organelles and protein aggregates. Perturbation of autophagy
has been suggested to be associated with aging and age-related neurodegenerative dis-
eases, and genetic studies of autophagy-related genes have demonstrated autophagy’s
critical involvement in neurodegenerative diseases [59,60]. Autophagic dysfunction causes
the accumulation of the toxic, aggregate-prone proteins that are responsible for neurode-
generative diseases, such as Aβ, tau, a-syn, and mHTT in the brain [61]. Because of
their post-mitotic nature, neurons are particularly vulnerable to age-related decline in
autophagic capacity and the consequent accumulation of protein aggregates and defective
organelles [62].

Immature autophagic vacuoles containing a substantial amount of Aβ were observed
by electron microscopy in the neurons of AD patients [63,64], and LC3-II colocalized with
α-syn-positive-Lewy bodies in PD patients [65,66], while the number of lysosomes and
levels and activities of lysosomal enzymes were decreased within dopamine neurons in PD
brain [67]. In addition, mHTT expression in HD has shown to induce defects in multiple
steps of autophagy like autophagosome biogenesis, autophagic cargo recognition, and
retrograde transport of autophagosomes, all of which are crucial for the autophagosome-
lysosome fusion along the axon [68,69]. Furthermore, reduced autophagy in skeletal muscle
during aging is also known as one of the factors liable to the pathology of motor neuron
diseases. An aging-related decline in autophagy-lysosomal activity impairs autophagic flux
and exacerbates muscle aging phenotypes and pathologies of ALS [70,71]. Likewise, the
age-related autophagic dysfunction and accumulation of disease-associated toxic protein
aggregates lead to disruption of the autophagic degradation and contribute to consequent
neurotoxicity in the pathology of neurodegenerative diseases [72,73].

In PD, impaired mitophagy (autophagy for removing damaged mitochondria) has
been implied in the development of neurological pathologies of PD. Human and rodent ge-
netic studies have identified several PD-associated genes [e.g., Parkin (PRKN), PINK1, DJ-1
(PARK7), GBA, and ATP13A2] and their involvement in autophagy (mitophagy)-lysosome
system and PD pathologies [60,74–76]. A large number of enlarged, phospho-ERK-labeled
mitochondria have been observed within autophagosomes in the SNpc, suggesting com-
promised mitophagy in PD [77]. Furthermore, the presence of the polyQ tract in mHTT has
been reported to impair mitophagy and lead to the accumulation of damaged mitochondria
in HD [78].

3. ER Protein Quality Control and ER Stress

Under physiological conditions, cytosolic and ER molecular chaperones mediate the
precise folding of newly synthesized proteins. In addition, protein quality control mecha-
nisms recognize misfolded proteins, mediate their retention and refolding in the ER, and
eventually degrade them through the ER-associated protein degradation (ERAD) pathway
if they fail to reach their native structures [79]. These activities minimize the amount of
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unfolded and misfolded proteins in the ER, preventing aberrant protein aggregation and
restoring proteostasis. Fine-tuned protein folding is essential for normal cellular function
and survival. However, the fidelity and efficiency of protein folding in the ER are highly
influenced by the alterations of intracellular and extracellular stimuli. ER stress can be
triggered by a variety of pathological conditions, including overloaded protein synthesis,
a disturbed ubiquitin-proteasome pathway, a lack of autophagy, excessive or inadequate
nutrients, dysregulated Ca2+ or redox homeostasis, inflammatory stimuli, and hypoxia.

In response to ER stress, ER initiates adaptive mechanisms comprising a complex network
of signaling pathways, termed the UPR, to re-establish ER homeostasis [80]. Upon the
activation of UPR, global translation is initially hampered, thereby decreasing the influx of
newly synthesized proteins into the ER. Under moderate accumulation of unfolded proteins,
UPR operates as a feedback mechanism, reinforcing protein quality control by increasing
the expression of genes, which are generally involved in ER protein folding and the ERAD
pathway [81–83]. In addition, the ERAD pathway promotes misfolded proteins’ clearance
by exporting them to the cytosol, where they are degraded through ubiquitination and
proteasomal degradation. UPR signaling also enhances autophagy, which helps to eliminate
protein aggregates, especially large ones, through lysosomal degradation.

3.1. Key Players in the UPR Pathway

In response to ER stress, the UPR is initiated by three ER-resident transmembrane
proteins: activating transcription factor-6 (ATF6), inositol requiring protein-1 (IRE1), and
protein kinase RNA-like ER kinase (PERK) [84–86]. These three ER proteins mediate the
signaling cascade from the ER lumen to the cytoplasm or nucleus (Figure 1). IRE1 is a type I
transmembrane protein that is evolutionarily conserved from the yeast and metazoan cells.
IRE1α and IRE1β are two isoforms of mammalian IRE1: IRE1α has been demonstrated to
function as a critical UPR factor, while IRE1β, primarily existing in the intestine and lung, has
been reported to suppress IRE1α’s activity [87]. Under the unstressed condition, IRE1α exists
as a monomer by binding to the ER chaperone GRP78, which suppresses IRE1α activation.
However, GRP78 is released from IRE1α in response to the accumulation of unfolded and
misfolded proteins in the ER, allowing IRE1α homodimerization or oligomerization. Other
studies have also reported that IRE1α homodimerization or oligomerization can be induced by
its direct interaction with misfolded proteins [88]. Upon homodimerization or oligomerization,
IRE1α autotransphosphorylates itself and activates its RNase domain, which mediates XBP1
mRNA splicing to produce a functional XBP1 protein (spliced XBP1, XBP1s). As a transcription
factor, XBP1s travels to the nucleus and enhances the expression of its target genes, the majority
of which aid in the restoration of ER homeostasis. Interestingly, XBP1s also functions via
protein-protein interaction, not as a transcription factor; previous reports have demonstrated
that XBP1s’ physical interaction with FoxO1 suppresses FoxO1′s transcriptional activity [89].
In addition to XBP1 mRNA splicing, IRE1α cleaves and downregulates certain mRNAs and
microRNAs with its RNase domain, which is referred to as regulated IRE1-dependent decay
(RIDD) [90].

