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Abstract

Problematic smartphone use (PSU) during adolescence has been associated with negative

short- and long-term consequences for personal well-being and development. Valid and reli-

able predictors and indicators of PSU are urgently needed, and digital trace data can add

valuable information beyond self-report data. The present study aimed to investigate

whether trace data (duration and frequency of smartphone use), recorded via an app

installed on participants’ smartphone, are correlated with self-report data on smartphone

use. Additionally, the present study aimed to explore which usage indicators, i.e., duration,

frequency, and time distortion of smartphone use, better predict PSU levels cross-section-

ally and longitudinally, one year later. Results from a sample of 84 adolescents showed that

adolescents tend to rely on the frequency of smartphone use when reporting on the time

they spent with the smartphone. Traced duration of smartphone use as well as time distor-

tion, i.e., over-estimation, are significant predictors of PSU. Methodological issues and theo-

retical implications related to predictors and indicators of PSU are discussed.

Introduction

The rise of digital media has sparked numerous studies on adolescents’ use of these media, fre-

quently focusing on the associations with developmental and well-being outcomes [1–7]. A

large body of previous studies is concerned with the negative aspects of too much media use,

especially adolescents’ dependency on digital devices like smartphones. In fact, the smartphone

has become an indispensable part of most adolescents’ life, and its use is driven by the core

motivations and needs of that age [8]. According to a recent review, one out of four adoles-

cents shows symptoms of Problematic Smartphone Use (PSU) [5], which negatively affects

social and emotional well-being [9] and academic outcomes [10]. However, until today, most

of the studies focusing on PSU relied on self-report data making it hard to draw valid conclu-

sions on which type of smartphone activity can be described as problematic [11]. Yet, techno-

logical advancements have enabled the use of digital trace data–defined as "records of activity

undertaken through an online information system—thus, digital" [12] p767 –in addition to or
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even as a substitute for self-report data. To date, few studies made use of trace data to investi-

gate PSU, focusing on adult populations [for a review, see 13]. The incorporation of digital

trace data in research with adolescents is still scarce [14–16]. Therefore, the present study

wanted to fill the gap and investigated adolescents’ PSU by considering both self-report and

digital trace data of smartphone use at the cross-sectional and longitudinal level. This approach

shed light on the behavioral patterns that lead to the development of PSU, thus informing edu-

cational interventions that promote a smart use of the smartphone in adolescence.

Literature review

Problematic smartphone use

Smartphones have become the preferred digital media device among adolescents. In the U.S.,

95% of teens have access to a smartphone, through which they mostly pass time, connect with

others, learn new things, and avoid face-to-face interactions [17]. In Western Europe, preva-

lence rates are similar. In Switzerland, 99% of 12 to 19-year-olds own a smartphone, on which

they spend, on average, almost 4 hours during a weekday and more than 5 hours during a

weekend day [13]. Early adolescents (12 to 13 years) spend more time playing online games,

while they make less use of the smartphone for instant messaging, social media, online

searches, and activities like listening to music and creating multimedia material. On the con-

trary, older adolescents use the smartphone more often for social media, photo and video edit-

ing, time management, e-mail, navigation, and vocal assistance [13]. In 2020, the amount of

time spent on the device reached the highest increment in the last ten years, also due to the

COVID-19 pandemic and associated social distancing and confinement measures [13], thus

making it even more imperative to comprehend PSU objectively. The easiness of its portability,

the ubiquitous accessibility, and the multitude of personalized Internet-based applications on

the smartphone potentially facilitate the development of PSU. Real-time data showed that

youth pick up their smartphone every five minutes, thus making smartphone use a deeply

internalized, unconscious, and reinforced behavior [18]. As reported by Sohn and colleagues

[5], one in four children and young people shows signs of PSU. According to the same review,

PSU is consistently associated with higher levels of depression, anxiety, stress, sleep problems,

and daily functional impairment, including poor academic achievement. Similar results have

been found in other studies, where PSU was linked to internalizing symptoms, risk of cyber-

bullying behaviors, higher distractibility, and body image concerns, to name a few [10,19,20].

Although a standard agreement on what constitutes PSU does not yet exist, it has been

compared to the similar and better-researched concept of Internet Addiction (IA). PSU and

IA share similarities with the more general category of "behavioral addictions", introduced in

2010 by the DSM-5 Working Group after decades of debate [21,22]. Behavioral conducts car-

ried out in an extreme way generate substantial problems for a person’s well-being, indepen-

dently of the nature of the specific activity. The repetitive and compulsive engagement in

smartphone-related activities shares common characteristics with substance use disorders and

gambling disorder (the first disorder included as a non-substance behavioral addiction in the

DSM-5). In the case of PSU, these characteristics comprise cognitive salience, spending a lot of

time using the smartphone, unsuccessful attempts to reduce smartphone use, positive mood

when using the device and symptoms like irritability and distress when one is unable to reach

it, difficulty in regulating the use, unsuccessful attempts to stop, and interpersonal problems

(with family or friends, at work or school) due to excessive smartphone use [23–28]. PSU is

also closely linked to "nomophobia", which refers to discomfort, anxiety, nervousness or

anguish caused by being without a mobile phone [29]. To summarize, although diverse termi-

nologies and measures exist [30], PSU has been generally defined akin a behavioral or non-
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substance related addiction. However, it is important to consider that smartphones are linked

to different (social) rewards, such as positive feedback and validation by peers [8]. This makes

adolescents use the smartphone many times a day without necessarily reflecting an addictive

behavior [31–33]. That said, self-report measures can only partially depict different features of

PSU.

