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Heteregeneous ribonucleoproteins (hnRNPs) are a family of RNA-binding proteins that

take part in all processes that involve mRNA maturation. As a consequence, alterations

of their homeostasis may lead to many complex pathological disorders, such as

neurodegeneration and cancer. For many of these proteins, however, their exact function

and cellular targets are still not very well known. Here, we focused the attention

on two hnRNP family members, hnRNP Q and hnRNP R, that we previously found

affecting TDP-43 activity both in Drosophila melanogaster and human neuronal cell

line. Classification of these two human proteins as paralogs is suported by the high

level of sequence homology and by the observation that in fly they correspond to the

same protein, namely Syp. We profiled differentially expressed genes from RNA-Seq

and generated functional enrichment results after silencing of hnRNP Q and hnRNP R

in neuroblastoma SH-SY5Y cell line. Interestingly, despite their high sequence similarity,

these two proteins were found to affect different cellular pathways, especially with regards

to neurodegeneration, such as PENK, NGR3, RAB26, JAG1, as well as inflammatory

response, such as TNF, ICAM1, ICAM5, and TNFRSF9. In conclusion, human hnRNP

Q and hnRNP R may be considered potentially important regulators of neuronal

homeostasis and their disruption could impair distinct pathways in the central nervous

system axis, thus confirming the importance of their conservation during evolution.

Keywords: hnRNP Q, Syncrip, hnRNP R, RNA-seq, brain, immune system

INTRODUCTION

Regulation of RNA metabolism is an important step in the maintenance of neuronal homeostasis.
RNA biosynthesis, editing, and turnover are sustained at different levels by a network of RNA-
binding proteins (RBPs) that bind to the pre-mRNA molecule and combinatorially interact with
each other. In 2004, a census of all the human proteins known to bind RNA or to be RNA-related
identified ∼ 1,542 proteins (about 7.5% of all protein-coding genes) as potentially belonging to
the RBP family (Gerstberger et al., 2014). This finding also reflects a great importance for these
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proteins during evolution, as a considerable number of ortholog
of these human RBPs was also found in the lower organisms,
such as Archea and Bacteria (Anantharaman et al., 2002).
Furthermore, bioinformatics analysis of Saccharomyces cerevisiae
and Drosophila melanogaster genomes have also highlighted that
5–8% and 2–3% of genes are predicted to act as RBPs, respectively
(Keene, 2001). In addition to the evolutionary conservation the
importance of RBPs in the regulation of RNA metabolism is also
highlighted by the observation that highly complex tissues, such
as brain, express a network of specific RBPs for regulating the
RNA homeostasis (e.g., Hu/ELAV family) (De Conti et al., 2016).

The most abundant members of this family are called
heterogeneous ribonucleoproteins (hnRNPs) and share several
structural and functional properties (Gerstberger et al., 2014).
These hnRNP proteins are highly conserved proteins that were
originally described as a group of ∼20 major factors capable of
forming high molecular-weight complexes transiently bound to
the nascent heterogeneous nuclear RNA (hnRNA) transcribed by
RNA polymerase II (Dreyfuss et al., 1993). Later on, many other
proteins involved in controlling RNA processing have been seen
to share hnRNP-like features and are now classified as members
of this large family, thus including TAR-DNA Binding Protein
43 (TDP-43), CUGBP Elav-Like Family (CELF) proteins, Neuro-
Oncological Ventral Antigen (NOVA) proteins, and Fused in
Sarcoma (FUS) (Busch and Hertel, 2012). It is important to note
that the number of RNA binding proteins capable of altering
RNA processing is still growing steadily and a recent attempt at
uncovering the number of RBPs that can be produced by HeLa
cells has uncovered several hundred putative new proteins for
which we still now very little about (Castello et al., 2012). For this
reason, it is important to functionally characterize in a systematic
manner all the major components of this family.

Structurally, all RBPs contain some common elements
(Gerstberger et al., 2014). In particular, hnRNPs contain one or
more RNA-binding domains (RBDs) and the majority of them
also have arginine-glycine-glycine (RGG) boxes and auxiliary
domains, such as acid-rich- and proline-rich domains. Most
importantly, many RBPs also present different splicing isoforms
and can undergo post-translation modifications as well as
nucleocytoplasmic shuttling (Han et al., 2010).

In cells, the equilibrium of hnRNP proteins is finely
regulated and alterations in their expression levels can often
lead to numerous defects at the level of RNA processing.
This can be particularly problematic for neurons that are
characterized by a very adaptive and dynamic architecture.
As a consequence, perturbation of the neuronal hnRNP levels
may lead to neurodegenerative disorders, such as amyotrophic
lateral sclerosis (ALS), fronto-temporal lobar dementia (FTLD),
spinal muscular atrophy (SMA), and Alzheimer’s disease (AD)
(Neumann et al., 2006; Vance et al., 2009; Bebee et al., 2012;
Berson et al., 2012). Very often, these perturbations are caused
by the occurrence of aberrant aggregation of these proteins in
the neurons of affected patients (Conlon and Manley, 2017). It
is well-established, for example, that aggregation of TDP-43 and
FUS in patient brains is a major feature of patients suffering
from ALS/FTLD (Neumann et al., 2006; Kwiatkowski et al.,
2009; Vance et al., 2009). Further evidences of the relationship

between hnRNP and neurodegeneration are also provided by
the identification of ALS/FTLD-associated mutations in other
hnRNP proteins, including hnRNP A1 and A2/B1 (Kim et al.,
2013), likewise to the finding of nuclear and cytoplasmic
deposition of hnRNPA3 in the hippocampus of patients with
C9orf72 hexanucleotide expansion mutations (Davidson et al.,
2017).