Metazoan cells also have PERK, a type I transmembrane protein in the ER. Similar to
IRE1α, PERK exists as a monomer by binding to GRP78 under unstressed conditions and
undergoes dimerization or oligomerization by unbinding to GRP78 or directly binding to
misfolded proteins under ER stress. Subsequent autotransphosphorylation of PERK after
its dimerization or oligomerization results in phosphorylation of eIF2α, which attenuates
general protein translation to alleviate the burden on the ER. Paradoxically, the translation
of specific mRNAs with upstream open reading frames (uORFs) as in ATF4, ATF5, and
CCAAT/enhancer-binding protein α (C/EBPα, CEBPA) is elevated. Increased ATF4 levels
have been demonstrated to facilitate the expression of growth arrest and DNA-damage-
inducible 34 (GADD34, PPP1R15A) and C/EBP homologous protein (CHOP, DDIT3), both
of which have been reported to induce cell death.
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Figure 1. Summary of UPR signaling cascade. UPR is initiated by GRP78’s dissociation from UPR
components on the ER membrane under ER stress. PERK and IRE1 undergo autotransphosphoryla-
tion after their dimerization or oligomerization, and ATF6 is translocated to Golgi and cleaved by
protease S1P and S2P. UPR activation enhances target gene expression to restore ER protein folding
capacity or triggers cell death. TXNIP induced by PERK and IRE1 also activates the inflammasome
and triggers subsequent cell death.

ATF6 is a type II transmembrane protein and a member of the bZIP transcription
factor family. Under unstressed conditions, ATF6 is retained in the ER by binding to GRP78.
However, ER stress dissociates GRP78 from ATF6, allowing ATF6 to move to the Golgi,
where it is cleaved by two proteases, S1P and S2P. Consequently, ATF6’s cytoplasmic region
with the bZIP domain translocates to the nucleus and induces its target gene expression,
most of which restores ER homeostasis as with XBP1s.

3.2. ERAD Pathway and Autophagy-Lysosomal Pathway

The UPR’s initial attempt is to restore ER homeostasis by increasing the protein folding
capacity in the ER. However, misfolded ER proteins that do not attain their native structures
are ultimately disposed of by ERAD and autophagy [91]. Because numerous neurodegener-
ative diseases are caused by impaired proteostasis, combined responses of UPR, ERAD, and
autophagy are critical to maintaining ER homeostasis and preventing neurodegenerative
pathologies. Under ERAD, misfolded ER proteins need to be translocated out of the ER due
to a lack of a ubiquitin-proteasome system (UPS) in the ER lumen (Figure 2). The misfolded
ER proteins are recognized and linearized by ER chaperones and retrotranslocated from
the ER lumen through retrotranslocons such as Sec61, Derlins, gp78, and Hrd1 with the
help of an ATPase, p97/VCP. Retrotranslocated misfolded ER proteins are subsequently
ubiquitinated by ER-resident E3 ligases such as Hrd1 and gp78 and ultimately degraded
by 26S proteasomes [92].
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Figure 2. Misfolded protein clearance by autophagy and ERAD. For ERAD, unfolded/misfolded
proteins are retrotranslocated to the cytosol through retrotranslocons such as Derlin and Hrd1,
and ubiquitinated by E3 ligase (e.g., Hrd1; Sel1 is a cofactor of Hrd1). Polyubiquitinated ERAD
substrate proteins are recognized and degraded by 26S proteasome in the cytosol. Protein aggregates,
macromolecules, and organelles are also cleared via the autophagy-lysosomal pathway.

Autophagy is another way to get rid of intracellular materials, particularly macro-
molecules and organelles. Initially, autophagy was identified as a survival mechanism
by consuming internal materials in the absence of external nutrients, but it was also re-
vealed later to be involved in numerous cellular events, notably including the turnover
of damaged or aged intracellular organelles [93]. Autophagy proceeds via sophisticated
autophagic machinery centrally controlled by the mechanistic target of rapamycin (mTOR)
and AMP-activated protein kinase (AMPK). mTOR (mTORC1 in mammalian cells) sup-
presses autophagy by inhibiting ATG1 (Unc-51 like autophagy activating kinase 1 (ULK1)
in mammals) activity, while AMPK promotes autophagy by downregulating mTORC1
activity and also directly activating ULK1. ER stress and its associated signaling events
such as UPR have been documented to be critically involved in autophagy [94]. ER stress-
induced IRE1α activation leads to autophagy via its interaction with tumor necrosis factor
receptor-associated factor 2 (TRAF2) and subsequent activation of c-Jun N-terminal kinases
(JNKs) [95]. Additionally, the PERK-ATF4-CHOP pathway has been demonstrated to ele-
vate autophagic gene expression [96]. Recent studies have also documented that ER stress
induces autophagic turnover of the ER (ER-Phagy) as an ER quality control [97]. Protein
clearance processes such as the UPS and autophagy decline with aging, contributing to
aging-associated disorders such as neurodegenerative diseases [98,99].

3.3. ER stress, Inflammation, and Cell Death

When the aforementioned ER quality control systems (UPR, ERAD, autophagy) fail
to restore ER homeostasis, the UPR triggers cell death to prevent the damaging effect of
accumulated misfolded proteins on neighboring cells. While PERK’s initial response is
to attenuate protein translation, PERK-mediated induction of ATF4 and CHOP leads to
apoptosis by elevating protein synthesis [100]. Furthermore, IRE1α’s activity is controlled
by its physical interaction with pro-apoptotic BAX and BAK, but IRE1α also triggers inflam-
mation and cell death by its association with TRAF2 and ASK1 [101,102]. Conversely, p38
MAPK and IKKβ phosphorylate XBP1s, which leads to XBP1s nuclear translocation and its
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activation [84,103,104]. In addition, PERK and IRE1α lead to cell death by inducing TXNIP
expression and subsequent inflammasome activation (Figure 1) [105]. PERK’s downstream
transcription factor ATF5 increases TXNIP’s expression, while IRE1α’s RIDD activity down-
regulates miRNA (miR-17), reversing miR-17’s inhibitory action on TXNIP’s translation [84].
ER stress leads to astrocyte’s inflammatory responses by activating JAK1/STAT3 signaling
and increasing pro-inflammatory cytokine expression such as IL-6, CCL2, and CCL20,
which is dependent on the PERK pathway [106].

3.4. ER Dysfunction and Neurodegenerative Diseases

Neurons, the post-mitotic cell, are particularly susceptible to the toxic effects of mu-
tated or misfolded protein accumulation, requiring appropriate protein quality control and
stress responses such as UPR upon various environmental perturbations (Figure 3). As men-
tioned above, neurodegenerative diseases are marked by the accumulation of misfolded
protein aggregates in the neuron. Although this pathophysiology is reasonably attributed
to the mutation of specific proteins that escape protein quality control mechanisms, it is
noteworthy that age is the critical risk factor for most neurodegenerative disorders. De-
terioration of proteasomal degradation and the increased reactive oxygen species during
aging could contribute to the decline in clearance and the enhanced production of mis-
folded proteins [107,108]. On this account, the cell death induced by UPR and the ER
stress substantially contributes to the pathological development of several age-associated
neurodegenerative diseases (Figure 3).

