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Abstract

Background

Current laboratory tests are less than 50% accurate in distinguishing between people who

have food allergies (FA) and those who are merely sensitized to foods, resulting in the use

of expensive and potentially dangerous Oral Food Challenges. This study presents a

purely-computational machine learning approach, conducted using DNA Methylation

(DNAm) data, to accurately diagnose food allergies and potentially find epigenetic targets

for the disease.

Methods and results

An unbiased feature-selection pipeline was created that narrowed down 405,000+ potential

CpG biomarkers to 18. Machine-learning models that utilized subsets of this 18-feature

aggregate achieved perfect classification accuracy on completely hidden test cohorts (on an

8-fold hidden dataset). Ensemble classification was also shown to be effective for this High

Dimension Low Sample Size (HDLSS) DNA methylation dataset. The efficacy of these

machine learning classifiers and the 18 CpGs was further validated by their high accuracy

on a large number of hidden data permutations, where the samples in the training, cross-

validation, and hidden sets were repeatedly randomly allocated. The 18-CpG signature

mapped to 13 genes, on which biological insights were collected. Notably, many of the FA-

discriminating genes found in this study were strongly associated with the immune system,

and seven of the 13 genes were previously associated with FA.

Conclusions

Previous studies have also created highly-accurate classifiers for this dataset, using both

data-driven and a priori biological insights to construct a 96-CpG signature. This research

builds on previous work because it uses a completely computational approach to obtain a

perfect classification accuracy while using only 18 highly discriminating CpGs (0.005% of

the total available features). In machine learning, simpler models, as used in this study,

are generally preferred over more complex ones (other things being equal). Lastly, the
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completely data-driven methodology presented in this research eliminates the need for

a priori biological information and allows for generalizability to other DNAm classification

problems.

Introduction

Food Allergy (FA) is a specific immune response that occurs upon exposure to a particular

food [1]. FA affects around 8% of children and 3-5% of adults [2][3] and poses high risks:

around 40% of affected children experience anaphylaxis, a severe and potentially life-threaten-

ing reaction [4][5]. Equally worrisome is the fact that both the number of FA-affected people

and the number of food-related anaphylactic events are increasing [6]. The financial costs of

FA are significant as well, with an estimated price of $4,184 per year per affected child [7].

Current laboratory procedures used to detect food allergies, such as allergen-specific IgE

(sIgE) testing and skin prick tests (SPT), are effective predictors of sensitivity to a specific aller-

gen but not whether a patient will have allergy symptoms upon laboratory exposure [8]. In

fact, the majority of children who test positive for either the blood-based sIgE tests or the SPT

tests do not actually have FA [9].

The lack of effective IgE-mediated biomarkers for clinical FA [10] leads to the necessity of

Oral Food Challenges (OFCs), the current gold standard for determining clinical reactivity [1]

[11]. However, these tests can be time-consuming, expensive, and potentially fatal, as they can

induce anaphylaxis. As a result, food challenges arse often under performed, leading to an

overdiagnosis of FA [9]. Sensitized patients are encouraged to develop immunity through

consumption of the allergen, which cannot occur if they are incorrectly diagnosed as allergic.

Thus, predictive models that can differentiate between food sensitization and clinical reactivity

(i.e. true food allergy) are needed to avoid OFCs and reduce false positive diagnoses of FA.

Epigenetic factors have been noted to be a possible means of diagnosing food allergy [12]

[13]. Martino et al. 2015 [14] provides proof of principle that genome-wide levels of DNA

Methylation, an epigenetic tag, are strong diagnostic markers of clinical FA. There is a high

volume of recent FA research that uses DNAm: Martino et al. 2018 [15] used integrated

DNAm and transcriptome profiling to conclude that the activation of naive CD4+ T cells

results in poorer lymphoproliferative responses in children with FA, Sicherer and Sampson

2018 [16] suggest the use of DNAm signatures to create FA-related diagnostic tests, and Song

et al. 2017 [17] state that DNAm regulates genes that are critical for the development of FA.

Martino et al. 2015 [14] pioneered the use of methylation data to create a diagnostic model

for FA, achieving perfect classification when applying the shrunken centroid algorithm to a

96-CpG signature. To create their 96-CpG signature, Martino et al. 2015 [14] utilize a priori
biological information, identifying overlapping protein-coding genes and enriching for immu-

nologic genes.