Overcoming self-report biases

It is commonly acknowledged that self-report is subject to systematic biases, which include,

among others, recall, estimation, and social desirability bias [34–36]. Recall bias, for example,

is the result of cognitive burden and occurs when respondents use heuristic shortcuts to recall

the duration and frequency of everyday behaviors [37]. Furthermore, problems with time esti-

mation are frequent, especially among younger populations who still have to develop a sense

of time and the ability to quantify the time they engaged in different activities and to report on

it [38]. On the other hand, social desirability bias is a systematic bias across all age. It describes

the tendency of respondents to inaccurately report on sensitive topics to present themselves in

the best possible light [39]. Self-report biases are a recognized methodological problem in dif-

ferent domains, including health sciences [40], research on organisations [41], consumer mar-

keting [42], and media studies [43]. Concerning smartphone use, a recent review and meta-

analysis underlined that, although several self-report scales correlate with objectively logged

data, the strength of the relationship is far from convincing [44]. To this regard, the inclusion

of objective trace data would complement the assessment of PSU.

Thanks to technological advancements, automated recording tools, such as tracking

applications [45], are now available to overcome these biases [for an introduction, see 46],

and they represent an excellent potential in incorporating digital trace data in survey

research. However, the use of tracking applications to assess smartphone use is still at the

beginning [46–48], and researchers pursuing the collection and analysis of trace data face

different challenges. In their overview paper on integrating survey and digital trace data,

Stier and colleagues [47] highlighted three potential issues: Firstly, as with any study, the

collection of trace data requires informed consent from individuals who may have objec-

tions about automated tracking of their digital media behaviors. Secondly, technical and

methodological issues can cause problems in the collection and scientific analysis of digital

trace data alone and in combination with survey data. Thirdly, researchers need to improve

the conceptual and theoretical frameworks for dealing with such data’s richness. A fourth

challenge can be added to the list, namely, legal restrictions. For example, the European

Union does not allow collecting shared digital media content with identifiable information

about depicted persons without the active consent of all parties represented in this content

(i.e., third-party consent) [49].

Despite these challenges in collecting digital trace data, researchers have started to trace

smartphone use as an increasing phenomenon among younger populations across different

societies [50–52]. Through smartphones, automated recording can happen in very different

ways, for example, by tracking users via dedicated applications installed on the device [47] or

via a software-modified smartphone to record the number and duration of calls [53]. For

example, Mireku and colleagues [14] examined the similarity between self-reported mobile

phone use data and objective mobile operator traffic data in 11–12 years old participants,

focusing on calls and text messages. The number and duration of calls done by adolescents

were also assessed by Inyang and colleagues [15] and Aydin and colleagues [16]. In addition,

Reeves and colleagues [51,54] developed a technology based on a series of screenshots of the

user’s mobile device to create what the authors call a ’screenome’ of digital media use.
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Investigating PSU using objective trace data

Since the smartphone’s excessive use is an indicator of PSU [23], researchers have started to

investigate the frequency and duration of smartphone use by incorporating objective trace

data in their statistical analyses [55]. When it comes to the exploration of behavioral patterns

of PSU, Lin and colleagues proposed diagnostic criteria for what the authors called "smart-

phone addiction" based on digital trace data and clinical interviews in a sample of adult partici-

pants [50]. Additionally, in another study [56], they found that the presence of

underestimation (i.e., the discrepancy between traced duration of device use and self-reported

use) and the traced frequency of smartphone use were better predictors of psychiatrists’ rating

of smartphone addiction than the traced duration of device use. This result stands in partial

contrast to a previous research conducted by Ko and colleagues [57], who found that self-

report excessive time spent online (i.e. duration of use) was a risk factor of problematic Inter-

net use as well as PSU. Furthermore, Tossell and colleagues [58] compared smartphone use

indicators among young adults grouped into addicted and non-addicted smartphone users

according to their self-assessment. They found that the self-declared addicts spent twice the

time on their phones and started interacting with applications (especially those meant for

social interactions) twice as often as the non-addicts. Likewise, a study by Noë and colleagues

[59] revealed that user-interface interactions, especially if they involve lifestyle and social

media applications, were related to higher PSU levels in a sample of young adults. To the best

of our knowledge, and according to a recent review summarizing objective measures used to

assess PSU [55], no study to date has combined self-report and digital trace data to predict

PSU in mid adolescents cross-sectionally, let alone longitudinally.

Study aim

To fill this gap, the present study aimed to identify valid and reliable indicators of PSU in ado-

lescence over time by using self-report and objective trace data on smartphone use. From a

methodological point of view, the study wanted to explore to what extent self-report data are

an accurate estimate of objective digital trace data. From a theoretical point of view, the study

aimed to investigate which indicators among traced duration of smartphone use, traced fre-

quency of use, and time distortion (i.e., the discrepancy between self-report and traced use),

best predict PSU cross-sectionally and longitudinally, one year later. Based on the findings

from previous studies with adult populations, we derived the following hypotheses:

H1: Longer duration of traced smartphone use is related to higher levels of PSU.