Figure 3. ER stress and neurodegeneration triggered by misfolded protein aggregates. Genetic
mutations, aging, environmental insults, and various cellular stresses disrupt ER protein quality
control and proper folding of proteins. Increased protein misfolding induces ER stress and accelerates
the accumulation of disease-associated protein aggregates. ER chaperone activities and UPR pathways
are enhanced as adaptive stress responses to alleviate ER stress. As a result, various chaperones and
protein clearance mechanisms such as autophagy and ERAD contribute to refolding or eliminating
misfolded proteins. However, when sustained ER stress in the neuron exceeds the capacity of
adaptive responses to cope with protein misfolding, ER stress can lead to neuronal cell death and
neuroinflammation, contributing to the development of neurodegenerative pathologies.

We will document the contribution of ER dysfunction and ER stress response to the
etiology of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, amyotrophic lateral sclerosis, and prion disease.



Int. J. Mol. Sci. 2022, 23, 5894 10 of 33

4. Alzheimer’s Disease
4.1. ER UPR on Neuronal Pathophysiology in AD

Numerous studies have reported the elevation of ER UPR in the AD brain. The PERK-
eIF2α pathway is hyperactive in the brain of animal AD models and postmortem brain
samples from patients with AD [109–112]. Furthermore, increased GRP78/BiP expression
was detected in AD patients’ temporal cortex and hippocampus, the fundamental regions
responsible for cognition and memory [113]. Furthermore, elevated IRE1α phosphorylation
was also observed in the hippocampal neurons of patients with AD and colocalized with
abnormally phosphorylated tau [114,115]. Increased ATF4 expression was also detected in
axons in the AD brain, and mechanistically ATF4 was proposed to act as a mediator for
spreading Aβ pathology [116]. In addition, elevated phosphorylation of IRE1α and PERK
was observed in neurons and glial cells in people’s brains with tauopathies [117].

However, there are contradictory perspectives regarding the balance between the pro-
tective and destructive role of the UPR in AD pathology. In the early stages of AD pathology,
activated UPR could operate as a defensive response to rescue neurons by expanding the
folding capacity of the ER with increasing molecular chaperones and enhancing the degra-
dation of protein aggregates by ERAD and autophagy [118,119]. An in vitro study has
demonstrated that Aβ treatment in neuronal cells induced the PERK-eIF2α pathway, and
silencing PERK expression enhanced neuronal cell death while enhancing eIF2α phospho-
rylation by salubrinal (eIF2α dephosphorylation inhibitor) alleviated it [120]. Additionally,
several reports have implied that XBP1s may play a cytoprotective role against toxic ag-
gregates in a variety of Aβ-associated AD models, including Aβ-expressing Drosophila
and Aβ-treated cultured mammalian neurons [121], and also in tauopathy-related AD
models, including transgenic Drosophila and C. elegans expressing aggregation-prone mu-
tant tau variants [122,123]. Furthermore, in the Chinese Han population, the -116C/G
polymorphism of XBP1 has been linked to AD susceptibility [124].

On the other hand, excessive ER stress and prolonged UPR activation can be detri-
mental to the neurons as UPR could contribute to worsening neurodegeneration via the
apoptotic pathway activation. IRE1α has been discovered to interact with Presenilin1 (PS1),
a protein known to cleave APP to Aβ, which leads to the activation of the JNK/c-Jun
pathway, implying a link between amyloid accumulation and neuronal death in AD [125].
Moreover, the enhanced JNK3 was found in the brain and cerebrospinal fluid of patients
with AD. It was correlated with Aβ levels, implicating its contribution to the aggravation
of AD pathologies, including cognitive decline [126].

4.2. The Age-Associated Decline of ER Capacity and AD

The single most important risk factor for AD is aging. In addition, the age-associated
disruption in neuronal physiology also frequently accompanies ER dysfunction and aber-
rant proteostasis that might result from excessive accumulation of protein aggregates.
The decline in the UPR and cellular clearance capacity with advancing age is marked
by downregulation of chaperone activity, increased reactive oxygen species [108], and
diminished ERAD pathway [107], all of which lead to disempowering of ER’s ability to
maintain proteostasis [127–130]. For example, reduced ER molecular chaperone levels such
as GRP78/BiP, calnexin, and PDI have been observed in the aged hippocampus and other
brain regions such as the cortex and cerebellum [131]. Furthermore, the aging brain dis-
plays reduced PERK mRNA transcription and eIF2α phosphorylation [131–133]. Reduced
UPR responses in the aged brain are often accompanied by elevated proapoptotic responses
involving CHOP/GADD153 and caspase-12 [131]. Paradoxically, activated UPR, such as
elevated phosphorylation of PERK and eIF2α, are often reported in the affected brain areas
of patients with AD [115]. It is still unclear if observed UPR activation in AD indicates the
UPR’s pathogenic functions or the compensatory response to elevated ER stress.

In addition, AD-related protein aggregates such as Aβ and tau also elicit the inhibi-
tion of proteasome activity, further contributing to proteostasis disruption and neuronal
degeneration [134,135]. This might explain the observed reduction in proteasome activity
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in the brains of patients with AD [134]. Furthermore, selective dysfunction of proteasomal
degradation toward AD-causing proteins is documented: phosphorylated tau could be
ubiquitinated and degraded by interacting with Hsp90 and CHIP, a chaperone-E3 ligase
complex [136]. However, FK506 binding protein 51 kDa (FKBP51) could block Hsp90-CHIP-
mediated tau degradation, and its expression elevates with advancing age and is correlated
with AD progression [137].

Unlike early-onset AD, sporadic AD barely has identified genetic mutations involved
in the Aβ production and accumulation. Thus, the foremost cause triggering Aβ accumu-
lation in sporadic AD might be an imbalance between Aβ production and degradation.
Autophagic vacuoles are not typical in the healthy brain, but autophagic vacuoles con-
taining a substantial amount of Aβ are abundantly observed in the neurons in the early
stage of AD even before Aβ is extracellularly deposited [63,64]. This implies that the
decline in autophagosome-lysosome function during age may contribute to Aβ deposits
and AD pathologies [64]. For example, Beclin 1, one of the key players in autophagy, is
lowered in the brain of patients with early-stage AD, and the reduction in Beclin 1 expres-
sion is also correlated with age [138,139]. In mice, the heterozygous deletion of Beclin 1
leads to reduced neuronal autophagy, aberrant lysosomal structure, Aβ accumulation, and
neurodegenerative pathologies in the cortex and hippocampal areas [139].

