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A method to generate small-scale, 
high-resolution sedimentary 
bedform architecture models 
representing realistic geologic 
facies
T. A. Meckel1, L. Trevisan1 & P. G. Krishnamurthy2

Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received 
a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on 
subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational 
bedform models at various scales remains problematic. The current investigation expands the capability 
of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture 
models. The implemented modifications enable the generation of 3D digital models consisting of 
laminae and matrix (binary field) with characteristic depositional architecture. The binary model is 
then populated with petrophysical properties using a textural approach for additional analysis such 
as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. 
One example binary model with corresponding threshold capillary pressure field and the scripts 
used to generate them are provided, but the approach can be used to generate dozens of previously 
documented common facies models and a variety of property assignments. An application using 
the example model is presented simulating buoyant fluid (CO2) migration and resulting saturation 
distribution.

Two longstanding challenges in flow and transport problems have been the accurate representation of geologic 
heterogeneity in numerical models and quantifying the influence of that heterogeneity on fluid flow1,2. Here het-
erogeneity refers to mm- to m-scale variability in grain sizes and architecture (spatial organization) associated 
with clastic depositional processes as manifested in descriptive structures. There is a long history of study of dep-
ositional sedimentary structures at these scales and their influence on fluid flow has been known for decades3–7. 
Critical aspects of geological heterogeneity related to small-scale depositional features have been documented for 
a variety of considerations8–13. These types of studies highlight the importance of understanding the influence of 
depositional heterogeneity at relatively small scales and the challenges involved in adequately representing such 
heterogeneity for various applications.

The digital models presented here are a variant of traditional geostatistical representations of depositional 
facies1,14, which many geoscientists agree were a vast improvement over homogeneous/isotropic representations 
and quite advantageous, but often fall short of effectively representing the small scale details in their most recog-
nizable and descriptive forms. The method for generating bedform architecture models (BAM) presented here is 
most closely associated with geometric approaches15,16 in that the models are meant to be geologically plausible, 
depositionally realistic, and visually satisfying from a geologic perspective. The focus is on relating the deposi-
tional processes and resulting characteristic descriptive architecture to the distribution of material properties (i.e. 
grain size, permeability, porosity, threshold capillary pressure). Geostatistical techniques are often used for pop-
ulating large-scale models for applications such as reservoir flow simulation17 and hydrogeological applications18. 
While geostatistical techniques continue to evolve in complexity19, their ability to generate depositionally realistic 
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small-scale representations of standard geologic features remains a challenge. The approach here differs from the 
sedimentary process forward model approach that requires complex computational fluid dynamics, including 
turbulence20. Other attempts at representing sedimentary architecture at small scale include utilization of natural 
specimens or outcrops in two and three dimensions21–24.

The approach presented here extends a well-documented and widely utilized set of codes originally presented 
by Rubin25 and later published by Rubin and Carter26 as a set of MATLAB routines. David Rubin pioneered the 
digital representation of clastic depositional features, linking our understanding of sediment transport processes, 
bedform morphology, and descriptive sedimentology. The ability to generate bedform images and visualize bed-
form deposition and migration represented a major advancement in sedimentary geology and has been utilized 
by sedimentologists and stratigraphers to understand sedimentary processes and to interpret structures observed 
in the field and subsurface cores27. The original Rubin25 computer program was based on a geometric model, 
using sine curves to generate surfaces that mimic well-documented bedforms. The numerical modification of 
up to three sine curves simulated the migration and erosion of bedforms, defined by 75 user-definable geometric 
parameters26. While this approach does not mimic hydrodynamic processes related to deposition, it does produce 
readily recognizable features (i.e. similar to outcrop and modern environments) that can be related to deposi-
tional processes. The original output consists of three-dimensional block diagram images representing vertical 
and horizontal sections of the bedforms (Fig. 1) along with polar plots of bedform migration directions. Rubin 
and Carter26 subsequently revised and rewrote the code in MATLAB and published scripts that, in addition to 
the block diagrams, generate outputs with 3D bedform topography as well as animation sequences that illustrate 
bedform deposition over time. As illustrated in Table 1, bedforms can be grouped based on descriptive aspects 
such as planform shape (2D, 3D), behavior through time (variable, invariable) and crest orientation (transverse, 
oblique, longitudinal). Even though 3D illustrations (digital images) could still be generated with the updated 
codes, they do not produce 3D geocellular volumes. This presented an opportunity to modify the animation 
sequence protocol to produce 3D digital models which can then be further manipulated for various computa-
tional applications. This provides yet another breakthrough related to Rubin’s formative work, by allowing broad 
application of realistic 3D sedimentologic geocellular models tied to well-documented geologic understanding 
for exploring a wide range of traditional research topics in sedimentary geology and fluid flow simulation.