H2: Time distortion of smartphone use is related to higher levels of PSU.

H3:Higher frequency of traced smartphone use is related to higher levels of PSU.

Additionally, we added the following two research questions:

RQ1:How much does self-report smartphone use correlate with traced duration of smartphone
use?

RQ2: Is there a difference in the correlation between self-report duration and traced duration
when comparing smartphone use for weekdays and weekend days?

Methodology

The present study is part of the longitudinal MEDIATICINO panel study (www.mediaticino.

usi.ch), focusing on digital media use and youth well-being. Since 2014, the study has followed
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a cohort of approximately 1’400 adolescents born in 2004/05 and residing in Canton Ticino,

Italian-speaking Switzerland.

Data collection

Survey data. The larger panel study relies on an annual self-administered paper-and-pen-

cil questionnaire to collect information about adolescents’ use of digital media (including

duration and type of use), physical, psychological, and social well-being, as well as on different

aspects of the parent-child relationship. Each year, survey data are collected in collaboration

with schools, who distribute the questionnaire using a Unique Identifier (U-ID) and the asso-

ciated student name, to which only school staff has access. The U-ID is used to match different

waves and assure participants’ anonymity during data processing and analysis by the research

team. Further information on the data collection procedure can be found elsewhere [60].

Digital trace data. In 2018 and 2019, the panel study was extended by introducing an auto-

mated way to collect data on smartphone use, i.e., by recording data of adolescents’ smartphone

use via a dedicated application installed on their device. All the panel study participants were

invited to participate through a letter forwarded by the collaborating schools to students’ families.

Participants who provided parental consent received further information on how to download

the application and register for the study. The application, called Ethica, was specially developed

for public health research purposes for Android and iOS operating systems (ethicadata.com).

Ethica automatically collects trace data, such as screen time and application usage. To match

trace data with self-report questionnaire data, participants in the Ethica study received a gener-

ated login e-mail address matched to their U-ID. Schools distributed the instruction material

with information on how to download Ethica and register for the study within the application by

using the generated login e-mail address and a personal password. This procedure allowed the

combination of digital trace data and questionnaire data while guaranteeing students’ anonymity.

Students provided their active consent directly in the Ethica application upon enrolment.

Ethical considerations. The Cantonal education administration of Ticino approved the

annual panel study based on self-administered questionnaires. The embedded Ethica study

received additional approvals from the Ethics Committee of the Università della Svizzera itali-

ana and from the Cantonal Data Protection Officer of Ticino.

Sample

In 2018, the larger panel included 1419 students, of which 1374 (96.8%) completed the paper-

and-pencil questionnaire at school. For 264 (18.6%) students, parents provided informed con-

sent to invite their children to the Ethica study. Despite parental consent, 169 (64%) students

did not download the Ethica application. The remaining 95 students (6.7% of the initial sam-

ple) eventually participated in the Ethica study in 2018. Compared to the students who did not

join the Ethica study, included participants did not differ in gender (p = .205), perceived socio-

economic status (p = .229), or self-reported daily smartphone use (p = .114) [61]. Due to tech-

nical problems and some participant dropouts, reliable trace data were available for 89

participants. When combining digital trace data and self-report data, we eliminated other five

cases with missing values on self-report data. The analytical sample was composed of 84 partic-

ipants with complete and matched data for T1 (Mage = 13.56, SDage = .52, 46.4% males), of

which 80 participants also had complete survey data for T2.

Measures

Perceived duration of smartphone use. Self-report smartphone use was measured in the

annual survey with two questions: "How much time do you usually use the smartphone on a
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typical school day/weekend day?". For each question, students estimated their daily smart-

phone use by choosing one option on a scale with nine-time interval: 0 "never", 1 "up to 0.5

hours", 2 "between 0.5 and 1 hour", 3 "between 1 and 1.5 hours", 4 "between 1.5 and 2 hours", 5

"between 2 and 3 hours", 6, "between 3 and 4 hours", 7 "between 4 and 5 hours", and 8 "5 or

more hours". To allow the comparison with trace data, results were converted into hours by

using the midpoint for each category of the original interval scale: (0 = 0) (1 = 0.25) (2 = 0.75)

(3 = 1.25) (4 = 1.75) (5 = 2.5) (6 = 3.5) (7 = 4.5) (8 = 5.5). For the highest interval (“5 or more

hours”), we used 5.5 hours as a proxy of time spent with the smartphone [62]. The weighted

mean between a typical school day and a typical weekend day was used as an approximate

measure of smartphone use in terms of hours per day [(estimation of a typical weekday�5+-

estimation of a typical weekend day�2)/7] (M = 1.88, SD = 1.41, r between weekday and week-

end day use = .90, p< .001).

Trace data for the duration of smartphone use. The traced duration was divided into

hours on weekdays and weekend days. All weekdays were averaged to obtain an aggregate

measure for typical weekday use, and all weekend days were averaged to obtain an aggregate

measure for typical weekend day use. Once again, the weighted mean between a typical week-

day and a typical weekend day was used as an approximate measure of smartphone use in

terms of hours per day [(traced duration for a typical weekday�5+traced duration for a typical

weekend day�2)/7] (M = 1.89, SD = 1.52, r between weekday and weekend day use = .855, p<

.001). Missing data were handled with Hidden Markov Models [for more details, see 63].