4.3. UPR Components and Their Role in Memory, Cognition, and Synaptic Plasticity in AD

Active synthesis of new proteins and their translational control are critical for long-
lasting synaptic plasticity, long-term memory consolidation, and additional neuronal func-
tions, including neuronal growth and axonal guidance [140,141]. The UPR could act as a
negative regulator of synaptic plasticity through the phosphorylation of eIF2α and reduc-
tion in protein translation [142]. However, the UPR animal models exhibited complicated
neuronal phenotypes: forebrain-specific Perk-deficient mice demonstrated deficits in fear
extinction memory and cognitive function while suppressing ATF4 action in the forebrain
resulted in enhanced long-term synaptic plasticity and memory in mice [143,144]. Further-
more, Gcn2-deficient mice displayed enhanced spatial memory of weak conditioning but
also showed its deficit after more intense training [141].

Dysregulated neuronal protein translation could also contribute to AD-related cog-
nitive impairments. Indeed, attenuation of PERK, GCN2, and PKR signaling ameliorates
β-amyloidosis, neurodegeneration, and other AD-related deficits in synaptic plasticity,
spatial memory, and cognition in AD model mice [145–149]. In a recent study, ISRIB, a
newly developed small molecule that binds to and stabilizes eIF2B, reversed the effect
of phosphorylated eIF2α, restored hippocampal protein synthesis, and rescued impaired
long-term memory and synaptic function in the mouse model of AD [150].

Other components of the UPR have also been documented to be involved in AD
pathophysiology. IRE1α deficiency in the nervous system leads to Aβ plaque deposit
reduction and attenuated astrocyte activation in the cortex and hippocampus and improves
cognitive capacity in AD model mice [151]. Paradoxically, neural-specific Xbp1 deletion
impairs the process related to contextual memory formation and long-term potentiation,
whereas forced neural expression of XBP1s improves the aforementioned processes and
synaptic transmission in the hippocampus [152]. Moreover, the hippocampal expression of
XBP1s in an AD mouse model via a lentiviral vector also leads to the recovery of long-term
memory formation, dendritic spine density, and hippocampal synaptic transmission [153].
Although Xbp1 deficiency in the hippocampus does not alter the expression of typical UPR
component genes, XBP1s modulates the expression of genes related to memory formation,
dendritic function, and synaptic activity, including GABAergic markers and brain-derived
growth factor (Bdnf ) [152,154]. This implies that XBP1s plays a direct role in a molecular
network in cognitive processes under physiological conditions and AD.
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5. Parkinson’s Disease
5.1. ER Stress and α-Synuclein-Related PD Pathology

The α-synuclein-related ER stress has been documented in various in vitro and in vivo
models of PD; the yeast synucleinopathy model [11], the PD patient-derived induced
pluripotent stem cells (iPSCs) [155,156], a mouse model of α-syn toxicity (A53TαSTg) [157],
and the postmortem brain tissue from patients with PD [158]. The upregulation of ER
chaperones, including BiP, PDI, and homocysteine-induced ER protein (Herp), and their
colocalization with LB were observed in the SNpc of human PD brain tissue [157,159,160].
In addition, increased phosphorylation of PERK and eIF2α were detected in cultured
cells treated with PD-inducing neurotoxin [161,162] and in dopaminergic neurons of the
SNpc from patients with PD [163]. Phosphorylated PERK is also colocalized with α-syn
inclusions in dopaminergic neurons [163,164], suggesting the close association of UPR
activation with the α-syn aggregation. Accordingly, forced expression of human α-syn in
rat SNpc induced UPR activations, including increased levels of ATF4, nuclear ATF6, CHOP,
XBP1s, and phosphorylated eIF2α [165]. Conversely, GRP78/BiP expression in rat SNpc
alleviated α-syn-induced neurotoxicity, increasing dopaminergic neurons’ survival and
striatal dopamine levels [165]. Additionally, in in vitro and in vivo models of neurotoxin-
induced parkinsonism, in which neurotoxins such as 6-hydroxy-dopamine (6-OHDA)
and MPTP are typically administered, the genetic ablation of Ddit3 (CHOP) [166] and
overexpression of XBP1s [167,168] protect neurons from neurotoxin-induced cell death.

The pathological form of α-syn could be released from the affected neurons and
found in the extracellular compartments and body fluids, including plasma [169], the cere-
brospinal fluid, urine, saliva, and tears [169–176]. The transmission of α-syn to neighboring
neurons promotes intracellular α-syn aggregation and the formation of LB inclusions,
leading to recipient cells’ death and further progressing PD [177,178]. Protein folding
stress could facilitate α-syn release and transmission to neighboring neurons. For example,
proteasome and lysosome inhibitors trigger the α-syn release from cells via non-canonical
exocytosis [179].

Disruption in protein clearance mechanisms is also a significant contributor to ER
stress and the pathophysiology of PD. Under physiological conditions, α-syn can be de-
graded by the chaperone-mediated autophagic pathway, macroautophagy, and UPS [180].
However, in PD, accumulation of α-syn impairs autophagy [181,182] as well as proteasomal
degradation [183]. Human patients with PD exhibit reduced nuclear levels of transcription
factor EB (TFEB), a major regulator of the autophagy-lysosome pathway, in dopaminergic
neurons in SNpc [184]. Likewise, forced α-syn expression disrupts the nuclear localization
of TFEB and autophagy [184]. In addition, the α-syn undergoes various posttranslational
modifications, disrupting the autophagic degradation of α-syn and other substrates [185].
Conversely, stimulation of autophagy with forced expression of TFEB or Beclin 1 restores
the clearance of inclusions and elicits protection against α-syn-induced neurotoxicity [184].