Figure 1.  Six examples of 3D bedform architecture models (BAM) with associated numbers for specific figures 
from Rubin and Carter26. Black lines represent laminae that define bedforms with characteristic descriptive and 
process-based understanding. Horizontal and vertical scales are user-defined, but typically 10’s of centimeters.

Planform Shape
Behavior Through 
Time Crest Orientation

2D

3D

variable invariable transverse oblique longitudinalsinuous superimposed

# 5 X X X X

# 13 X X X X X

# 27 X X X X X

# 36 X X X

# 42a X X X

# 63 X X X

Table 1.  Bedform classification criteria used in Rubin and Carter26 for the six BAMs presented in Fig. 1.
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Results and Discussion
One advantage of characterizing small scale heterogeneity through the set of codes derived from Rubin’s work 
is that it encourages users to understand how input parameters affect the final model structure. This presents an 
opportunity to more closely tie descriptive understanding of clastic sediments and their depositional environ-
ments with physical properties and fluid flow performance.

Geostatistical techniques are unlikely to be replaced by the methods presented here, but rather they can be 
further integrated into the models presented. For example, the binary model output representing the depositional 
laminae can be used as a training image or conditioning fabric for other stochastic approaches, such as multiple 
point statistics (MPS)28. Such enhancements are likely to produce even more realistic models than those gener-
ated here, potentially including normal or inverse grading of bed sediment.

We have not yet explored a variety of model modifications that might be pursued. For example, the digital 
model populated with petrophysical parameters (e.g. permeability) could be smoothed to provide a more con-
tinuous property distribution (as opposed to random sampling from a PDF). This would provide more locally 
correlated values that are probably more representative of the continuous and smooth changes in properties 
that are observed in natural specimens23. In addition, the incorporation of stochastic noise for laminae position 
assignment could be employed to modify the strictly periodic representation of current models that result from 
using sine and cosine functions for generating bedform architectures. Such modifications are likely to present 
even more geologically-sound representations of depositional facies.

Modification of the Rubin and Carter26 codes allows for the generation of realistic digital models of 3D deposi-
tional bedform architecture. These models combine a deterministic bedform architecture component mimicking 
realistic crossbedding geometries with stochastic variability of petrophysical properties. Another advantage of 
this approach is that it allows consideration of domain sizes larger than the core plugs typically used for laboratory 
flow experiments, where small sizes may not fully capture depositional architecture. An example of one binary 
model (BAM #36) with corresponding Pth (threshold capillary pressure) field is provided with the script used to 
generate it, but the approach is applicable for dozens of previously documented BAMs (and input parameter files) 
in Rubin25. One example application illustrates the use of three different BAMs representing ripple-laminated flu-
vial sediment for simulating buoyant CO2 migration through Pth field with increasing textural contrast between 
matrix and laminae, resulting in volumetric fractions of trapped CO2 ranging between 2.7% and 69.5% of the 
model domain.