Trace data for frequency of smartphone use. The frequency of smartphone use, i.e.,

checking behavior, was assessed by automatically counting how many times participants acti-

vated their smartphone screen during a weekday and a weekend day. Applying the abovemen-

tioned formula, we obtained an average measure of checking behavior per day weighted for

weekdays and weekend days [(traced frequency for a typical weekday�5+traced frequency for a

typical weekend day�2)/7] (M = 57.46, SD = 38.07, r between weekday and weekend day use =

.888, p< .001)

Problematic smartphone use. Perceived PSU was assessed with the short version of the

Smartphone Addiction Scale for adolescents (SAS-SV; 62) at both T1 in spring 2018 and T2 in

spring 2019. The scale consists of ten items measured on a scale from 1 "strongly disagree" to 6

"strongly agree". All items were averaged to obtain an overall measure for each time point with

higher values indicating higher levels of PSU (MT1 = 1.86, SDT1 = .85, MT2 = 1.94, SDT2 = .86).

In line with the work by Kwon and colleagues [64], the SAS-SV showed good levels of reliabil-

ity at both waves (αT1 = .89 and αT2 = .89). The original items and the Italian translation of the

scale can be found in the S3 Table.

Social desirability. Given that PSU was assessed through self-report, we accounted for

adolescents’ tendency to provide socially desirable answers in our multivariate analyses. Social

desirability was measured at T1 with eight items from the Italian version of the Children’s

Social Desirability Short Scale [60]. Items were assessed on a 5-point scale ranging from 1

"never" to 5 "always". All items were reverse coded and averaged to obtain an overall measure

of social desirability with higher values indicating higher social desirability levels (M = 2.64,

SD = .70, α = .84).

Analytical plan

After computing descriptive statistics for each smartphone use indicator, we, first, calculated

the correlations between self-report data and trace data by considering both duration and fre-

quency of smartphone use for a general day, weekdays, and weekend days. Since the data were

not normally distributed, variables were log-transformed before they were entered in the
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analyses. A Bonferroni correction was applied when self-report smartphone use was compared

to traced duration and frequency of use (p� .017).

Second, to obtain a measure of time distortion, we calculated a difference index Δ by sub-

tracting self-report duration of use from automatically recorded use. Hence, negative values

represent an over-estimation and positive values an under-estimation of smartphone use.

Third, we calculated Pearson’s correlation coefficient for all the variables included in the

subsequent regression models (i.e., for a general day, a weekday, and a weekend day). Addi-

tionally, we computed Spearman’s rank correlations (by keeping each item in the original ordi-

nal scale format) to better investigate how traced duration, frequency, and time distortion,

were related to each item of the SAS-SV scale. The results were corrected for multiple compari-

sons (p� .005).

Eventually, we ran regression models with PSU at T1 and T2 as the outcome variables pre-

dicted by traced duration and frequency of smartphone use as well as time distortion. Gender

and social desirability were included as control variables. In the longitudinal model, we also

included PSU at T1 to control for autoregressive effects. In particular, six regression models

were run to predict PSU levels cross-sectionally (at T1) and one year later (at T2). Due to the

small sample size, we decided to highlight marginally significant effects (p< .10) when report-

ing the regression results [65]. The dataset and the survey instrument are available in a reposi-

tory at the following link: https://osf.io/hwr2u.

Results

Descriptive results

Duration of smartphone use was automatically collected through the Ethica application on

participants’ smartphones for 45 consecutive days from the enrollment date. Results of digital

trace data showed that adolescents used the smartphone, on average, for one hour and fifty

minutes per day, which was the average of all 45 recorded days irrespective of weekdays and

weekend days (M = 1.89, SD = 1.52). The minimum was five minutes, and the maximum was

six hours and fifty minutes. When looking at weekdays and weekend days separately, the

recorded amount of time on a typical weekday was one hour and forty minutes (M = 1.68,

SD = 1.51). In contrast, the average amount of time spent on the smartphone on a typical

weekend day increased to two hours (M = 2.01, SD = 1.65). Trace data for frequency of use

showed that adolescents activated the screen of their smartphones, on average, 57 times

(median = 51) during a typical day, ranging from 7 to 222 times. The frequency of use tended

to be lower on a weekday, with 55 times (median = 48, ranging from 7 to 196), on average, and

higher on a weekend day (M = 66, median = 51, ranging from 1 to 286).

Regarding self-report measures, we found that participants indicated to spend approxi-

mately one hour and 53 minutes (M = 1.88, SD = 1.41) on their smartphone during a general

day. However, they estimated to spend approximately one hour and forty minutes during a

weekday (M = 1.67, SD = 1.40) and two hours and a half during a weekend day (M = 2.43,

SD = 1.56). Also, participants reported somewhat higher levels of PSU at T2 compared to T1

(MT1 = 1.86, SDT1 = .85, MT2 = 1.94, SDT2 = .86). Yet, the increment was not statistically signif-

icant (t = -1.49, p = .140).