This study analyzes the same dataset used by Martino et al. 2015 [14] with the following aims:

1. Replicating the perfect classification that was achieved in the previous work, while using

substantially less than 96 features for the machine learning classifiers. In machine learning,

simpler models (classifiers) are preferred over more complex ones, ceteris paribus [18][19].

2. Using a purely data-driven method to build a perfect classifier (i.e. one that does not use

any a priori information), so that the methodology will be applicable to other diseases

involving DNAm.

A novel 13-gene signature to diagnose clinical reactivity to food allergies

PLOS ONE | https://doi.org/10.1371/journal.pone.0218253 June 19, 2019 2 / 21

Competing interests: The author, Ayush Alag, is

Founder and CEO of Allergezy Inc., a company

developing a DNA-methylation based diagnostic

test to detect if a person has a food allergy or is

sensitized. Allergezy did not provide any financial

support in the form of salaries for me (Ayush Alag),

nor did it have any additional role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript. My

specific role is articulated in the ‘author

contributions’ section. This does not alter my

adherence to PLOS ONE policies on sharing data

and materials.

https://doi.org/10.1371/journal.pone.0218253


3. Extracting new biological insights by analyzing the set of genes associated with discriminat-

ing CpG features from the diagnostic classifiers.

All three of the aforementioned aims were met in this study.

Materials and methods

Weka [20], a Java-based machine learning toolkit, was used for building the predictive models.

The methods described here are also publicly-available at protocols.io (DOI: dx.doi.org/10.

17504/protocols.io.x7pfrmn).

Data

The research was conducted using a dataset found in the Gene Expression Omnibus (GEO)

[21] under accession id GSE59999 [22]. The 71 patient samples in this dataset consisted of 29

patients with egg or peanut FA (tested positive on OFCs), 29 patients who were sensitized

to one of those allergens but not food-allergic, and 13 patients who were neither sensitized

nor allergic. Sensitized individuals tested positive for the skin prick tests but negative for the

food challenge. The 58 allergic and sensitized samples were collected from infants who were

between 11 to 15 months of age. Of the 29 sensitized patients, 16 were females and 13 were

males; of the 29 allergic patients, 10 were females and 19 were males; and of the 13 non-allergic

patients, 7 were females and 6 were males. Each of the non-allergic patients had reacted nega-

tively to a skin prick test.

Similar to Martino et al. 2015 [14], the 13 patient samples who had neither FA nor sensitiza-

tion were discarded, since the goal of the research was to build a classifier that distinguishes

clinical FA from sensitization, and these 13 patients belonged to neither category. A skin prick

test can be used in a clinical setting to filter out this non-allergic group.

Each sample consisted of normalized Methylation levels taken from mononuclear blood

cells at 405,658 CpG islands across the genome. These Beta values were features for the

machine-learning classifiers in this study.

Splitting the dataset and creating independent folds

The 58 samples were randomly split into three cohorts: 40 samples for training, 10 samples for

cross-validation, and 8 completely hidden samples for testing. Half of the samples in each of

the three cohorts were allergic subjects, while the other half were sensitized. To avoid potential

bias, eight random folds (K-Fold cross validation) [23] were created. In each fold, the samples

were shuffled across the three cohorts such that each of the 58 samples was in the hidden data-

set at least once across all 8 folds, as shown in S1 Table. All reported results are averaged over

these eight independent folds, where the samples in the training, cross-validation, and hidden

cohorts were varied. Each time, classifiers were re-trained on the new training set, the appro-

priate model was selected using the cross-validation set, and final accuracies were obtained on

the hidden test set.

Feature selection

DNAm datasets are characterized as having a small number of samples but a very high number

of feature dimensions (HDLSS) [24]. To prevent overfitting and increase generalization, it is

important to condense the feature list relative to the number of samples available. Computa-

tionally, it is very expensive to evaluate the more than 400K CpG features individually. There-

fore, in order to limit the evaluation size and begin with a list of potentially highly-relevant

CpG points, the NCBI GEO2R [25] tool was used to obtain a prioritized list of CpG features

A novel 13-gene signature to diagnose clinical reactivity to food allergies
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differentially methylated across the allergic and sensitized groups, using the forty training sam-

ples. This process was repeated for each of the eight folds. There are many freely-available R-

based methods for generating this list of potentially highly-relevant features. The GEO2R tool

uses the limma (Linear Models for Microarray Analysis [26]) R package for statistical analysis

to identify differentially methylated features. Soneson and Delorenzi, 2013 provide a compari-

son of eleven freely-available R-based methods for differential expression analysis [27]. One or

more of these methods could be used as an alternative to the GEO2R tool to generate this list

of high-potential features.