Example model.  The scripts (m-files) provided enable the user to generate binary digital geocellular models 
of any of the 79 figures from Rubin and Carter26 and to populate each model with any of the facies from Beard 
and Weyl29 (Fig. 2). An example binary model (provided as a MATLAB workspace variable) with a correspond-
ing threshold capillary pressure field that can be generated using the scripts provided is available in the supple-
mentary material (vert_xsxn_all.mat). The BAM presented is # 36 of Rubin and Carter26, and the block diagram 
image that is part of the output is shown in Fig. 1. With assigned cell dimensions of 2 × 2 × 2 mm3, the model is 
90 × 60 × 35 cm3. The model matrix is populated with moderately sorted upper coarse sand (MUCSa) and the 
laminae with moderately sorted upper fine sand (MUFSa), and threshold capillary pressure values are assigned 
as described above.

Practical implication.  To provide an example of how the datasets generated can be used, an application 
is presented illustrating the use of the example model for simulating buoyant fluid migration of supercritical 
CO2 dominated by capillary forces. The movement of carbon dioxide in the subsurface is an important consid-
eration for projects that inject CO2 into subsurface reservoirs31,32. Far from injection wells, and after injection 
ceases, buoyancy and capillary forces are known to control flow behaviour, while small scale heterogeneities 
strongly influence saturation distributions33. As a matter of fact, small-scale depositional features have been 
shown to have significant influence on CO2 migration both numerically5,34–36 and experimentally37,38. Due to the 
capillary-dominated flow assumptions, the numerical simulations can be carried out in a matter of seconds using 
the invasion percolation algorithm39,40. We use Permedia software to model buoyant migration of CO2 from a 
planar source at the bottom of the model until the CO2 plume spans the entire model (i.e., at percolation). The 
goal of these simulations is to understand the effect of Pth contrast between matrix and laminae as well as the 
geometry of the crossbedding on the volumetric fraction of trapped CO2 plume of each BAM. Figure 3 shows 
simulation results for three different textural contrasts applied to three different BAMs (#5, #36, and #63). Results 
from 200 equally-probable realizations of the Pth field (using the same architecture, but different realizations of 
property assignment) indicate that volumetric fractions of trapped CO2 plume in these models is expected to 
range between 2.7% and 69.5% of the model domain. This high variability provides a realistic expectation for CO2 
saturations in this type of clastic material for the subsurface conditions considered. This topic is more fully and 
rigorously explored with more bedform architecture models and facies assignments in Trevisan, et al.41.

Methods
Description of the modified code.  The starting point for code development is the MATLAB code by 
Rubin and Carter26. This set of scripts can be used to create images of depositional features with known mor-
phology and interpreted genesis, and can be tied to specific geologic examples that are well documented in the 
literature16,25,27. In the modified scripts provided here, a 3D geocellular model is intuitively built from adjacent 
2D vertical sections parallel to a vertical face represented in the block diagrams produced. This is needed because 
the original script does not explicitly have as part of the output a workspace variable in MATLAB with values 
representing 3D assignment of matrix and laminae cells.

The primary modification of the original NewDunes.m function is a new outer loop that allows a 3D dataset 
to be generated from adjacent 2D sections (essentially serial slicing vertical planes) of the standard 3D block 
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diagram output. For advanced users who want to understand the procedure which allows a 3D model output, the 
for loop beginning at line 32 of the modified code (Model_Generator.m) incrementally changes the input variable 
PHASEF, which is described by Rubin and Carter26 as the bedform phase (in degrees). Changing PHASEF essen-
tially specifies the horizontal position of the bedform within the fixed reference frame of the block diagram edges. 
By systematically changing this variable and retaining the vertical face of the block diagram output for each loop, 
serial sections of the model can then be concatenated to build a 3D digital model.