Additionally, based on the computed difference index (Δ), we estimated the extent of par-

ticipants’ time distortion when reporting on their smartphone use. The results showed that, in

general, adolescents tended to equally over- and under-estimate, with the mean of the differ-

ence index being close to zero (M = .006, SD = 1.83). In particular, 44% of the sample tended

to over-estimate their smartphone use on a general day, 43% tended to under-estimate, and

13% provided a correct smartphone use estimate (with an error ranging from -30 minutes to
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+30 minutes). On weekdays, participants tended to under-estimate the time spent on the

smartphone (M = .152, SD = 1.83; 38% over-estimators, 45% under-estimators, and 17% cor-

rect estimators). Conversely, during weekend days, adolescents tended to over-estimate smart-

phone use (M = -.358, SD = 2.02, with 54% over-estimators, 46% under-estimators, and 0%

correct estimators). To note, the variability in time distortion was larger on a weekend day

compared to a weekday. An overview of the results is shown in Fig 1.

Accuracy of self-report measures of smartphone use

For a general day, self-report duration of smartphone use positively and significantly corre-

lated with traced frequency of use (r = .276, p = .012). Similarly, for a typical weekday, self-

report duration was correlated with traced frequency of use (r = .244, p = .027). After applying

a correction for multiple comparisons, the result was no longer significant. However, looking

at a typical weekend day, the self-report measure significantly correlated with traced frequency

of use (r = .325, p = .014). No significant relationship was found between self-reports and

traced duration of smartphone use for a general day, a typical weekday, and a weekend day.

Thus, to answer RQ1, there was a small-to-medium relationship between self-report smart-

phone use and trace data, but only when the traced frequency of smartphone use was consid-

ered. With regards to RQ2, no noteworthy differences in the correlation coefficients were

evident for self-report and traced smartphone use, neither on weekdays nor on weekend days.

Preliminary correlations with problematic smartphone use

For a general day, Pearson’s bivariate correlations showed that PSU at T1 correlated only with

social desirability (r = .478, p< .001), whereas PSU at T2 correlated with time distortion, with

higher PSU being associated with over-estimation (r = -.236, p = .035), and social desirability

(r = .326, p< .001). For weekdays, PSU correlated only with social desirability at both T1 (r =

Fig 1. Representation of traced and self-reported estimates (in hours per day) of the duration of smartphone use

for a general day, a weekday, and a weekend day.

https://doi.org/10.1371/journal.pone.0263815.g001
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.478, p< .001) and T2 (r = .326, p< .001). Whereas, for weekend days, time distortion signifi-

cantly and negatively correlated with PSU at both T1 (r = -.243, p< .001) and T2 (r = -.278, p

< .001), in addition to social desirability (r = .478, p< -001 at T1 and r = .326, p < .001 at T2).

Table 1 summarizes the results for a general day (see S1 and S2 Tables in the Supplement for

weekdays and weekend days results).

Since the SAS-SV covers different facets of the concept of PSU (e.g., excessive use, with-

drawal symptoms, conflict), we correlated each item of the SAS-SV scale with traced smart-

phone use and the difference index as an indicator of time distortion. We found that item 9

"Using my smartphone longer than I had intended" was the only item that was positively and

significantly correlated with traced frequency of use (rho = .322, p = .003). Frequency of smart-

phone use also correlated with item 3 "Feeling pain in the wrists or at the back of the neck

while using a smartphone" (rho = .297, p = .007) and item 5 "Feeling impatient and fretful

when I am not holding my smartphone" (rho = .260, p = .017). However, after applying Bon-

ferroni’s correction, these latter results were no longer significant. Result are reported in S3

Table.

Furthermore, correlations between measures of smartphone use and PSU at T2 showed

that time distortion negatively correlated with item 5 (rho = -.357, p = .001), meaning that

over-estimators reported higher levels for this item. Time distortion also correlated with item

8 “Constantly checking my smartphone so as not to miss conversations between other people

on Twitter or Facebook” (rho = -.221, p = .050). Traced duration of use was significantly

related to item 10 “The people around me tell me that I use my smartphone too much” (rho =

.226, p = .045), however the latter two were no longer significant after applying the correction

for multiple comparisons. Results are reported in S4 Table.

Regression results

Including gender, social desirability and measures of smartphone use, i.e. traced duration and

frequency of smartphone use, and time distortion as predictors of PSU (see Table 2), regres-

sion results showed that social desirability (β = -.455, p < .001) and traced duration of smart-

phone use (β = .307, p = .038) were significantly associated with PSU at T1. Time distortion,

i.e., the tendency to over-estimate smartphone use, showed only a marginally significant asso-

ciation with PSU at T1 (β = -.232, p = .062). In the longitudinal model, the tendency to over-

estimate predicted significantly higher PSU levels one year later (β = -.267, p = .029), even after

controlling for baseline levels of PSU.

Table 1. Bivariate correlations among predictor and outcome variables for a general day.

1. 2. 3. 4. 5. 6. 7.