Interestingly, from our previous work on this topic, we have
observed that major hnRNP cellular proteins can modulate the
gain- and loss-of-function effects of one of the major disease
players, such as TDP-43 (Mohagheghi et al., 2016; Appocher
et al., 2017). In particular, we found that a distinct set of
hnRNPs is capable of powerfully rescuing TDP-43 toxicity in
the fly eye (Hrb27c, CG42458, Glo, and Syp). From the point
of view of RNA metabolism in ALS pathology, among these
four proteins, Syp was particularly interestingly because of its
well known connections with the nervous system development.
In Drosophila melanogaster, in fact, this protein was found to
regulate the localization of mRNAs driving axis specification
and germline formation as well as that of mRNAs involved in
the organization of the neuromuscolar junction (McDermott
et al., 2012; Mcdermott et al., 2014). Intriguingly, in humans
this protein can be found in two well conserved Syp-orthologs,
hnRNP Q and hnRNP R (Figure 1), suggesting the occurrence
of a progressive functional divergence of these two paralogs in
mammalian cells.

The RNA binding protein hnRNPQ, also known as SYNCRIP,
was first described in 1997 as a nucleocytoplasmic protein
interacting with the synaptotagmin isoform II (Syt-II) C2AB
domain in mouse brain lysate (Mizutani et al., 1997) and
subsequently found in association with human survival of motor
neurons (SMN) gene (Mourelatos et al., 2001). The protein
hnRNP Q exists in different splicing isoforms, three of which are
the most representative: hnRNP Q3, hnRNP Q2, and hnRNP Q1
(a schematic diagram of each isoform is shown in Figure 1A).
The Q3 variant is very similar in sequence (∼83% homology)
to hnRNP R (Mourelatos et al., 2001) that is also expressed in
alternative splicing isoforms, although predominantly as a major
isoform known as R1 (UniProt ID O43390-1).

Functionally, hnRNP Q and hnRNP R are already known to
regulate different aspects of RNA maturation. More specifically,
hnRNP Q was found to promote inclusion of SMN2 exon7
(Chen et al., 2008) and to inhibit C-to-U RNA editing of the
apolipoprotein B mRNA (apoB) (Blanc et al., 2001). In addition,
this factor can also affect mRNA transport, as demonstrated
by the colocalization with ribosomal proteins and other RBPs
in neuronal mRNA granules (Bannai et al., 2004; Kanai et al.,
2004). Finally, hnRNP Q1 is also able to modulate neuronal
morphogenesis and neurite branching in a mouse neuroblastoma
cell line by interacting with different mRNAs related to Cdc42
signaling (Chen et al., 2012).

On the other hand, hnRNP R was first described in 1998 in
the serum of patients with autoimmunity symptoms (Hassfeld
et al., 1998) and subsequntly identified, like hnRNP Q, as a factor
bound to the SMN mRNA (Rossoll et al., 2002). At present, it
is known that hnRNP R is involved in the transcription and
degradation process of c-fos mRNA in retinal cells (Huang et al.,
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FIGURE 1 | Structure of and subcellular localization of endogenous hnRNP Q and hnRNP R. (A) Schematic representation of protein domains and major isoforms of

Drosophila melanogaster CG17838/Syncrip and human hnRNP Q/ hnRNP R. AcD (acidic domain), RRM (RNA-recognition motif), NLS (nuclear localization signal),

RGG (Arg-Gly-Gly)-box and Glutammine/Asparagine (Q/N)-rich domain are highlighted in colored boxes; relative sequence position and amino acids length of each

isoform is also reported. Drosophila melanogaster CG17838/Syncrip isoform F contains a conserved AcD, three RRM (RRM1, RRM2, and RRM3) and two NLS.

Regarding hnRNP Q three major isoforms are represented: hnRNP Q3 is the longest variant and contains an AcD domain, three RRMs, two NLS and an RGG-box;

hnRNP Q2 lacks of 36 aa (1302-336) between RRM2 and RRM3 compare to the longest variant hnRNP Q3, while hnRNP Q1 lacks of the second NLS and RGG-box

region (1549-623) from hnRNP Q3 and contains a unique C-terminal domain (VKGVEAGPDLLQ). The isoform 1 of hnRNP R (hnRNP R1) contains an AcD domain,

three RRMs, two NLS, an RGG-box and a Q/N-rich domain at C-terminus. The low expressed and neuronal-specific isoform (hnRNP R2) lacking of the 41 aa

(1129-166) between the AcD domain and the first RRM is also reported. Sequence identity and similarity were calculated using EMBOSS Needle with respect to the

Drosophila melanogaster CG17838/Syncrip isoform F. We considered this fly isoform, according to its high expression in different stage of life cycle and in all adult

(Continued)
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FIGURE 1 | tissues, including brain (McDermott et al., 2012). (B) Immunofluorescence analysis of the endogenous of human hnRNP Q and hnRNP R (shown in green)

in SH-SY5Y cells. Nuclei were visualized using DAPI staining. Scale bars: 17µm. (C) Nuclear and cytoplasmic fractions of endogenous human hnRNP Q and hnRNP

R. α-p84 and α-tubulin were used as controls for nuclear and cytoplasmic fractions, respectively. Molecular weight of each isoform is reported. *possible splicing

variant of hnRNP Q and ** possible splicing variant of hnRNP R.

2008) and in the expression of immunity factors (Meininger et al.,
2016; Reches et al., 2016).

Interestingly, functional rescue of TDP-43 alterations was
found to be conserved in the human orthologs of Hrb27c
(DAZAP1) and for only one of the human orthologs of Syp
(hnRNP Q), but not for the second one (hnRNP R) (Appocher
et al., 2017). Based on these results, we have therefore decided
to focused the attention on these two members of the hnRNP
family whose functions still remain not completely clear. In order
to better characterize hnRNP Q and hnRNP R from a neuronal
point of view, we have now assessed the cellular localization of
these hnRNPs in SH-SY5Y cells and we have investigated changes
in the whole transcritome status after their knockdown, looking
for gene pathways particularly regulated by these two factors.

MATERIALS AND METHODS

Cell Culture and Gene Knockdown
Human neuroblastoma SH-SY5Y cell line (ATCC Microbiology,
Manassas, VA) were cultured as described previously (Appocher
et al., 2017). To achieve optimal knockdown efficiency,
three rounds of silencing were performed on day 1, 2
using Hyperfectamine (Qiagen Inc, Gaithersburg, MD, USA),
according to the manufacturer’s instruction. The siRNA sense
sequences used in this study were as follows: luciferase
(siLUC), 5′-uaaggcuaugaagagauac-3′; hnRNP Q (sihnRNP Q),
5′-agacagugaucucucucau-3′; and hnRNP R (sihnRNP R),5′-
cauuugggaucuacgucuu-3′.