Beyond the addition of simple looping, the modified code takes advantage of a built-in MATLAB function 
that is perhaps non-intuitive for 3D geologic model building. The modified script uses the ‘vec2mtx’ (line 106 
of Model_Generator.m) function, which is used in mapping applications and is available through MATLAB’s 
Mapping Toolbox. More specifically, the ‘vec2mtx’ function converts X-Y vectors (polygons) to a specified regu-
lar data grid of binary values (zero or one). Practically, it allows for a continuous representation of depositional 
laminae in a gridded format, similar to pixelated (raster) representation of a map of political boundaries. This 
function is applied to each vertical section of the model during the looping of PHASEF described above. This 
mapping function is needed because the workspace variable representing the laminae on the block diagram faces 
is initially stored as a three column array representing coordinates of the laminae locations, and is not a regular-
ized grid. For additional information about ‘vec2mtx’, the reader is referred to the MATLAB documentation and 
numerous online examples.

For users familiar with the routines by Rubin and Carter26, the script published here contains comments on 
each line that represents a modification of the original script or new entry. The new script will produce an image 
of the model, but all scripting related to visual animation of bedforms in the original script has been eliminated 
for clarity and compactness. Since the original script contains standard comment notation, new and/or modified 
lines are identified in the new scripts by the use of four comment characters (%%%%). The comments provide a 

Figure 2.  The 54 textural classes used for assignment of matrix and laminae in the models. Each facies has a 
specific distribution of grain sizes described by a median value (columns) and sorting category (rows). Sorting is 
given in terms of Trask coefficient So and φ scale30. These facies are characteristic of a wide range of depositional 
processes and environments. For example, very-fine grained, well-sorted silt is typical of upper point bar fluvial 
deposits; poorly sorted coarse sand is more typical of channel thalwegs. Very well sorted medium sand is typical 
of shoreface environments. Median grain diameters at the bottom are in millimeters. Permeabilities for these 
materials range from 471 Darcy (extremely well sorted upper coarse sand, upper left) to 50 milli-Darcy (very 
poorly sorted upper coarse silt, lower right) (Beard and Weyl29, their Table 6). To illustrate the methodology 
used for generating different textural contrasts, three cases are shown where MUCSa represents the matrix 
facies and MUMSa, MUFSa, and MUVFSa are used for the laminae (see Fig. 3).
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Figure 3.  Invasion percolation simulations of CO2 migrating through cubic sub-volumes derived from BAMs 
#5, #36, and #63 (grayscale models on leftmost column) and populated with Pth values generated using three 
different textural contrasts. The three bimodal distributions (top row) are created by assigning constant Pth 
PDF to matrix (in this case Moderately Sorted Upper Coarse Sand, or MUCSa, in blue) and changing Pth PDF 
of laminae (in this case showing Upper Medium Sand > Upper Fine Sand > Upper Very Fine Sand, from low 
to high Pth, in red). Color background of cubic models represents range of threshold capillary pressures (see 
Fig. 4C). A continuous planar source of CO2 was placed at the bottom boundary of the model domain. The 
increasing textural contrast leads to different responses in terms of displacement patterns and plume trapping as 
can be observed from invasion sequences of CO2.

Figure 4.  (A) Vertical cross section of BAM #36 (see Fig. 1) in the Y-Z plane. The red box represents model 
subset that is extracted from each vertical slice to build the continuous 3D volume. Horizontal and vertical scale 
values have no prescribed units, but are reasonably considered to be cm (see text). (B) Fence diagram of output 
binary model showing same architecture of matrix and laminae as in the original Rubin and Carter26 graphic 
output. Red polygon same as in (A). Axis units are arbitrary, and differ from (A) as a result of the gridding 
process. (C) Sample realization of threshold capillary pressure (Pth) values from same model as (B) assuming the 
matrix is moderately sorted upper coarse sand (MUCSa), and the laminae are composed of moderately sorted 
upper fine sand (MUFSa).
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description of the purpose of the modification or new entry made in each line. As such, the described modifica-
tions are fairly minor.