5.2. Genetic Mutations in PD Related to ER Stress

Autosomal recessive juvenile parkinsonism (AR-JP) is strongly linked to the genetic
mutations in Parkin (PRKN) [186], an E3 ubiquitin ligase involved in the regulation of
mitophagy. Parkin has been proposed to protect cells from ER stress-induced cell death [187].
Overexpressing Parkin protects dopaminergic SH-SY5Y cells from ER-stress-induced mito-
chondrial dysfunction and cell death [187,188], whereas downregulation of Parkin makes
cells highly vulnerable to ER stress [188]. Mechanistically, Parkin ubiquitinates the insoluble
forms of GPR37 (also called Parkin-associated endothelin-like receptor (Pael-R)) and pro-
motes their degradation, thus preventing GPR37-mediated cell death induced by unfolded
protein stresses [189]. Additionally, Parkin could protect cells from ER stress by upregulat-
ing XBP1 expression through transcriptional repression of p53 that has suppressed XBP1
expression [190]. In addition to Parkin’s protective role under ER stress, mitochondrial and
ER stress increase Parkin transcription via ATF4’s binding to the Parkin promoter [188].
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5.3. Mitochondrial Dysfunction and Calcium Dyshomeostasis in ER Stress-Related
PD Pathophysiology

Mitochondria interact physically and functionally with the ER. This inter-organelle
interaction mediates various physiological processes and the viability of cells by primarily
modulating Ca2+ signaling and the execution of the cell death pathway [191]. ER stress
can induce mitochondrial damage and vice versa, and such an interconnection between
two organelles has been implicated in PD pathogenesis. Mitochondrial toxins, such as
rotenone, MPTP, or its active derivative MPP+, and 6-OHDA also cause ER stress and
UPR activation [161,162,192]. As previously mentioned, ER and mitochondrial stress up-
regulate Parkin expression through ATF4, and Parkin protects cells from mitochondrial or
ER stress-induced cell death [188].

In healthy neurons, an increase in intracellular Ca2+ triggers the neurotransmitter
release from the presynaptic terminal. Besides the influx of Ca2+ through voltage-dependent
Ca2+ channels in the plasma membrane, the ER is another primary source of Ca2+ in the
cell [193]. The fluctuations of Ca2+ levels exceeding or below the physiological range in
the cytoplasm can be detrimental to the survival of dopamine neurons [34,194]. However,
in pathological conditions with continual cellular stress, neuronal homeostasis could be
threatened by Ca2+ dyshomeostasis [193]. MPP+ induced ER stress and triggered Ca2+

release from the ER and concomitant Ca2+ uptake into the mitochondria. Elevated Ca2+ in
the mitochondrial matrix impaired mitochondrial membrane potential, causing caspase
activation and consequent cell death [195]. Likewise, inhibiting ER Ca2+ release with RyR
antagonist dantrolene prevented MPP+-mediated caspase activation [195].

Non-pathological α-syn mediates Ca2+ transfer from the ER to the mitochondria by
associating with mitochondria-associated ER membranes (MAM) and promoting the ER-
mitochondria interaction [196,197]. Conversely, pathological α-syn loses its association with
MAM, leading to a decline in MAM function and mitochondrial Ca2+ uptake, mitochondrial
fragmentation, and a subsequent increase in mitophagy [196,197].

6. Huntington’s Disease
6.1. Mutant Huntington Protein in the Pathogenesis of HD

Like other neurodegenerative diseases, HD has a feature of neurotoxic protein inclu-
sions containing the mutant protein aggregates. Huntingtins are subject to proteolytic
cleavage, generating more toxic and aggregation-prone fragments [198,199]. The majority
of huntingtins are found in the cytoplasm [200]; however, N- and C-terminal huntingtin
fragments are abundant in the nucleus [201]. The intranuclear insoluble huntingtin in-
clusions were more pronounced in neurons of HD patient brain [202], cultured cells, and
transgenic mice expressing mutant human huntingtin (mHTT) [203,204]. N-terminal hunt-
ingtin fragments derived from normal polyQ repeats interact with the nuclear pore protein
translocated promoter region (TPR) for their shuttling between the nucleus and cytoplasm.
However, N-terminal fragments with expanded polyQ are weakly bound to TPR, leading
to poor nuclear export and accumulation in the nucleus [205]. This mutant fragment’s
intranuclear aggregation induces nuclear abnormalities, neuronal cytotoxicity, and even-
tual neurodegeneration in HD [206–208]. Mechanistically, mutant huntingtins manifest
abnormal transcriptional repression and altered expression of multiple genes [201,209,210].
PolyQ motif in transcription factors mediates the interaction with other transcriptional
regulators, and forming the aggregates with expanded polyQ of those transcription factors
has been demonstrated to interfere with proper gene transcription [209]. The intranu-
clear huntingtin aggregates hinder transcriptional regulation through the sequestration of
transcription factors, such as TATA-binding protein, p53, and CREB-binding protein, into
huntingtin-containing inclusions [211–213]. Furthermore, marked reductions in mRNAs
encoding neurotransmitter receptors, such as glutamate and dopamine receptors, were
observed in the pathogenic human mHTT-expressing HD mouse models [214,215]. These
findings suggest that the pathogenic mutant huntingtins interfere with normal neuronal
functions and cause HD by disrupting nuclear organization and transcriptional regulation.
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6.2. Impact of Pathogenic Mutant Huntingtins on ER Stress

Studies using C. elegans and Drosophila expressing proteostasis sensors have revealed
that the expression of expanded polyQ disrupts cellular proteostasis [216,217]. Further-
more, several in vitro and in vivo studies have documented that heat shock proteins such
as Hsp40 and Hsp70 families prevent insoluble huntingtin aggregate formation [218,219],
protect neurons from toxic aggregate-induced cell death [220], and alleviate neurodegener-
ative phenotypes [221–223]. Conversely, Hsp40 and Hsp70 expression is reduced in human
mHTT expressing mouse brains [224].

In addition, the pathogenic huntingtin oligomers with expanded polyQ interfere with
UPS and ERAD, resulting in ER stress [225]. Although huntingtin is not a canonical ER-
localized protein, Hrd1 and gp78, E3 ligases involved in ERAD, have been demonstrated
to ubiquitinate mutant huntingtins and promote their proteasomal degradation with the
help of p97/VCP that disintegrates polyQ-containing huntingtin aggregates [226–228].
However, when UPS and ERAD are overwhelmed by the increased formation of mutant
huntingtin aggregates, huntingtin aggregates sequester p97/VCP [229,230] and interfere
with the functions of gp78 and p97/VCP [228]. Furthermore, other ERAD proteins, Npl4
and Ufd1, are also sequestered by mutant huntingtin fragments, thus contributing to polyQ
toxicity. At the same time, Npl4 and Ufd1 expression ameliorate polyQ toxicity in vitro
studies using yeast and PC12 cells [229].

The striatal cells from another HD mouse model (HdhQ111 knock-in mouse), in which
Hdh (mouse homolog of human HTT) was modified to have expanded CAG repeats,
exhibit elevated p53 levels and an enlarged ER [231,232]. Accordingly, increased ER
stress/UPR markers were observed in cultured cells harboring pathogenic huntingtins
(human mHTT, HdhQ111), striata of HdhQ111 mouse, and parietal cortex of human HD
postmortem brains [229,232–234].