The mouse motor neuron NSC-34 cell line was cultured
in Dulbecco’s modified Eagle’s medium (DMEM)–Glutamax-
I (Gibco- BRL, Life Technologies Inc., Frederick, MD, USA)
supplemented with 5% fetal,bovine serum (FBS) (SigmaAldrich,
St Louis, MO, USA) and 1% Antibiotic-Antimycotic-stabilized
suspension (Sig- maAldrich, St Louis, MO, USA) at 37◦C
incubator with humidified atmosphere of 5% CO2. Cultures were
used 5–15 passages.

For differentiation, NSC-34 cells were seeded to reach 70%
confluence the day after and the proliferation medium was
exchanged 24 h later to fresh differentiation medium containing
1:1 DMEM/F-12 Ham (SigmaAldrich, St Louis, MO, USA), 1%
FBS (SigmaAldrich, St Louis, MO, USA), 1% modified Eagle’s
medium nonessential amino acids (NEAA) (SigmaAldrich,
St Louis, MO, USA), 1% Antibiotic-Antimycotic-stabilized
suspension (SigmaAldrich, St Louis, MO, USA) and 1µM all-
trans retinoic acid (RA). Differentiation medium was changed
every 2 days and cells were allowed to differentiate for up to 4–7
days.

NSC-34 cells, maintained on proliferation medium (DMEM,
5% FBS, 1% Antibiotic-Antimycotic suspension) represented
the undifferentiated control group. Images of undifferentiated

(control) and differentiated NSC-34 cells were acquired in light
microscopy using a Leica DMIL LED mycroscope equipped with
a 20X objective, a Leica DFC450C camera (Leica Microsystems,
Cambridge, UK) and LAS v.4.4.0 Software (Leica application
suit). The average length of neurites in the differentiation media
was compared to that in the proliferation media and quantified
using Fiji NeuronJ (Meijering et al., 2004). Neurite length was
analyzed by imaging a minimum of 5 cells per field. The
mean of neurite length ± standard error is reported. Statistical
significance was calculated using t-test (indicated as ∗∗∗ for
P ≤ 0.001).

RT-qPCR Analysis
Cells were harvested 48 h after the last siRNA transfection
and were processed for RT-qPCR analysis. RNA extraction was
performed using EuroGOLD TriFast (Euroclone, Milan, Italy),
according to the manufacturer’s instructions. One Microgram
of total RNA was used for the reverse transcription carried out
at 37◦C using random primers (SigmaAldrich, St Louis, MO,
USA) and Moloney murine leukemia virus (M-MLV) Reverse
Transcriptase (Gibco-BRL, Life Technologies Inc., Frederick,
MD, USA). The resulting cDNA was diluted 1:10 and used
for quantitative PCR (qPCR). The target gene sequences were
the following: hnRNP Q forward 5′-actgttgaatgggctgatcc-3′,
reverse 5′-cctccaagtctttgccattc-3′; hnRNP R forward 5′-gcaaggtgc
aagagtccaca-3′, reverse 5′-cacgccagagtacacactgtc-3′; TNF forward
5′-cctctctct aatcagccctctg-3′, reverse 5′-gaggacctgggagtagatgag-
3′; ICAM1 forward 5′-ggccggccagctt atacac-3′, reverse 5′-tag
acacttgagctcgggca-3′; PENK forward 5′-gtgcagctaccgcctagtg-3′,
reverse 5′- tgcaggtttcccaaattttc-3′; TNFRSF9 forward 5′-ttggat
ggaaagtctgtgcttg-3′, reverse 5′-a ggagatgatctgcggagagt-3′; KLF4
forward 5′-gcggcaaaacctacacaaag-3′, reverse 5′- ccccgtgtgtttacg
gtagt-3′; KLHL4 forward 5′-ttggagatgatggctgatga-3′, reverse 5′-
aagagtttgctctgcgtggt-3′; NRG3 forward 5′-tattcaaaggtggaaaggcatc
c-3′, reverse 5′-tgaaggcattcctatggagca-3′; RAB26 forward 5′-tcatct
ccaccgtaggcatt-3′, reverse 5′-ccggtagtaggcatgggtaa-3′; ARHGA36
forward 5′-ttgaactgacagccacgatg-3′, reverse 5′-gccagactatccaca
gacac-3′; CT55 forward 5′-atgttgtgactggcaacgtg-3′, reverse 5′-
agcaccataaagatggcgag-3′; CARTPT forward 5′- ccgagccctggacat
ctact-3′, reverse 5′-atgggaacacgtttactcttgag-3′; FOSB forward 5′-
accctctgccgagtctcaat-3′, reverse 5′-gaaggaaccgggcatttc-3′; JAG1
forward 5′-atcgtgctgcctttcagttt-3′, reverse 5′-gatcatgcccgagtgaga
a-3′; ICAM5 forward 5′-ggctcttcggcctctcag-3′, reverse 5′-gca
gttggtgctgcaattc-3′; DUOXA1 5′-ccaagccaaccttcccgat-3′, reverse
5′-cccgatgaataagctggtcac-3′; HMOX1 forward 5′-gccagcaacaaa
gtgcaag-3′, reverse 5′-gagtgtaaggacccatcgga-3′; KCNAB1 5′-gca
aatcgaccggacagtaac-3′, reverse 5′-gccatgccttggtttatcacat-3′, ACP5
forward 5′-ctacccactgcctggtcaag-3′, reverse 5′-cacgccattctcatcttg
c-3′; SDCBP2 forward 5′-ccactacgtgtgtgaggtgg-3′, reverse 5′-
tgctcgtagatcacactggg-3′, EFEMP1 forward 5′-cgagcaaagtgaacacaa
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cg-3′, reverse 5′-gatatccaggagggcactga-3′. Housekeeping gene
Hypoxanthine phosphoribosyltransferase 1 (HPRT1) and RNA
polymerase II subunit A (POLR2A) were used to normalize
the results. The sequences of these primers are the following:
HPRT1 forward 5′-tgacactggcaaaacaatgca-3′, reverse 5′-ggtcctttt
caccagcaagct-3′; RPII forward 5′-gcccacgtccaatgacat-3′, reverse
5′-gtgcggctgcttccataa-3′.