Model domain size (the number of cells in the orthogonal horizontal directions) can be modified by changing 
the ‘grid density’ variable (line 28 of Model_Generator.m) and by defining the area of interest (lines 95, 103 and 
105 of Model_Generator.m). Higher values of grid density represent the same architecture at increasing resolution, 
and model sizes of millions of cells are not uncommon for low values of grid density (e.g. 5). The size of the out-
put 3D models is typically assigned considering the wavelengths of the input variables, as defined in the variable 
input file (e.g. SPCNGF; line 3 of any Fig##.m parameter file from Rubin and Carter26). This input parameter is 
defined as the bedform wavelength in the first set, and similar input variables correspond to the second or third 
bedform set (SPCNGS, SPCNGT, where the final letter corresponds to the set number). Maximum model domain 
size capability for the modified code was not fully explored, or a variety of other aspects of model generation, as 
our ultimate goal was standard facies model utilization for flow simulation. The model domain sizes created by 
the default variables in the figure parameter files of Rubin and Carter26 were sufficient for our intended purposes. 
Other potential (unexplored) modifications are included in the Discussion section.

The output 3D model in the modified scripts does not have prescribed cell physical dimensions. Model 
dimensions are user-specified after generating the model, and cell dimensions need to be defined by the user in 
subsequent model applications depending on the knowledge of sedimentary structures, which can be informed 
by Rubin25, examples in literature42, and personal experience. Obviously there is subjectivity in cell dimension 
assignment, but some assignments would produce models with features that are not readily found in natural 
depositional settings at those scales. That is, sedimentary structures formed by known depositional processes 
have typical physical dimensions, which should be reflected by reasonable assignment of cell size (and resultant 
model domain dimensions), based on the user’s knowledge and experience. In the model application presented 
here, cubic sub-volumes of approximately one million cells with cell dimensions of 0.202 × 0.202 × 0.202 m3 are 
extracted from the 23,625,000-cell model produced by Model_Generator.m. The procedure to generate these rep-
resentative elementary volumes (REV) is explained in appendix A of Trevisan et al.41.

The output of Model_Generator.m includes an image of the model domain in the vertical Y-Z plane (Fig. 4A) 
including the defined area of interest for the model, a fence diagram of the model showing three orthogonal 
planes (Fig. 4B), as well as a MATLAB workspace variable (“vert_xsxn_all”) with lamina cells represented by ones 
and matrix cells represented by zeros.

Subsequently, the entirely new script Value_Assign.m needs to be run to assign petrophysical properties such 
as grain sizes and threshold capillary pressure (Pth) to the individual model cells (e.g. MATLAB workspace var-
iable named “vert_xsxn_all_trunc_Pth”; Fig. 4C). The assignment of any non-binary physical properties is user 
defined and can be extended beyond the methods presented here by editing the code, but in the method described 
here is fundamentally related to specific geologic facies as described below. That method can be adopted, or 
another preferred method could be employed by the user.

Property assignment.  In addition to generating a synthetic 3D model on a Cartesian grid, the set of codes 
populates the binary model with petrophysical properties such as grain size, permeability, or threshold capillary 
pressure. In order to do this, matrix and lamina cells of the binary models are assigned with textural classes char-
acterized by a range of grain sizes and grain sorting.

Beard and Weyl29 classified 48 clastic facies of artificially mixed unconsolidated sands into eight sand 
grain-size subclasses and six sorting groups, whereas Fig. 2 also includes a ninth column with silt. Following 
previous work of Meckel, et al.43 we assign the matrix and lamina cells of the output 3D model with the lithofacies 
shown in Fig. 2. With the purpose of representing realistic depositional environments, grain sizes assigned to 
matrix facies are always coarser than grain sizes assigned to the laminae. Assignment of identical lithofacies to 
both laminae and matrix will create a rather homogeneous model, whereas varying amounts of textural contrast 
between matrix and laminae will regulate the baffle effect exerted by the laminae. For the example application 
presented, the matrix is considered to be made up of moderately sorted upper coarse sand (MUCSa), while the 
laminae are composed of, from low to high contrast, moderately sorted upper medium sand (MUMSa), upper 
fine sand (MUFSa), and upper very fine sand (MUVFSa). The assignment of facies to matrix and laminae is 
user-defined by screen prompt during execution of the script Value_Assign.m. The options for these assignments 
range from median grain sizes of upper coarse sand to upper coarse silt, and from extremely well sorted to very 
poorly sorted.