Even though elevated UPR marker levels in HD suggest increased ER stress, whether
UPR activation protects neurons from HD-related pathologies depends on the different roles
of UPR factors. In HD mouse models and HD patient samples, ATF6 processing (its cleav-
age at the Golgi for activation) is impaired, which may predispose neurons to ER stress [235].
Moreover, striatal cell lines expressing HdhQ111 and striatal neurons of HdhQ111 mouse
exhibit increased eIF2α phosphorylation [233]. This increased eIF2α phosphorylation in
HD likely suggests elevated ER stress rather than the PERK-eIF2α pathway’s pathological
contribution. Indeed, pharmacological activation of the PERK pathway indirectly by salu-
brinal or directly by various PERK activators (A4, CCT020312, MK-28) protects pathogenic
huntingtin-expressing cells from ER stress-induced cell death [233,234,236]. Interestingly,
mHTT-expressing mice with neuronal Xbp1 deficiency display alleviated HD pathologies,
including improved neuronal survival and motor performance. This improvement from
Xbp1 deficiency is mechanistically attributed to enhanced expression of FoxO1 and elevated
macroautophagy [237]. Additionally, pathogenic huntingtins were shown to trigger ER
stress-induced cell death via IRE1-TRAF2-ASK1 complex and JNK activation [101].

7. Amyotrophic Lateral Sclerosis
Proteostasis Disturbances and ER Stress in ALS Pathology

The hypertrophied cell body and proximal axon hillock were observed in the spinal
motor neurons of ALS mouse models in early studies [238]. These mice also had dense
clumps of neurofilaments and ubiquitin immunoreactive inclusions in swollen axons of the
spinal cord, comparable to those described in human ALS, as well as disrupted proteosta-
sis [239–241]. iPSCs-derived motoneurons from patients with ALS carrying mutations of
SOD1 also develop common pathological features as well as increased oxidative stress,
mitochondrial dysfunction, and elevated ER stress/UPR [242]. Furthermore, irregular mor-
phology of the ER, including dilatation, fragmentation, and distension of rough ER with
ribosome detachment, were observed in the spinal anterior horn cells from postmortem
tissues [243]. Thus, ER stress is one of the earliest pathological signatures driving the de-
generation of motoneurons in ALS [244–246]. Indeed, impaired proteostasis and elevated
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ER stress are frequently observed in the postmortem tissues of fALS and sALS patients,
as well as in the cellular and animal models of the disease [247–250]. In transgenic mice
expressing the SOD1 mutation, intraluminal retention of high molecular weight aggregates
of SOD1 protein were found in the spinal cord motor neuron ER and colocalized with
ER chaperones. The accumulated SOD1 aggregates in the ER may trigger ER stress and
other inclusion-induced pathological processes [248,251,252]. Accordingly, the activation
of all branches of the UPR pathway in motor neurons is also a noticeable feature in ALS
pathology in vitro and in vivo. The level of IRE1α phosphorylation and subsequent Xbp1
mRNA splicing were higher in the spinal cord motoneurons of symptomatic SOD1-G93A
mice [248] and SOD1-G85R mutant-expressing cells [253]. The activation of the PERK
pathway (PERK and eIF2α phosphorylation; ATF4 and CHOP expression) was also ob-
served in various ALS models, including mutant SOD1-expressing mice [245,246,254],
ALS-related mutants (SOD1, FUS, TDP-43)-expressing cells [253,255,256], Drosophila model
expressing TDP-43 aggregates [257], and patients’ spinal cord samples with sALS [247].
Elevated CHOP expression was detected both in neurons and glial cells of the spinal cords
from patients with sporadic ALS and mice expressing mutant SOD1 [258]. In addition,
the cleavage and nuclear translocation of ATF6 were enhanced in vitro and in vivo ALS
models [248,253]. Besides, mutant SOD1 physically interacts with Derlin-1, leading to
disturbance of retrotranslocation of ERAD substrates from the ER to the cytosol, thereby
interrupting ERAD-mediated clearance of ER luminal misfolded proteins and triggering
ER stress in motor neurons [259]. This mutant SOD1 also induces an IRE1-TRAF2-ASK1
pathway-dependent apoptotic pathway, contributing to the neurodegeneration under
ALS [259].

8. Prion Disease
ER Stress and UPS Impairment in Prion Diseases

ER chaperon expression and ER stress-induced caspase-12 activation were significantly
increased in neuronal cell lines treated with purified PrPSc from scrapie-infected mice brains
or postmortem brain samples of patients with CJD [260]. Transcriptional analysis in BSE
also documented the upregulated expression of cytosolic chaperones (Hsp70 and DnaJ), as
well as ER chaperones (GRP94, GRP170, and GRP78/BiP) [261]. Many other genes in UPS
and autophagy-lysosome pathway were also increased in brain samples from BSE-infected
animals, demonstrating that pathogenic prion proteins evoked ER stress [261]. In addition,
an augmented PDI expression was observed in prion-infected mice and the brain of patients
with sporadic CJD [262]. Likewise, in pathogenic prion-expressing cells and mouse brains,
as well as in the brain tissues of patients with CJD, an increase in ERp57, another PDI
family protein (also called GRP58), was detected [263,264]. Interestingly, ERp57 expression
ameliorated PrPSc-induced toxicity, while ERp57 silencing exacerbated prion-associated
pathologies in PrPSc-expressing cells, and these were proposed to be mediated via the
physical interaction between ERp57 and PrPSc [263,264].

Additional ER stress could exacerbate the cytotoxicity and neurodegeneration caused
by PrPSc. Treatment of proteasome inhibitors and ER stress-inducing agents leads to
the extensive accumulation of insoluble PrPSc aggregates [265,266]. In contrast, as in
ERp57, UPR activations, including IRE1α, XBP1, ATF6, and ATF4, attenuate PrP aggregate
formation [266]. The persistent activation of the PERK-eIF2α pathway and subsequent
repression of protein translation are induced by pathogenic prions’ accumulation. On
the other hand, restoring protein translation by dephosphorylating eIF2α with GADD34
or inhibiting PERK by a pharmacological agent (GSK2606414) alleviates synaptic deficits
and neuronal loss in the prion-infected mouse brain, whereas salubrinal administration
worsens prion-induced neurotoxicity [267,268].