Quantitative PCR reaction was performed in the presence of
iQ SYBR green supermix (BioRad, Hercules, CA, USA), using
the following conditions for all the target genes, but KLF4 and
KLHL4: 95◦C for 3min, 95◦C for 10 s, 60◦C for 30 s, 95◦C for 10 s,
65◦C for 1 s. For KLF4 and KLHL4 genes the qPCR conditions
were the following: 95◦C for 3min, 95◦C for 10 s, 65◦C for 30 s,
95◦C for 10 s, 65◦C for 1 s. The relative gene expression levels
were determined using the 2–11CT method (Schmittgen and
Livak, 2008). The mean of relative expression levels ± standard
error of three independent experiments is reported. Statistical
significance was calculated using t-test (indicated as ∗ for P ≤

0.05, as ∗∗ for P ≤ 0.01 and as ∗∗∗for P ≤ 0.001).

Immunofluorescence Analysis
SH-SY5Y cells (3 × 105) and NSC-34 (3.5 × 105) were plated
in 6-well plates containing coverslips. For SH-SY5Y treated with
siRNA against hnRNPs and NSC-34 we plated the corresponding
number of cells in 6-well plates containing coverslips coated with
poly-L-lysine solution at a final concentration of 0.01% (w/v) in
H20 (SigmaAldrich, St Louis, MO, USA). After 24 h, cells were
washed three times with PBS, fixed in 3.2% paraformaldehyde
in PBS for 1 h at room temperature and permeabilized by
using 0.3% Triton in PBS for 5min on ice. Cells were then
blocked with 2% BSA/PBS for 20min at room temperature
and immunolabeled with 1:200 rabbit polyclonal antibody anti-
hnRNP Q (SigmaAldrich, St Louis, MO, USA) or 1:200 rabbit
polyclonal antibody anti-hnRNP R (Abcam, Cambridge, UK)
in 2% BSA/PBS overnight at 4◦C. Next day, cells were washed
three times with PBS, incubated with 1:500 anti-rabbit Alexa-
Fluor 488 (Invitrogen, Carlsbad, CA, USA) for 1 h at room
temperature and coverslipped with Vectashield-DAPI mounting
medium (Vector Laboratories, Burlingame, CA, USA). Each
slide was analyzed at the microscopy facility of University of
Trieste, using a Nikon Eclipse C1si confocal microscope system
mounted on a Nikon TE-2000U inverted microscope with a 60X
objective.

Nuclear and Cytoplasmic Extraction and
Western Blot Analysis
SH-SY5Y cells were seeded in p100 dishes to reach 90%
confluence the day of nuclear and cytoplasm extraction. Cells
from two dishes were pooled together and the resulting
pellets were treated using NER-PER Nuclear and Cytoplasmic
Extraction Reagents (ThermoFischer, Waltham, MA, USA) as
described in the manufacturer’s instructions. Evaluation of the
presence/absence of hnRNP Q and hnRNP R in the nuclear
and cytoplasm fractions was then carried out by Western blot
analysis. Proteins extract (15 µg) for each sample was loaded
on a 10% SDS-PAGE gel. The gel was then electroblotted on an
Immobilon-P PVDF Membrane (Merck Millipore, Burlington,
MA, USA), according to standard protocols and blocked with

4% BSA (SigmaAldrich, St Louis, MO, USA) prepared in 1×
PBS with 0.1% Tween-20 (SigmaAldrich, St Louis, MO, USA).
Proteins were incubated with 1:1000 rabbit polyclonal antibody
anti-hnRNP Q (SigmaAldrich, St Louis, MO, USA) or 1:1000
rabbit polyclonal antibody anti-hnRNP R (Abcam, Cambridge,
UK) and successively were incubated with 1:2000 HRP-
conjugated secondary antibody (Dako, Glostrup, Denmark).
Protein detections were assessed with Luminata ClassicoWestern
HRP substrate (Merck Millipore, Burlington, MA, USA) and
the images were acquired using Alliance 9.7 Western Blot
Imaging System (UVItec Limited, Cambridge, UK). In-house
made 1:1000 mouse polyclonal antibody anti-tubulin and 1:1000
mouse monoclonal antibody anti-p84 (Abcam, Cambridge, UK)
were used as cytoplasmic and nuclear controls, respectively
(Ayala et al., 2008).

RNAseq and Analysis of Differentially
Expressed Genes (DEGs)
Total RNA was extracted from luciferase (control), hnRNP Q
and hnRNP R depleted SH-SY-5Y cells, as described previously.
RNA sequencing was performed by Eurofins (www.eurofins.
com) using IlluminaHiSeq 2500 instrument. Data processing was
carried out with the following software: HiSeq Control Software
v2.0.12.0, RTA v1.17.21.3 and bcl2fastq-1.8.4. Alignment to
human reference sequence was performed by BWA-MEM
(version 0.7.12-r1039, http://bio-bwa.sourceforge.net/) and the
raw read counts were created using featureCounts (http://bioinf.
wehi.edu.au/featureCounts/). Only reads with unique mapping
positions and a mapping quality score at least 10 were considered
for read counting. Raw read counts were converted to Counts
per million (CPM) values by Trimmed mean of M-values
(TMM) normalization (edgeR package http://bioconductor.org/
packages/release/bioc/html/edgeR.html, (Robinson and Oshlack,
2010). Features had to have a counts-per-million value of more
than one in at least three samples or were removed, resulting
in the removal of 47,622 of the 64,769 features. Differential
expression analysis was performed on the remaining 17,417 genes
using edgeR package. GOseq package from R (Young et al.,
2010) was also used for Gene ontology (GO) and KEGG pathway
analysis. Categories significantly enriched (p-value < 0.05) were
considered.

Accession Numbers
The data discussed in this publication have been deposited in
NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are
accessible through GEO Series accession number GSE114165.
[The following secure token has been created to allow review
of record GSE114165 while it remains in private status:
kjubwgcqjjyljct].