After matrix and lamina facies have been assigned to the binary model, grain size values for each cell are 
sampled from probability density functions (PDF) corresponding to each lithofacies. The sampling from the 
probability distribution of grain sizes and corresponding petrophysical properties occurs in the Value_Assign.m 
script via built-in random number generator and is a necessary step to account for the high uncertainty of natural 
geological heterogeneity. The mean and standard deviation of each PDF are related to the median grain diame-
ter and sorting category, respectively. Each of the facies types shown in Fig. 2 has lognormally distributed grain 
diameters44 and is described by the median diameter (d50) and the Trask sorting coefficient (So). The Trask sorting 
coefficient is defined as the square root of the ratio of the 25th to the 75th percentile of the cumulative density 
function of the lognormal distribution:

=S d
d (1)

0
25

75

where d is grain diameter.
Since the grain sizes are often log normally distributed44, the logarithm of the grain size (D) will be normally 

distributed and is given as:
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=D log d( ) (2)

Then, substituting 2 into 1, the Trask sorting coefficient can be re-written as:

=
−

S e (3)
D D

0 2
25 75

For a normal distribution, the quantile function is defined as:

µ σ= + −−D erf p2 (1 2 ) (4)1

where µ is the mean, σ is the standard deviation, erf is the error function, and p is the cumulative probability.
The mean of the normal distribution is given by the logarithm of the median of the lognormal distribution:

µ = log d( ) (5)50

Substituting 4 and 5 into 3, we solve for the standard deviation σ of the normal distribution. Then, using 
the calculated mean and standard deviation, we calculate the inverse CDF for cumulative probabilities from 0 
to 0.999, which gives the values of the normal distribution. Since these are logarithmic values, the antilog gives 
back the lognormally distributed grain diameters. These values are then substituted in equation 6 to obtain log-
normally distributed Pth values. The lognormal distribution of grain diameters is thus reverse constructed only 
by using the median and standard deviation values of each of the facies reported in the original paper by Beard 
and Weyl29.

However, if used without any geological knowledge, the results can assign the model cells unnaturally (and 
irrationally, when considering associated depositional flows) large or small grain size values (outliers in the 
long tails of lognormal distributions) with subsequent impact on other calculated petrophysical properties (e.g. 
permeability). So careful scrutiny of model properties is necessary while assigning values from the lognormal 
distribution.

Beard and Weyl29 prepared facies samples by combining sand grains of different sizes such that they were 
lognormally distributed. But they report that the sand grains used ranged from 0.4 mm to 9 mm in diameter. 
The same size limits are thus here enforced while populating the models with the codes presented. This is imple-
mented in the program by truncating the distribution between those two grain diameters whenever necessary. 
The truncation comes into effect only when the distribution is very wide (poorly and very poorly sorted). The 
code has a provision to change this as per user’s requirements, if there is a preferred method for assigning such 
properties.

Any grain size distribution obtained in the previous section can be used to calculate equivalent petrophysical 
parameters like porosity, permeability and capillary entry pressures. For the specific application presented below 
(i.e. capillary-dominated fluid migration) we populate the model with Pth values.

The capillary entry pressure Pth (in kPa) is obtained from the grain size using equation 6 from Berg45:

γ
= . ×P

d
16 3

(6)th
50

where 16.3 is a geometric constant, γ is interfacial tension in N/m, and d50 is median grain diameter, in millim-
eters. For the example simulation provided we consider 0.03 N/m for CO2-H2O system, representative for reser-
voirs at approximately 10 MPa and 35 °C46 (~1.5 km depth). These properties are relevant for geological carbon 
sequestration.

Data availability statement.  All the required MATLAB scripts and one example output dataset generated 
during the current study are included in this published article (and its Supplementary Information files).
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