1. PSU at T1 1

2. PSU at T2 .575
��

1

3. Trace duration of smartphone use .150 .102 1

4. Trace frequency of smartphone use .199 .179 .580
��

1

5. Time distortion (Δ index) -.176 -.236
�

.520
��

.079 1

6. Gender .001 -.095 -.062 .137 -.192 1

7. Social desirability .478
��

.326
��

.071 .323
��

-.190 -.122 1

Δ index represents traced duration minus self-report duration

�p < .05

�� p < .001.

https://doi.org/10.1371/journal.pone.0263815.t001
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When we considered the same predictor variables in the context of weekday estimates (see

S5 Table), social desirability was significantly associated with PSU at T1 (β = -.262, p< .001).

Traced duration of smartphone use was also related to PSU at T1 (β = .269, p = .060), but the

association was marginally significant. In addition, PSU at T1 predicted the outcome at T2 (β
= .508, p< .001). Time distortion also had a partially significant effect (β = -.233, p = .054).

Eventually, when changing the context to weekend days (see S6 Table), PSU at T1 was sig-

nificantly associated with social desirability at T1 (β = -.436, p< .001), traced duration of

smartphone use (β = .337, p = .044), and time distortion, in particular the tendency to over-

estimate (β = -.375, p = .005). Also, time distortion (β = -.302, p = .025) was a significant pre-

dictor of PSU at T2, controlling for PSU at T1 (β = .447, p< .001).

To conclude, H1 and H3 were generally sustained. Participants with a longer traced dura-

tion and an over-estimation of smartphone use also reported higher levels of PSU. Addition-

ally, H2 was partially sustained, but only at the item level of PSU, i.e. for traced frequency of

smartphone use and selected items of the SAS-SV.

Discussion

The pervasiveness of digital media devices, especially smartphones, has raised concerns about

adolescents’ problematic use of these devices. Previous studies highlighted that PSU negatively

impacts well-being [5,19,66,67]. However, the studies relied on self-report data to assess ado-

lescents’ (problematic) smartphone use, which is subject to several biases like recall, estima-

tion, and social desirability bias [34]. Objectively recorded smartphone use overcomes

limitations of self-reports [68], though the use of trace data poses challenges, too [47]. To date,

few studies with adult samples combined self-report and digital trace data to study PSU [55].

However, data collected from underage populations are still scarce [14–16,53] and focused

mainly on the frequency of calls and text messages, leaving out overall smartphone use like

duration and frequency and other user behaviors such as social media use, streaming, gaming,

or Internet use in general. Furthermore, past studies did not relate trace data to PSU.

Table 2. Regression results for predicting PSU at T1 and T2 from traced smartphone use on a general day.

Outcomes

Problematic smartphone use at T1 Problematic smartphone use at T2

Predictor variables B (S.E.) β B (S.E.) β

1.Gender .038 (.085) .046 -.097 (.081) -.116

2.Social desirability -.269 (.064) -.455�� -.021 (.067) -.035

3.Traced duration of smartphone use .116 (.055) .307� .050 (.055) .132

4.Traced frequency of smartphone use -.068 (.079) -.114 .036 (.076) .060

5. Δ index -.053 (.028) -.232† -.062 (.028) -.267�

6.PSU at T1 .520 (.110) .494��

Intercept .108 (.28) .170 (.277)

Adjusted-R2 .235 .344

F 6.112 7.89

p-value < .001 < .001

Δ index represents trace duration minus self-report duration

†p < .1

�p < .05

��p < .01.

https://doi.org/10.1371/journal.pone.0263815.t002
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To the best of our knowledge, this is the first study using digital trace data to explore predic-

tors of PSU in adolescence. Using a dedicated application installed on participants’ devices, we

collected trace data from a sample of 84 adolescents aged 13 to 14 years and compared objec-

tive trace data to self-reported estimates. We, furthermore, used both trace data and self-report

data to identify predictors of higher PSU levels, both cross-sectionally and longitudinally. Our

results provided valuable insights into smartphone users’ dynamics and disentangled predic-

tors of PSU in adolescence. While some results were in line with past research on adult popula-

tions, others were not.

In contrast to previous literature on the adult population, which showed inconsistent results

on the accordance between self-report and trace data [37,66–68], we found that trace and self-

report data showed similar values for smartphone use. Thus, adolescents tended to report a rel-

atively reliable estimate of their time spent with the smartphone per day, which, in our sample,

amounted to approximately two hours. However, looking at the correlations between trace

and self-report data, coefficients were significant only for self-reported duration of smartphone

use and traced frequency of smartphone use, not traced duration. This result was consistent for

estimates referring to a general day, a weekday, and a weekend day. In other words, when ado-

lescents were asked to estimate the total time (duration) they spent with their smartphones on

a typical weekday and weekend day, they relied more on the frequency of use, i.e. the fre-

quency of their checking behaviors. This result highlights an important point to consider

when adolescents report on their online behaviors: The cognitive process involved in estimat-

ing the duration of smartphone use is determined by the interference (approximated by the

frequency of checking behaviors) of the smartphone in adolescents’ everyday activities, and

less by the duration of the use. In fact, checking the smartphone, especially in repeated short

time intervals, is intrusive and distracting and, thus, more salient when asked to report on the

duration of smartphone use.

The interference of the smartphone with everyday activities is also an indicator of PSU. As

such, we found that the traced frequency of smartphone use in the present study correlated

with item 9 of the SAS-SV scale, which tackles a subdimension of PSU related to the perception

of excessive time spent on the smartphone. Without correcting for multiple comparisons, the

frequency of smartphone use also correlated with the other two items of the same scale, thus

further underlying the link between the two variables. Conversely, traced duration of smart-

phone use did not correlate with any item of the PSU scale.