The GEO2R tool produced eight ranked lists (one for each of the eight folds) of differen-

tially methylated CpGs. The top 99 CpGs from each list were combined for an aggregate

ranked list of 636 unique CpGs, the count being less than 792 since some of the CpGs over-

lapped across the eight folds. Table 1 shows fifteen of the top CpGs, where the ranking is a heu-

ristic based on the position of the CpG in each list and its frequency of occurrence across lists.

This ranking has no material significance in this methodology, since each of the unique 636

CpGs was later evaluated independently. It does, however, provide insight regarding compari-

sons between the features highlighted by GEO2R and those that appeared in the final CpG

signature.

Hidden data accuracy score. For each fold, and for each of the 636 unique CpGs from the

combined GEO2R list, four different machine learning classifiers were built: a Decision Tree

(DT), Logistic Regression Model (LR), Radial Basis Function (RBF), and a Multi-Layer Percep-

tron (MLP). The perceptron was a deep learning network with an architecture of two hidden

layers with ten nodes each. MLPs of other architectures can theoretically be added to the afore-

mentioned four classifiers without changing the methodology, as model selection is not prede-

termined and instead stipulated by the cross-validation data.

Each predictive classifier used only one CpG and was built on the training data. For each

fold and each CpG-feature, the classifier (DT, LR, RBF, or MLP) with the highest cross-

validation accuracy was selected. Finally, the average hidden test set accuracy across the eight

Table 1. Top CpGs and associated genes from GEO2R across 8 independent folds.

Rank CpG Associated Gene Positions in Lists

1 cg06410630 RNF213;LOC100294362 6,1,1,21,91,3,13

2 cg13560030 NTN4 60,13,20,38,5,28

3 cg02681173 LOC100190940 2,35,1,16,56

4 cg09755579 SNORA70B;USP34 11,8,19,71,1

5 cg20502977 COL6A3 2,40,4,1

6 cg26124569 LPP 14,6,8,43

7 cg24616138 CTBP2 5,13,2,71

8 cg24584002 RNASEH1 20,18,40,32

9 cg03946731 PKMYT1 50,23,34,6

10 cg20463995 - 39,44,1,39,

11 cg09618933 - 48,12,60,5

12 cg10301401 LMF1 7,18,11

13 cg08378782 RASGRP2 9,27,38

14 cg21615831 KSR1 13,59,34,74

15 cg07060505 - 1,11,70

A CpG may not appear in the top 99 CpGs for all of the eight folds. The above ranking is based on the frequency of each CpG across the eight GEO2R lists as well as its

ranking in each list. The order of the genes in this table has no methodological significance.

https://doi.org/10.1371/journal.pone.0218253.t001
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independent folds was computed. This quantity is referred to as the “accuracy score” through-

out the rest of the paper. 636 of these accuracy scores (one for each CpG) and 20,352 classifiers

(8 independent folds x 636 features x 4 classifiers) were created in total using this process for

the single feature case.

Increasing input features and classifier selection

Sequential forward feature selection (SFS) [28] was used to increase the number of input fea-

tures until perfect classification was achieved. The top 18 CpGs found in the previous section

(ranked by accuracy score) were combined two at a time, followed by three at a time, and so

on until combinations of twelve were reached. Given the large number of potential combina-

tions, each classifier was limited to a small subset of strong CpG-lists, to which a new input

feature was added. On average, around 200 unique combinations were created for a given

number of input features. Again, each unique input feature combination set was run 4 x 8 = 32

times to account for the four different classifier methods and 8 independent sample-distribu-

tion folds.

This process was stopped at twelve input-features, as perfect classification across the eight

folds was achieved with 12-feature combinations. Adding additional features would increase

the complexity of the classifiers, deviating from the objective of finding the simplest models to

explain the data.