RESULTS

Different Subcellular Localization of
Human hnRNP Q and hnRNP R in the
Neuroblastoma SH-SY5Y Cell Line
In our previous study, we have used Drosophila melanogaster
as a model organism to study the effects of hnRNP depletion
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in a model of TDP-43/TBPH gain- and loss-of-function and we
identified CG17838/Syncrip (Syp) (Figure 1A) as a potentially
very powerful modulator of TDP-43 effects (Appocher et al.,
2017). Interestingly, of the two human Syp orthologs (hnRNP Q
and hnRNP R), only hnRNP Q was shown to be able to rescue
missplicing effects due to TDP-43 silencing.

To better characterize the roles played by human hnRNP
Q and hnRNP R in the neuronal-like cell line SH-SY5Y, we
first investigated their subcellular localization by carrying out
immunofluorescence (IF) staining for the endogenous proteins.
In these cells, hnRNP Q showed punctate localization both
in nucleus and cytoplasm whilst the hnRNP R IF signal was
predominantly nuclear (Figure 1B). In particular, the presence of
the cytoplasmic variant of hnRNP Q in granule-like structures
further supports previous results showing the involvement of
hnRNP Q in mRNA trafficking (Bannai et al., 2004; Chen et al.,
2012).

Western blot analysis of nuclear and cytoplasmic fractions was
also carried out to confirm these results and check for isoform
production.

Regarding hnRNP Q, three major splicing isoforms of this
protein have been so far previously reported (Mourelatos et al.,
2001). These isoforms are characterized by the presence of two
NLS in the hnRNP Q3 and hnRNP Q2 variants (with a molecular
weight of 65 kDa and 70 kDa, respectively) and one NLS in the
hnRNP Q1 (with a molecular weight of 62 kDa) (Figure 1A).
Three immunoreactive bands (∼ 58, ∼66, and ∼ 75 kDa)
were detected by Western blot analysis, differentially distributed
between nucleus and cytosol (Figure 1C). The molecular weight
of ∼ 75 kDa is consistent with that of hnRNP Q2/hnRNP Q3
isoforms and the molecular weight of ∼ 66k Da with that of
hnRNP Q1 isoform. The apparent molecular weight of the lower
band (∼58 kDa) cannot be associated to any known hnRNP Q
isoform and could be corresponding to a further variant that still
remains to be characterized.

The same analysis was repeated for hnRNP R, confirming
its presence predominantly in the nuclear fraction (Figure 1C).
The antibody used for staining the membrane (ab30930) detected
three bands: ∼71, ∼75, and ∼80 kDa. According to literature
the major hnRNP R isoform, also known as R1 (NP_005817.1.
NM_005826.4. [O43390-1]) presents a molecular weight of
∼80 kDa whilst a second characterized variant, namely R2
(NP_001284549.1, NM_001297620.1 [O43390-3]) presents a
molecular weight of ∼75 kDa (Hassfeld et al., 1998; Huang
et al., 2005). According to these data, we concluded that our
immunoreactive bands of ∼75 kDa and ∼80 kDa were R2 and
R1, respectively. On the other hand, the band of ∼71 kDa could
be another splicing variant of hnRNP R that still needs to be
identified.

Subsequently, we tested if hnRNP Q or hnRNP R might
change their cellular localization after neuronal differentiation.
To this aim, considering the extremely high conservation of
these two proteins in mouse (more than 99% identity and
similarity), immunofluorescence experiments were carried out
after inducing differentiation of the murine motoneuron-like
NSC-34 cell line, due to their ability to differentiate in more
neuron-like cells (Figure 2A). The staining showed that hnRNP

Q and hnRNP R did not change their subcellular distribution
after differentiation (Figure 2B).

Overall, the different localization of hnRNP Q and hnRNP
R suggests that their nuclear-cytoplasmic distribution is
differentially regulated and this could be reflected in a differential
control of cellular pathways.

Knockdown of hnRNP Q and hnRNP R
Affects the Expression of Genes Related to
Brain Functions, Neurodegeneration and
Inflammatory Response
Following this immunolocalization analysis, we therefore
decided to analyze the whole transcriptome status of SH-SY5Y
silenced for these hnRNPs in order to identify the genes whose
expression is commonly or differentially regulated by these
proteins.

First of all, we checked the downregulation of hnRNP Q and
hnRNP R using qPCR (Figure 3A, 4A) and then we investigated
if the silencing of hnRNP Q was able to affect the gene expression
levels and cellular localization of hnRNP R and vice-versa
(Figure 5). We observed a significant reduction of mRNA levels
of hnRNP Q and hnRNP R after their silencing. Moreover, we
observed no significant differences in the mRNA levels as well as
in the endogenous localization of hnRNP Q after sihnRNP R and
of hnRNP R after sihnRNP Q.

Then, we carried out an RNA-seq analysis of three
independent knockdowns for each hnRNP and the putative
differentially expressed genes (DEGs) were identified comparing
the data of hnRNP Q or hnRNP R silencing to siLUC control
samples. To identify up- and downregulated genes, the cut-
off values used were the fold change (FC) value (upregulation
cut-off: >1.3; downregulation cut-off: <0.7-FC) and the p-
value < 0.05. Following silencing of hnRNP Q, a total
of 2,819 genes (out of the 17,147 analyzed genes) resulted
to be differentially expressed. These included 1,380 (49%)
upregulated and 1,439 (51%) downregulated genes (Figure 3A).
On the other hand, following silencing of hnRNP R, 1517
genes (out of the 17,147 analyzed genes) were differentially
expressed, 957 (63%) upregulated and 560 (37%) downregulated
(Figure 4A).

In order to validate these RNA-seq data, we monitored by
qPCR the expression (after hnRNP Q or hnRNP R silencing)
of 10 genes selected among the top 100 differentially expressed
genes (Figures 3B, 4B).We selected these genes considering their
potential involvement in neuron development/functions as well
as neuroinflammation.