The predictive role of the frequency of smartphone use is not surprising, considering the

nature of checking behaviors. Indeed, checking habits are specific to smartphone use, rather

than the use of other devices like, for example, laptops and tablets [69]. Smartphones offer

quick and easy access to rewards and work as a gateway to other applications and activities,

thus increasing the overall time spent on the device and interfering with daily life. As reported

by Heitmayer and Lahlou [18], young people described picking up their phones as "feeling nat-

ural or automatic, and even unconscious like when you cough and put your hand over your
mouth" (p. 5). Interestingly, the authors also found that almost all study participants picked up,

unlocked, used, and put back the phone without a particular purpose in mind—an activity

named "fidgeting". Additionally, when unlocked, young people often fall into a loop. For exam-

ple, the engagement in one social media app also triggers the use of other social media plat-

forms, thus making participants spend more time on the smartphone than initially intended.

Considering our results, it is possible that adolescents with higher PSU levels also unlock and

use the phone without a particular intention multiple times a day, thus entering into a loop.

However, when predicting PSU, the traced duration of smartphone use, rather than the

traced frequency of use, showed a significant relationship. In other words, traced frequency is
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associated with self-reported duration of smartphone use, whereas traced duration is related to

self-reported PSU.

This result is partially in line with findings from tracking studies in adult populations. For

example, Montag and colleagues [70] found that both phone use recorded in hours per week

and the number of calls and text messages were related to problematic mobile phone use. Also,

Noë and colleagues [59] showed that overall usage and scrolling events were positively associ-

ated with PSU (with social media apps like Instagram being a primary source of activity for

smartphone addicts). Tossell and colleagues [58] underlined how smartphone addict users

spent twice as much time on the phone and started interaction with applications twice as often

than non-addict users. Our results also align with a recent meta-analysis showing a small cor-

relation between PSU and traced smartphone use [71]. On the contrary, Lin and colleagues

[50] found that the frequency of checking behaviors, and not the duration of smartphone use,

was related to PSU. Our findings are also consistent with findings from research relying on

self-reports only. Several studies showed that a longer duration of smartphone use was associ-

ated with higher levels of PSU [72–74].

In general, smartphone use may obstruct everyday routines and specific activities such as

studying/learning, working, and offline social interactions [75]. Scales measuring PSU pick up

this aspect and include items such as "Having a hard time concentrating in class, while doing

assignments, or while working due to smartphone use" or "Constantly checking my smart-

phone so as not to miss conversations between other people on Twitter or Facebook" [23]. The

interference due to smartphone use creates functional impairments, which are similar to the

ones caused by other behavioral addictions, but, at the same time, also specific to PSU [50]. In

accordance with this hypothesis, using the smartphone in an absent-minded way has been

found to have a pervasive and strong positive link with various measures of inattention [76].

Furthermore, prior research has identified impulsivity and the urgency to immediately check

incoming notifications as two risk factors for PSU [77,78]. In addition, fear of missing out, i.e.,

the "pervasive apprehension that others might be having rewarding experiences from which

one is absent" [79, p. 1841] has been related to PSU [80–82].

A second major finding is that adolescents tend to both over- and under-estimate their

smartphone use. This result is in line with a recent meta-analysis [71] showing that only three

out of the 49 included comparisons showed that self-reported media use was close to the

logged mean, whereas an equal number of studies showed that participants either over-

(k = 23) or under- (k = 23) estimated their time spent using digital media devices. To note, in

our study, time distortion was related to PSU both cross-sectionally and longitudinally. Addi-

tionally, over-estimation was related to item 5 of the SAS-SV scale, which tackles the experi-

ence of withdrawal symptoms (e.g., irritability) when one cannot use the smartphone. More

precisely, our study revealed that over-estimation predicted higher PSU levels over time, even

after controlling for social desirability and baseline levels of PSU. One can conclude from this

finding that adolescents who excessively used their smartphones were well aware of their prob-

lematic use and reported a higher duration of smartphone use. However, based on what we

just said, adolescents seemed to rely more on their perceptions of the frequency of use, i.e. how

much they repeatedly check their smartphones, rather than of the duration of use when report-

ing on the latter. This explains, in part, the role of over-estimation of smartphone use in rela-

tion to PSU, as shown in the significant effect of the difference index in the model for a general

day and a typical weekend day.

Although our findings of over-estimation contradict results from a prior study by Lin and

colleagues [50], who found that under-estimators had higher PSU levels, they are in line with

previous research on social media and online gaming. For example, Turel and colleagues [83]

found an effect of time distortion on social media addiction. In particular, the at-risk group
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showed a significant over-estimation bias, which positively correlated with the Facebook

addiction scale; in contrast, the no-risk group tended to report an under-estimation of social

media use. Furthermore, our results aligned with a recent study investigating social media use

in adolescents [84], which also found that participants tended to over-estimate the time spent

on social media platforms, with a more accurate estimation for Instagram use rather than the

use of WhatsApp or Snapchat.