As in pathogenic Aβ, tau, and huntingtin, disease-associated PrPSc also impairs UPS.
Mechanistically, PrPSc specifically inhibits the catalytic β subunit of the 26S proteasome
and its proteolytic activity [269], which would further disrupt proteostasis and contribute
to prion-associated neurodegeneration.
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9. Future Perspectives—Therapeutic Strategies for Targeting ER Stress and
Neurodegenerative Diseases

Protein misfolding and toxic buildup of aggregates are the pathological hallmarks of
various neurodegenerative diseases. Thus, targeting protein quality control mechanisms,
such as protein folding, ER stress responses, and clearance of misfolded proteins, might be
a plausible therapeutic strategy.

9.1. Targeting Protein Misfolding and ER Stress

Preventing toxic inclusion formation by directly targeting misfolded protein aggre-
gates or molecular chaperons could be a promising option to treat protein misfolding-
associated neurodegenerative disorders. Numerous chemicals are identified to function as
“chemical chaperones” and alleviate ER stress (Table 1). For example, 4-phenylbutyric acid
(4-PBA) and tauroursodeoxycholic acid (TUDCA) have been suggested to act as chemical
chaperones by binding to exposed hydrophobic residues of unfolded proteins. However,
4-PBA and TUDCA may also attenuate ER stress via other unknown mechanisms.

Table 1. Chemical chaperones and other small molecules targeting pathogenic protein aggregations.

Disease Affected Brain Regions Disease-Causing Protein
Deposited/Mutant

Effective Chemical Chaperones and
Other Small Molecules

Alzheimer disease Cortex, hippocampus, basal
forebrain, brain stem

Amyloid β peptide derived from APP/
mutation in APP, presenilin1 or presenilin2,

APOE4 allele

Congo red, polyphenol-based compounds,
curcumin, thioflavin-T

Hyperphosphorylated tau

Curcumin derivatives
(e.g.,Dibenzoylmethane), methylene blue,

N744, rhodanines,
aminothienopyridazines (ATPZs)

Parkinson disease Substantia nigra, cortex,
locus coeruleus, raphe, etc. α-Synuclein Polyphenol-based compounds, curcumin,

myricetin, tanshinones, ginsenoside Rb1

Huntington disease Cortex, striatum,
other basal ganglia, etc.

Huntington with polyglutamine
expansion (exon1) Congo red, trehalose, C2-8

Amyotrophic lateral
sclerosis

Spinal motor neurons
and motor cortex

Mutations in C9orf72 (40~50%), SOD1
(20~25%),

TDP-43 (4~5%), FUS (4~5%), etc.
4-PBA, TUDCA, methylene blue

Prion disease Cortex, thalamus,
brain stem, cerebellum, etc. Prion protein (PrPSc)

Diphenylmethane derivative (GN8),
carbazole derivative (5y),

small aromatic molecules (NPRs)

Other small molecules have also been identified to resolve or prevent Aβ and tau
aggregation, likely by acting as chemical chaperones: Congo red, polyphenol-based com-
pounds, curcumin, and thioflavin-T for targeting Aβ aggregates [270]; methylene blue, cur-
cumin derivatives, N744, rhodanines, and aminothienopyridazines for tau aggregates [271].
Likewise, Congo red, trehalose, polyphenol-based compounds, and C2-8 have been demon-
strated to inhibit mHTT aggregate formation [272], while polyphenol-based compounds,
curcumin, myricetin, tanshinones, and ginsenoside Rb1 have been shown to suppress
α-synuclein oligomerization [273]. Using structural information of prions and in silico
drug screening, several small molecules such as a diphenylmethane derivative (GN8), a
carbazole derivative (5Y), and small aromatic molecules (NPRs) have been identified to
bind to prions and prevent them from forming aggregates [274]. Methylene blue also
showed neuroprotective and ER stress-suppressing properties in ALS model organisms
such as C.elegans and zebrafish expressing human mutant FUS or TDP-43 [275,276]. Re-
markably, a recent clinical trial has successfully demonstrated that 4-PBA and TUDCA
effectively reduce cell death and slow the functional decline of motor neurons in patients
with ALS [277].
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9.2. Targeting UPR Components

Recent efforts have identified several small molecules specifically targeting UPR factors
such as PERK, eIF2α, GADD34, IRE1α, and ATF6 [278] (Table 2). In particular, the PERK
branch has emerged as an effective target for several neurodegenerative diseases, including
AD, PD, ALS, and prion disease [234,279–281]. Salubrinal has been reported to exert a
protective role against ER stress-induced neuronal death in PD and HD [234,282]. However,
salubrinal might be inappropriate for long-term treatment since it could impair spatial long-
term memory formation due to sustained repression of protein translation [283]. Selective
PERK activators, MK-28 and CCT020312, have been shown to ameliorate neuronal toxicity
from mHTT and tau [236,284]. Additionally, phenotyping screening has identified SB1617,
which activates PERK and ameliorates tauopathies [268]. In contrast, the oral administration
of PERK inhibitor GSK2606414, restored global protein translation and slowed prion disease
progression with neuroprotection throughout the brain [268]. Likewise, recently identified
ISRIB restores protein translation and provides neuroprotection in prion-infected and
pathogenic Aβ-expressing mice [150,285] and also in mutant SOD1-expressing primary
neurons [286]. Another PERK inhibitor, SC79 induces Akt-mediated PERK phosphorylation
at Thr799, preventing eIF2α phosphorylation and displaying neuroprotection in prion-
infected mice [287].

Table 2. UPR component targeting molecules and their reported efficacy on protein aggregates-related
neurological pathology.

UPR Target Molecule Target Pathology Reference

PERK signaling
activators

CCT020312

HD, tauopathy [236,284]

MK-28

eIF2α phosphatase
inhibitors

Salubrinal HD, α-synucleinopathies [157,234,282]

Sephin1
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Table 2. Cont.

UPR Target Molecule Target Pathology Reference

Downstream inhibitors
of PERK signaling

ISRIB AD, Prion [150,292]

Trazodone
Prion, tauopathy-

frontotemporal dementia

[293]

Dibenzoylmethane

IRE1/XBP1s
activation

IXA1

AD [294]
IXA4

IXA6

Activation of ATF6
transcriptional activity

AA147
(N-(2-Hydroxy-
5-methylphenyl)-

3-
phenylpropanamide)

Amyloid aggregates-
related pathology [295]

Another branch of UPR, the IRE1-XBP1s pathway, has also been proposed as a promis-
ing target to address ER stress-associated diseases. A recent study has identified several
lead compounds that specifically activate IRE1-XBP1s signaling through high-throughput
screening and transcriptional profiling [294]. These selected compounds inhibit mutant
APP secretion and promote APP-degradation via ERAD. Another study discovered small
molecules that inhibit PDI and attenuate mHTT- and Aβ-induced neurotoxicity [296].