Regarding cells silenced for hnRNP Q, tumor necrosis
factor (TNF), intercellular adhesion molecule 1 (ICAM1),
proenkephalin (PENK), tumor necrosis factor receptor
superfamily, member 9 (TNFRSF9), Kruppel-like factor 4
(gut) (KLF4), kelch-like family member 4 (KLHL4), and
neurogulin 3 (NRG3) were found to be upregulated, while
RAB26, member RAS oncogene family (RAB26), Rho GTPase
activating protein 36 (ARHGAP36) and cancer/testis antigen
55 (CT55) were found downregulated (Figure 3C). On the
other hand, concerning cells silenced for hnRNP R, CART
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FIGURE 2 | Endogenous localization of hnRNP Q and hnRNP R is not affected by differentiation in NSC-34 cells. (A) Light microscopy images of undifferentiated

(CNTRL) and differentiated cells treated up to 5 days with medium containing 1 µM of all-trans retinoic acid (RA 1µM). Scale bars: 58µm, 20X magnification. Neurite

length comparison (gray bars) of CNTRL and RA is also reported as mean ± standard error. Statistical differences were evaluated using t-students (***p < 0.001). (B)

Immunofluorescence analysis of the endogenous mouse hnRNP Q and hnRNP R (shown in green) in NSC-34 cells with or without 1µM RA treatment. Nuclei were

visualized using DAPI staining. Scale bars: 17µm.

prepropetide (CARTPT), FBJ murine osteosarcoma viral
oncogene homolog B (FOSB), jagged 1 (JAG1), intercellular
adhesion molecule 5, telencephalin (ICAM5), dual oxidase
maturation factor 1 (DUOXA1) and heme oxygenase (decycling
1) (HMOX1) were found to be upregulated, while potassium

voltage-gated channel, shaker-related subfamily beta (KCNAB1),
acid phosphatase 5, tartrate resistant (ACP5), syndecan binding
protein (syntenin) 2 (SDCBP2), and EGF containing fibulin-like
extracellular matrix protein 1 (EFEMP1) were found to be
downregulated (Figure 4C). In conclusion, the results of our
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FIGURE 3 | Validation of hnRNP Q silencing and comparison between RNA-seq and RT-qPCR results. (A) Assessment of hnRNP Q siRNA silencing efficiency using

qPCR (***p < 0.001) and summary of differentially expressed genes (DEGs with p < 0.05) with number of downregulated (<0.7x vs. siLUC) and upregulated (>1.3x

vs. siLUC) genes after sihnRNP Q treatment. (B) List of DEGs validated by RT-qPCR and associated with brain functions/neurodegeneration (PENK KLF4, KLHL4,

NRG3, RAB26, and ARHGAP36), inflammation (TNF, ICAM1, TNFRSF9), and other functions (CT55). (C) RT-qPCR validation of 10 selected transcripts. Each bar

reports mean ± standard error of three independent experiments. Statistical differences were evaluated using t-students (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 4 | Validation of hnRNP R silencing and comparison between RNA-seq and RT-qPCR results. (A) Assessment of hnRNP R siRNA silencing efficiency using

qPCR (***p < 0.001) and summary of differentially expressed genes (DEGs with p < 0.05) with number of downregulated (<0.7x vs. siLUC) and upregulated (>1.3x

vs. siLUC) genes after sihnRNP R treatment. (B) List of DEGs validated by RT-qPCR and associated with brain functions/neurodegeneration (CARTPT, FOSB, JAG1,

DUOXA1, HMOX1, KCNAB1, SDCBP2, EFEMP1), inflammation (ICAM5, ACP5). (C) RT-qPCR validation of 10 selected transcripts. Each bar reports mean ±

standard error of three independent experiments. Statistical differences were evaluated using t-students (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 5 | mRNA levels and cellular localization of endogenous hnRNP Q and hnRNP R after knockdowns in SH-SY5Y cells. (A) Relative expression of hnRNP Q

after siRNA against hnRNP R (sihnRNP R) and vice-versa. All the samples were compared to siLUC treated cells. Each bar reports mean ± standard error of three

independent experiments. Statistical differences were evaluated using t-students (ns: not significant). (B) Immunofluorescence analysis of the endogenous human

hnRNP Q (shown in green) in SH-SY5Y cells after siRNA treatment against hnRNP R. Nuclei were visualized using DAPI staining. Scale bars: 17µm. (C)

Immunofluorescence analysis of the endogenous human hnRNP R (shown in green) in SH-SY5Y cells after siRNA treatment against hnRNP Q. Nuclei were visualized

using DAPI staining. Scale bars: 17µm.
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qPCR validation are consistent with those obtained with the
RNA-seq analysis.

Volcano plots were also used to obtain a general overview the
results obtained in both sihnRNP Q and sihnRNP R treated cells
(Figure 6). Differentially expressed genes are highlighted in red
(downregulated) and in green (upregulated) based on the p-value
and FC variation with respect to the control treated cells (siLUC).
In this diagram, we also report the position of the DEGs validated
in Figures 2C, 3C using RT-qPCR.

Gene Ontology (GO) Enrichment and KEGG
Pathway Analysis Reveal Different and
Common Features Regulated by hnRNP Q
and hnRNP R
We next carried out enrichment analysis to find which GO
terms are over-represented in the genes regulated by hnRNP Q
and hnRNP R, in order to highlight differences and similarities
in specialization between these two orthologs. To this aim, we
took advantage of the GOseq R Bioconductor package (Young
et al., 2010) and considered for the final analysis only GO term
of the “biological process” (BP), “molecular function” (MF),
and “cellular component” (CC) categories reaching the p-value
threshold< 0.05 for significance. For both hnRNPQ and hnRNP
R, the top 25 GO terms of themajor three categories were selected
and sorted by their presence or absence in each hnRNPs. This
approach led us to define categories specific for hnRNP Q or
hnRNP R and categories commonly present in both two proteins
(Figure 7).