Combining multiple classifiers using a simple voting scheme

Ensemble methods construct a set of machine learning classifiers and then classify new sam-

ples by taking a vote of the predictions from these models [29]. Ensemble systems generally

perform better than their individual classifiers if each model has a better-than-random guess-

ing chance and if the classifiers make diverse prediction errors [30].

While there are many ways to create an ensemble of classifiers, a simple majority-scheme

method was used in this research. For simple-majority ensembles, odd numbers of classifiers

are generally used to avoid the cases of ties [31] and to ensure a clear majority in the prediction

from the independent classifiers. Therefore, odd numbers of classifiers, starting from 1 to 101,

were combined using a simple voting scheme, i.e., each classifier independently predicted

whether a sample was classified as FA or sensitized and the final prediction was the majority of

predictions made across the different classifiers. The ensemble models were chosen based on

their accuracy scores on hidden data (described above). An even number of classifiers could

also have been used, with a default prediction of allergic in case of a tie in the predictions.

Validating the CpG signature through dataset permutations

The final set of CpG signatures were re-validated through testing on a large number of datasets

where the samples were repeatedly randomly allocated to the training, cross-validation, and

hidden test sample cohorts. As earlier, the number of samples in train-validation-test datasets

was kept at 40-10-8, with an equal number of allergy and sensitized samples in each cohort.

Biological insights: Connecting to systems and pathways

Gene set analysis can provide biological context as well as insights into disease mechanisms

and possible treatments [32][33]. Biological enrichment was performed by applying Illumina’s

BaseSpace Correlation Engine [34] (BSCE) to the 13-gene list. To gain a deeper understanding

of these genes, associated tissues and biological pathways were identified. The 13-gene list was

also connected to Broad positional gene sets.

A novel 13-gene signature to diagnose clinical reactivity to food allergies
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Connecting to Gene Ontology (GO). Gene ontology concepts were used to identify func-

tionally-related gene sets. [35] The Generic Gene Ontology (GO) Term Mapper [36] tool from

Princeton University [37] was used to map granular GO annotations to a higher-level set of

terms, thus providing a broad set of categories. REVIGO, an online tool that summarizes

and visualizes lists of gene ontology terms, was also used to find a representative set of terms

(through a clustering algorithm) [38][39].

Results and discussion

Single feature classifiers

Fig 1 shows the distribution of the accuracy scores on hidden data for each of the 636 CpGs

when they were the singular input feature for the machine learning classifiers. cg06410630,

which maps to gene RNF213;LOC100294362, achieved an average accuracy of 84.375% and

an average AUROC of 0.84, on the hidden test data across the eight independent folds. This

CpG was also identified via the GEO2R analysis process. Table 2 shows the 18 CpGs that had

an accuracy score of 75% or more, their associated genes, their accuracy scores, and their

AUROC. Surprisingly, only two of the fifteen CpGs identified in Table 1 via GEO2R, namely

cg06410630 and cg07060505, are in the list of eighteen shown in Table 2 that had the highest

accuracy scores.

cg06410630 and cg06669701

Fig 2 shows the methylation distributions of cg06410630 and cg06669701, the two best-per-

forming CpGs, across the allergic and sensitized samples. Classifier models created using each

Fig 1. Average accuracy across eight independent folds for singular CpG features. The accuracy for each CpG is its average hidden-data accuracy

across the 8 independent folds. cg06410630 was the strongest CpG biomarker with an average accuracy of 84.375%. 18 CpGs each had a score of 75% or

more.

https://doi.org/10.1371/journal.pone.0218253.g001
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one of these two CpGs as a singular input feature achieved an average hidden-data accuracy of

84.375% and 81.25%, respectively. As shown in Fig 2 the methylation values for cg06410630

are higher for food-allergic patients while the methylation values for cg06669701 are higher for

food-sensitized patients.

Combining classifiers via a voting scheme

When 29 or more independent single-feature classifiers were combined through the simple

voting scheme, as shown in Fig 3, the accuracy scores on hidden data reached 100%. A possible

explanation for this high-accuracy ensemble classification is provided in machine learning

literature.