9.3. Future Perspectives

Increased life expectancy due to medical advancements, along with declining birth
rates, has resulted in the globe becoming an aging civilization. Chronic metabolic disorders
and neurological diseases such as AD, PD, HD, and ALS become more common as a re-
sult of this. The majority of neurodegenerative illnesses are caused by the accumulation
of misfolded protein aggregates, which are accompanied by a disruption of proteostasis
(Figure 3). However, there has not been a treatment for these neurodegenerative disorders
directly addressing impaired proteostasis. Recent studies have documented that ER home-
ostasis and its impairment (ER stress) are crucially involved in aging-associated diseases
such as metabolic and neurodegenerative diseases. The mechanistic relevance of ER stress
and its related signaling events (UPR) in proteostasis and neurodegenerative disorders
has been studied and explored here. Furthermore, we have introduced recent progress
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on the development of ER stress-targeting therapeutics. ER stress-relieving compounds
such as 4-PBA and TUDCA have shown their therapeutic promises not only in various
neurodegenerative animal models but also in recent clinical trials. Developing specific
UPR-targeting molecules would be promising, but they also face potential problems such as
conflicting outcomes and concerns over their long-term safety. As an alternative approach,
phenotypic drug screening could be helpful to find new small molecules to target ER stress
and its associated pathologies. For example, a connective map (CMAP) provides in silico
screening of small molecules using gene expression changes as a phenotypic assay, which
has been beneficial for finding novel drugs such as celastrol and withaferin A to target
cellular stress-induced pathologies [85]. Indeed, celastrol, which was initially identified
with CMAP to ameliorate ER stress and its associated diseases such as obesity [297], has
also been demonstrated to alleviate ER stress-related neurodegenerative diseases [298].
Additionally, the recent development of targeted protein degradation methods such as
lysosome-targeting chimera (LYTAC) and proteolysis-targeting chimera (PROTAC) would
make it possible to target previously undruggable UPR factors, protein aggregates, and
other ER stress-related proteins [299].
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Abbreviations

4-PBA 4-phenylbutyric acid
6-OHDA 6-hydroxy-dopamine
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
AMPK AMP-activated protein kinase
APP Amyloid-β precursor protein
AR-JP Autosomal recessive juvenile parkinsonism
ASK1 Apoptotic-signaling kinase-1
ATF4 Activating transcription factor-4
ATG AuTophaGy(ATG)-related proteins
ATP13A2 ATPase Cation Transporting 13A2
Aβ Amyloid-β
BAK Bcl-2 homologous antagonist killer
BAX Bcl-2-associated X protein
BDNF Brain-derived growth factor
BSE Bovine spongiform encephalopathy
BST1 Bone Marrow Stromal Cell Antigen 1
C/EBPa CCAAT/enhancer binding protein a
C9ORF72 Chromosome 9 open reading frame
CHIP Carboxy-terminus of Hsc70 interacting protein
CHOP C/EBP homologous protein
CJD Creutzfeldt-Jakob disease
CREB cAMP-response element binding protein
eIF2a Eukaryotic translation initiation factor α
ER Endoplasmic reticulum
ERAD ER-associated protein degradation
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ERK Extracellular signal-regulated kinase
ERp57 ER protein 57
FKBP51 FK506 binding protein 51 kDa
FoxO1 Forkhead box protein O1
FUS Fused in sarcoma
GABA γ-Aminobutyric acid
GADD153 Growth arrest and DNA-damage-inducible 153
GBA Glucosylceramidase Beta
GCN2 General control nonderepressible 2
Gp78 Glycoprotein 78
GRP78/BiP 78 KDa glucose-regulated protein/
HD Huntington’s disease
Herp Homocysteine-induced ER protein
Hrd1 HMG-CoA reductase degradation protein 1
Hsp90 Heat shock proteins 90
HTT/mHtt Huntington/mutant Huntington
IKK/NFκB IkappaB kinase/Nuclear factor kappa B
IL- Interleukin-
IP3R Inositol 1,4,5-triphosphate receptor
IRE1 Inositol requiring protein-1
ISRIB Integrated stress response inhibitor
ITPKB Inositol-Trisphosphate 3-Kinase B
JAK/STAT Janus kinase/Signal transducer and activator of transcription
JNK/c-Jun c-Jun N-terminal kinase/c-Jun
LB Lew bodies
LRRK2 Leucine-rich repeat kinase 2
MAM Mitochondria-associated ER membrane
MAPK Mitogen-activated protein kinase
MCU Mitochondrial calcium uniporter
MICU Mitochondrial Calcium Uptake
MPP+ 1-methyl-4-phenylpyridinium
MPTP N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mTOR Mechanistic target of rapamycin
NLRP3 NLR Family Pyrin Domain Containing 3
NMDAR N-methyl-d-aspartate receptor
Npl4 Nuclear protein localization protein 4
Pael-R Parkin-associated endothelin-like receptor
PD Parkinson’s disease
PDI Protein disulfide isomerase
PERK Protein kinase RNA-like ER kinase
PI3K Phosphoinositide 3-kinase
PINK1 PTEN-induced kinase 1
PKR Protein kinase R
PLA2G6 Phospholipase A2 Group VI
PolyQ Polyglutamine
PrPC/PrPSc Cellular α-helical prion proteins/Scrapie isoform of prion protein
PS1 Presenilin1
RIDD Regulated IRE1-dependent decay
RyR Ryanodine receptor
S1P/S2P Site 1 protease/Site 2 protease
SNpc Substantia nigra pars compacta
SOD1 Superoxide dismutase
TARDBP/TDP-43 TAR DNA binding protein
TFEB Transcription factor EB
TNF- Tumor necrosis factor-
TPR Translocated promoter region
TRAF2 Tumor necrosis factor receptor-associated factor 2
TSEs Transmissible spongiform encephalopathies
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TUDCA Tauroursodeoxycholic acid
TXNIP Thioredoxin interacting protein
Ufd1 Ubiquitin recognition factor in ER associated degradation 1
ULK1 Unc-51 like autophagy activating kinase 1
uORFs Upstream open reading frames
UPR Unfolded protein response
UPS Ubiquitin-proteasome system
VCP Valosin-containing protein
VGCC Voltage-gated calcium channel
XBP1 X-box binding protein 1
α-syn α-synuclein
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