Consistent with different perception theories [85,86], time distortion can be a cognitive marker

that may help classify youth in ’at-risk’ and ’no-risk’ groups concerning media-related addictions.

From a cognitive perspective, over-estimation can be related to impaired attention mechanisms

since people are engaging in highly rewarding behaviors, e.g., social networking or online gaming

[83,87]. The involvement in this kind of activities may over-emphasize the perception of time

spent doing them. Furthermore, over-estimation can be related to a cognitive distortion of short

durations (which are often over-estimated) and long durations (which are often under-estimated),

following Vierordt’s law [88–90]. Thus, frequent checking behaviors that last for short moments

may be estimated, overall, as a longer (daily) use of the device than what it actually is.

A third important finding is that, in contrast to past studies that considered general smart-

phone use, our results added valuable insights on the differences and similarities in self-

reported and traced smartphone use on weekdays and weekend days, and their role in PSU.

However, future research should further investigate smartphone use in different days of the

week characterized by more or less structured daily routines (e.g., school on weekdays, free

time on weekend days). That would shed light on how such routines play a role in estimating

smartphone use and predicting a problematic use of the device.

Eventually, it should be noted that social desirability bias plays an important role in predict-

ing higher levels of PSU in adolescents. More precisely, we found that participants who were

more inclined to provide socially desirable answers reported lower PSU levels. This finding

may not be surprising, considering that social desirability describes respondents’ tendency to

inaccurately report on sensitive topics, in order to present themselves in the best possible light

[39]. When sensitive topics have a negative connotation, as in the case of PSU, adolescents

with a higher tendency to provide socially desirable answers adapted their responses to what

they think the other person (i.e. researcher) considers as socially acceptable. Thus, they tended

to under-report when asked about (problematic) smartphone use, for example, how often they

have a hard time concentrating in class or how often they miss planned work due to their

smartphone use, or how often they use the smartphone longer than intended. While digital

trace data allow accounting for a potential estimation bias, as demonstrated in the present

study, the reliance on automatically recorded data is not sufficient to account for a possible

social desirability bias inherent to self-reported measures such as those typically applied to

assess PSU. Critics have repeatedly argued that participants with higher levels of social desir-

ability propensity may adapt their habitual use of the smartphone when being aware that they

are traced. The present study objectively collected data on adolescents’ smartphone use for 45

consecutive days to avoid biases due to short term adaptations of habitual smartphone use.

Yet, other studies with adult populations used much shorter timeframes, arguing that a few

days are enough to predict repetitive behaviors reliably [83].

Limitations and recommendations for future research

Our study comes with some limitations that should be acknowledged. In particular, due to the

small sample size, our statistical analyses should be interpreted with caution, and future studies

should replicate our findings with larger samples. Additionally, samples should represent the

underlying population, which is a noteworthy challenge because many adolescents see digital
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trace data as a strong invasion of their privacy [91]. Privacy concerns are also a challenge for

participants’ adherence over time, which is lower than in traditional survey-based studies, and

only a few people are generally predisposed to donate log data [92].

Furthermore, we faced some technical problems due to the Ethica application malfunctions

or incompatibility with older smartphone models. Although the application provider partially

resolved these problems, they still resulted in dropouts, reducing even further our analytical

sample. Besides, trace data collected as part of this study was limited to the overall duration

and frequency of smartphone use. Thus, we have no information on what activities adolescents

engaged in on their smartphones based on objectively recorded data. Although ethical and

legal restrictions limit the possibility to obtain objective data on specific contents, application

usage can be integrated into tracking studies. Future studies should thus focus on specific

application usage, with a particular emphasis on social networking applications [93] and

online gaming, given that both are popular activities among younger populations [94]. Finally,

by investigating frequency, duration, and type of applications used, future research should rely

more on objective criteria or expert ratings of PSU, as partially done in research on adult pop-

ulations [50], to overcome the social desirability bias problem, thus providing a starting point

for (smartphone-based) interventions to reduce PSU. This may further allow enhancing our

knowledge of drivers and indicators of PSU.

Additionally, PSU was the only self-report measure of well-being related to trace smart-

phone use in this study. However, several other factors could impact the study’s findings, for

example, the presence of comorbid mental disorders like subthreshold symptoms of depres-

sion and anxiety or personality traits like neuroticism and impulsivity [95]. Since the present

study did not consider these additional factors in explaining the link between trace and self-

report smartphone use, future research should further identify vulnerable adolescent popula-

tions characterized by mental disorders or dysfunctional traits to investigate differential rela-

tionships between predictors of PSU based on digital trace and self-report data.

Finally, on a side note, although the SAS-SV used in the present study has been found to

predict PSU levels based on experts’ diagnoses [23], its validation has not been carried out in

clinical settings. Hence, the SAS-SV can be only used to detect potentially high-risk groups of

PSU in the general population. To overcome these limitations, future studies should comple-

ment self-assessments of PSU with clinical interviews to further validate the use of this scale in

assessing symptoms of PSU.

Conclusions

PSU remains a critical concept to be studied in adolescents due to the identified negative

short- and long-term consequences for personal well-being and development. Valid and reli-

able predictors and PSU indicators are urgently needed, and digital trace data proved to be an

informative data source that requires further investigations to eventually develop diagnostic

tools and indices of PSU that incorporate trace data.
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