Regarding hnRNP Q, out of 2819 DEGs used as input
for GO analysis, we identified a total of 1,152 terms with
significant gene enrichment. The top enriched GO categories
were “membrane” (p-value = 3.17E-08), “bounding membrane
to organelle” (p-value= 7.29E-07), “cell morphogenesis involved
in differentiation” (p-value = 1.10E-06), “cell development” (p-
value = 1.42E-06) and “cell adhesion” (p-value = 3.17E-06). On
the other hand, for hnRNP R, out of 1,517 DEGs used as input
for GO analysis, we identified a total of 955 terms with significant
gene enrichment. The top enriched GO categories were “system
development” (p-value = 2.34E-08), “tissue development” (p-
value = 4.21E-08), “multicellular organism development” (p-
value = 3.39E-07), “cell differentiation” (p-value = 4.28E-07)
and “signal transduction” (1.13E-06). Notably, when we looked
at GO terms differentially enriched in hnRNP Q and hnRNP
R DEGs, we found that “intrinsic component of membrane,”
“plasma membrane,” “cell periphery,” “integral component of
membrane,” and “membrane part” were particularly enriched
in hnRNP Q depleted cells, while “signal receptor activity,”
“transmembrane receptor activity,” “transmembrane signaling
receptor activity,” “receptor activity,” and “molecular transducer
activity” were more enriched in hnRNP R depleted treated cells.
Furthermore, we also looked at the KEGG pathway analysis
using GOseq package from R. We found 29 and 16 terms with
significant gene enrichment (p-value < 0.05) for hnRNP Q and
hnRNP R, respectively (Figure 8). In particular, we noticed that
most of the pathways identified by KEGG pathways analysis for
both these two proteins were related to inflammation. Indeed,

“toll-like receptor signaling pathway” (p-value = 0.002), “ECM-
receptor interaction” (p-value= 0.002), “adipocytokine signaling
pathway” (p-value = 0.003), “toxoplasmosis” (p-value = 0.004)
and “rheumatoid arthritis” (p-value = 0.007) were particularly
enriched in DEGs obtained by sihnRNP Q silencing, whereas
“cell adhesion molecules (CAMs)” (p-value = 4.58E-05), “ECM-
receptor interaction” (p-value = 0.001), “cytokine-cytokine
receptor interaction” (p-value = 0.01), “T cell receptor signaling
pathway” (p-value = 0.02) and “malaria” (p-value = 0.02) were
particularly enriched in DEGs obtained by sihnRNP R silencing.

In conclusion, this analysis shows that hnRNP Q and hnRNP
R have presumably acquired different functional specialization
during evolution. Our results suggest that hnRNP Q plays a role
in the assembly of plasma membrane lipid layers and organelles
as well as in the regulation of events associated with cell-cell
and cell-extracellular matrix contacts. On the contrary, hnRNP
R seems to be implicated mostly in processes associated with
differentiation and development of cells/tissues, as well as cell
signaling.

DISCUSSION

The elucidation of the molecular mechanisms underlying RNA
regulation in both physiological and pathological processes
is hampered by the great complexity of RBP networks, that
can occur through the establishment of highly specific or
loosely-specific interactions (Liachko et al., 2010; Cohen
et al., 2015) and their post-translational modifications
(Dassi, 2017).

To fill this gap, we focused our attention on two prominent
but less studied members of the hnRNP family, hnRNP Q, and
hnRNP R.

Previous studies have shown that hnRNP Q has multiple
functions in mRNA metabolism, ranging from pre-mRNA
splicing to mRNA editing, stability control, transport, and
translation (Blanc et al., 2001; Bannai et al., 2004; Chen et al.,
2008; Weidensdorfer et al., 2009; Kim et al., 2010). On the
other hand, hnRNP R, a highly hnRNP Q related hnRNP,
seems to be implicated in processing and localization of β-actin
mRNA by binding its 3′ UTR in motor axons (Rossoll et al.,
2003). In addition, it has been suggested that hnRNP Q and
hnRNP R cooperates in regulating cytoplasmic mRNA trafficking
(Mourelatos et al., 2001; Rossoll et al., 2002).

More recently, it has been confirmed that hnRNP R interacts
with the 3′ UTR of mRNAs (Briese et al., 2018) and that, along
with its main interactor, the noncoding RNA 7SK, it seems
to coregulate the axonal transcriptome of motoneurons (Briese
et al., 2018).

Therefore, despite recent progresses in the understanding of
hnRNP Q and hnRNP R functions, little is about their roles in
regulation of gene expression and about the potential targets
of their actions. Looking at the transcriptome status of SH-
SY5Y cells silenced with siRNA against hnRNP Q and hnRNP
R, we found distinctive and common features associated to
DEGs in both these proteins. Moreover, in the top 100 DEGs
of both proteins we identified an important subset of genes
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FIGURE 6 | Volcano plot of hnRNP Q and hnRNP R. Schematic representation of RNA-seq data of sihnRNP Q (A) and sihnRNP R (B) treated cells. Up- and

downregulated genes are reported as green and red dots, respectively. Not DEGs are represented as gray dots. Black arrows show RT-qPCR validated genes. P

threshold (=0.05) is reported in blue.

that correlate with neurodegeneration and inflammation cellular
pathways.

In general, regarding hnRNP Q, our study suggests that
this factor can regulate predominantly the expression of genes
potentially impacting the immune response and inflammation
(Figure 8A). In fact, the two immune-related KEGG pathways
“Rheumatoid arthritis” and “Toxoplasmosis” were found to be
enriched in hnRNP Q DEGs. Indeed, it was observed that
infection of Toxoplasma gondii is associated with neuronal
impairment and inflammation in mice and humans (Carruthers
and Suzuki, 2007) and the inhibition of TNF signaling in
patients suffering from rheumatoid arthritis is protective against
Alzheimer’s disease (Steeland et al., 2018). Finally, it is worth
noting that several lines of evidence support a role for Toll-
like receptors (TLRs) in the pathogenesis of neurodegenerative
diseases, such as ALS (Casula et al., 2011), Alzheimer’s disease

(Reed-Geaghan et al., 2009) and in multiple sclerosis (Prinz et al.,
2006; Marta et al., 2008).

On the other hand, regarding hnRNP R, the KEGG pathway
analysis suggests that this protein predominantly influences
the expression of genes related with brain functions and
inflammation (Figure 8B). In fact, two neuronal-related
KEGG pathways (“Axon guidance” and “Neuroactive-ligand
receptor interaction”) and immune/inflammation-related
KEGG pathways (“T receptor signaling”, “Cytokine-cytokine
receptor interaction”, “Cell adhesion molecules” “ECM-receptor
interaction,” and “Arachidonic acid metabolism”) were found to
be enriched in hnRNP R DEGs.