Dietterich 2000 [29] provides three main reasons on why ensemble models perform better

than individual classifiers. Firstly, when the number of learning samples is small compared to

the size of the hypothesis space—as is the case with this dataset—the learning algorithms can

find many different hypotheses with the same accuracy from the training data. By constructing

an ensemble out of these accurate classifiers, the ensemble can “average” out the votes and

reduce the probability of selecting the wrong classifier. Secondly, machine-learning algorithms

typically perform a local greedy search and may get stuck in a local minima. An ensemble

created by classifiers that start their search from many different starting points may be more

Table 2. Top CpGs and associated genes using a single input feature to a classifier across 8 independent folds.

Number CpG Gene Average Accuracy AUROC

1 cg06410630 RNF213;LOC100294362 84.375 0.8359375

2 cg06669701 FAM190B 81.25 0.7890625

3 cg06628000 SARS 79.6875 0.8359375

4 cg10461264 - 78.125 0.7421875

5 cg18988685 - 76.5625 0.8125

6 cg24616138 CTBP2 76.5625 0.7109375

7 cg27027230 ARID5B 75 0.765625

8 cg00936790 KIF13B 75 0.7421875

9 cg14414100 SLC24A2 75 0.7734375

10 cg00939931 MAFK 75 0.796875

11 cg06116095 PANX1 75 0.7421875

12 cg02788266 - 75 0.7734375

13 cg03068039 ZNF252;TMED10P 75 0.828125

14 cg25890092 CD7 75 0.8203125

15 cg19287711 - 75 0.78125

16 cg07033513 - 75 0.75

17 cg07060505 - 75 0.8125

18 cg26963090 TIMP2 75 0.7734375

These 18 CpGs achieved an accuracy score of 75% or higher when used as the singular feature in the machine learning classifiers. Their accuracy scores and AUROC

were averaged over the 8 independent folds. For each fold, the machine learning classifiers were retrained and accuracy was computed on hidden test data.

https://doi.org/10.1371/journal.pone.0218253.t002

Fig 2. Distribution of methylation values for cg06410630 and cg06669701.

https://doi.org/10.1371/journal.pone.0218253.g002
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effective than a single classifier in finding the true function that describes the data. The third rea-

son is related to how machine-learning problems are represented. When the sample size is small,

a machine-learning algorithm develops only until the classifier can adequately represent the

training dataset. Thus, the ensemble may collectively explore a wider set of possible hypotheses.

Fig 3 also shows the average accuracy achieved by combining independent classifiers with

one, two, and three features. These multi-CpG classifiers were created from the list of the top

18 CpGs that obtained 75% accuracy or higher when used as singular input features (Section

2.4). It is speculated that the two, three, and four-CpG classifiers were not able to achieve as

good of a combined ensemble classification (as compared to single-input ensemble classifiers)

due to their non-independences, as some of the CpGs were repeated across the different classi-

fiers in the ensemble—thus replicating potential prediction errors. However, 29 or more com-

bined single-feature classifiers were diverse enough to yield perfect classification over the 8

hidden test sets.

Deep learning classifiers dominate with complexity

As shown in Fig 4, the deep learning network, an MLP with two hidden layers, was the most

commonly selected classifier for the single CpG-feature case, followed by Logistic Regression,

Decision Trees, and finally Radial Basis Functions. As the number of input features was

increased, the MLP further dominated the classifier selection process: when combinations of

12-CpG features were used, around 86.67% of the classifiers had the highest cross-validation

accuracy with the MLP (i.e. they “chose” the MLP classifier).

Accuracy achieved using one to twelve CpGs as features

For each given number of features, from one to twelve, Table 3 shows the best (hidden) test

accuracy achieved, the average accuracy of the top five classifiers (that had different feature

Fig 3. Average accuracy by combining multiple independent classifiers through a simple voting scheme. The

graph shows the average accuracy achieved by combining classifiers with one to three CpG features through a majority

voting scheme. Though the average accuracies for individual classifiers with single-feature CpG features are lower than

those of classifiers with a larger number of CpGs, an ensemble (29 or more) of single-feature classifiers achieved

perfect classification and outperformed ensembles of larger-feature classifiers.

https://doi.org/10.1371/journal.pone.0218253.g003
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sets), the average AUROC of the top five classifiers, and the best accuracy achieved through

ensemble classification.