Then, taking a closer look at the regulated genes, regarding
hnRNP Q, we found KLF4 (Qin and Zhang, 2012), NRG3
(Zhou et al., 2018), and PENK (Ernst et al., 2010) up-regulated
following hnRNP Q silencing. In particular, NRG3 and PENK
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FIGURE 7 | Gene ontology (GO) analysis of DEGs in sihnRNP Q and sihnRNP R treated cells. GO enrichment analysis was performed using GOseq package Three

major GO categories are highlighted: biological process (BP), molecular function (MF), and cellular component (CC). The first fifteen sub-categories (p < 0.05) of DEGs

of each category are reported for both sihnRNP Q and sihnRNP R treated cells.
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encode two neuronal proteins associated with synapse plasticity
and neuronal disorders, respectively. The silencing of hnRNP Q
was also able to down-regulate both RAB26 and RAB33B, that
have been shown to bind to ATG16L1 in the fly neuromuscular
junctions, thus suggesting the implication of Syncrip in recycling
of synaptic vesicle proteins through the autophagy pathway
(Binotti et al., 2015). This observation is particularly intriguing
because of the role played by TDP-43 and its fly ortholog
TBPH in the neuromuscular junction formation. In fact, a
previously generated TBPH-null allele Drosophila ALS model
showed specific alterations of neuromuscular junctions (Feiguin
et al., 2009; Godena et al., 2011; Langellotti et al., 2016; Romano
et al., 2018) and the hTDP43A315T transgenic mouse model of
ALS presented a strong reduction of synaptic vesicles in the NMJs
(Magrané et al., 2013).

Finally, neuronal expression has been reported for both
KLHL4 and ARHGAP36, although their neuronal function or
possible connection with diseases is still not fully elucidated
(Braybrook et al., 2001; Rack et al., 2014).

Regarding hnRNP R, we observed up-regulation of CARTPT,
FOSB, JAG1, DUOXA1 and HMOX1 and down-regulation
of KCNAB1, SDCBP2, and EFEMP1. It is interesting to
note that CARTPT encodes a prepropeptide acting as a
neurotransmitter in association with GABA (g-aminobutyric
acid) (Smith et al., 1999) and substance P (Hubert and
Kuhar, 2005). Furthermore, the maturation factor of NADPH
oxidase Dual oxidase 1 (DUOXA1) was found to promote
neuronal-like differentiation of p19 embryonal carcinoma cells
following p53 expression (Ostrakhovitch and Semenikhin,
2011). Interestingly, JAG1 and, in a more general view,
the Notch signaling pathway are important for the spatial
memory and their expression is altered in the hippocampus
of people suffering from Alzheimer’s disease (Marathe et al.,
2017). In addition, HMOX1 expression is also up-regulated
in neurons and astrocytes derived from hippocampus, cerebral
cortex, and subcortical white matter of Alzheimer’s patients
(Schipper et al., 1995).

On the other hand, due to the increase importance of the
inflammatory response in the pathogenesis of neurodegenerative
disease (Wyss-Coray and Mucke, 2002; Block and Hong,
2005; Glass et al., 2010), it was particularly interesting to
note that cells depleted by hnRNP Q and hnRNP R showed
a prominent disruption of this pathway. In particular, the
inflammatory proteins TNF, TNFRSF9, and ICAM1 were
upregulated by the silencing of hnRNP Q, likewise to what
observed with silencing of TDP-43 and DAZAP1 (Appocher
et al., 2017). TNF is a pro-inflammatory cytokine that is
expressed in the central nervous system and its soluble form can
promote neuronal inflammation, occurring in neurodegenerative
conditions such as ALS, multiple sclerosis, Alzheimer’s and
Parkinson’s diseases (McCoy and Tansey, 2008). TNFRSF9,
also known as CD137, is a member of the tumor necrosis
factor receptor family that was demonstrated to promote the
oligodendrocyte apoptosis when bound to its ligand, through
the release of reactive oxygen species. Finally, ICAM1 was
found to be overexpress in age-dependent neurodegeneration

FIGURE 8 | KEGG pathway analysis of DEGs in sihnRNP Q and sihnRNP R

treated cells. First ten KEGG pathway identified (p < 0.05) in DEGs in

SH-SY5Y cells depleted for hnRNP Q (A) and hnRNP R (B). KEGG pathway

analysis was performed using GOseq package.

and localized in amyloid plaques of Alzheimer’s patients
(Miguel-Hidalgo et al., 2007).

By contrast, in sihnRNP R treated cells, other two immune-
related proteins (namely, ICAM5 and ACP5) were found to be
differentially regulated, while ICAM1, TNF, and TNFRSF9 were
not significantly altered. In particular, ICAM5 (telencephalin)
has been described to mediate the neuroprotective effects by
inhibiting the pro-inflammatory cascade of ICAM1 (Tian et al.,
2008). Regarding ACP5, the presence of this gene was detected
in brain and spinal cord of rat and the connection with
inflammation lies in the abnormal macrophage response to
bacteria in mice lacking of this enzyme (Bune et al., 2001).

In conclusion, regarding the possible molecular mechanisms
by which depletion of hnRNPQ and hnRNP R influence the gene
expression profiles of SH-SY5Y, we are tempted to speculated
that that hnRNP R and hnRNP Q might regulate the abundance
of transcripts by affecting the mRNA stability through their
interaction with the 3′UTR. This hypothesis is supported by
the known ability to bind the 3′ UTRs of mRNAs. However,
other mechanisms (such as alternative splicing associated to
NMD or alternative splicing regulation of transcription factors)
can be implicated and cannot be excluded at the present stage.
Nonetheless, our study sheds light on the distinctive functions of
hnRNP Q and hnRNP R in human neuronal cells and, in general,
provides insights on the involvement of the hnRNP family in
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controlling neuronal and inflammatory pathways, strengthening
the hypothesis that differential expression of these RBPs could
play an essential role in modulating the onset and progression of
neurodegenerative disorders.
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