Accuracy as a function of the number of input features. As shown in Fig 5 and in

Table 3, the prediction accuracy of the classifier and the AUROC generally increase with the

addition of a CpG feature. Perfect (100%) classification with an AUROC of 1 is obtained using

twelve input CpGs. Perfect classification is not unusual for this dataset, as Martino et al. 2015

[14] also demonstrated the same accuracy using the shrunken centroid algorithm with 96

CpGs.

As discussed earlier and shown in Fig 3, combining 29 (or more) independent single-fea-

ture classifiers through a simple voting scheme resulted in perfect classification. Table 3 above

shows the best accuracy achieved by combining independent classifiers for the given number

of features and the steady-state accuracy achieved after many such classifiers (each with the

same number of features) were combined. Perfect accuracy was achieved for two cases: twelve-

feature classifiers and single-feature ensembles.

Table 4 contains the CpG features of the top two classifiers with twelve features. Note

that eleven of the twelve CpGs for the two classifiers are the same, with cg00936790 and

cg07033513 being the differing CpGs across the two classifiers. The deep learning classifiers

created with each of these twelve-CpG feature sets achieved perfect hidden-data classification

and also AUROCs of 1. Both results were averaged across the eight independent folds, as

Fig 4. Distribution of machine learning classifier types for single-CpG feature models. The MLP was selected most frequently in the single-input

case (53%), followed by Logistic Regression (30%), Decision Trees (10%), and Radial Basis Functions (7%). As the number of features per model

increased, the MLP classifiers tended to further dominate the classifier selection process, with 86.67% of the twelve-feature classifiers attaining highest

cross-validation accuracy with the MLP.

https://doi.org/10.1371/journal.pone.0218253.g004

Table 3. Classifier statistics based on number of input features.

Features Best Accuracy Score Average Score Top 5 Average AUROC Top 5 Best Ensemble Accuracy Steady-State EnsembleAccuracy

1 84.375 80 0.8031 100 100

2 87.5 86.25 0.9086 95.31 95.31

3 90.625 90.625 0.92815 92.1875 92.1875

4 93.75 93.75 0.9375 95.3125 95.3125

5 96.875 95.625 0.9468 96.875 96.875

6 95.3125 94.6875 0.9796875 96.875 96.875

7 96.875 96.25 0.9875 100 96.875

8 96.875 96.875 0.9890625 100 96.875

9 98.4375 97.5 0.99375 98.4375 98.4375

10 96.875 97.8125 0.996875 100 98.4375

11 98.4375 98.4375 0.9984375 98.4375 96.875

12 100 99.0625 1 100 100

The table shows the average 8-fold hidden accuracy (accuracy score) achieved by the best classifier for the given number of features. The third and fourth columns show

the average accuracy score and AUROC for the top five classifiers, where each classifier has a different feature set. The fifth column shows the best score achieved by

combining multiple independent classifiers via a simple voting scheme, and the sixth shows the steady-state (converging) accuracy score achieved by this combination

after using 29+ independent classifiers.

https://doi.org/10.1371/journal.pone.0218253.t003
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usual. S1 Table contains the details of the training, cross-validation, and hidden accuracies for

this 12-feature case, as well as features for the top classifiers with 2-11 features.

Heatmap of CpGs distribution across number of features. Fig 6 shows the distribution

of the different CpGs for the individual classifiers with the highest accuracy, for each number

of input features. Note that many times multiple classifiers achieved the same highest accuracy

(for a given number of features). As a result, the number of CpGs shown in the figure may be

more than the specified number of features.

Interestingly, cg06410630 appeared in the best classifier for each of the feature-sizes from

one to twelve. cg10461264, cg06116095, and cg26963090 were the next three most frequently

appearing CpGs.

Mapping CpGs to genes and creating a gene list

Taking the top 26 classifiers with 12 features each, including the two with the feature-lists enu-

merated in Table 4 as well as 24 additional 12-CpG classifiers that had an accuracy score of

98.4375% each, a list of 18 unique CpGs was created that mapped to 13 genes. The fact that

CpGs across multiple genes were found to be strong biomarkers of FA indicates that FA is

likely a polygenic disease. Table 5 contains the 18 CpGs found, their frequencies across the 26

different classifiers, their associated genes, and the biological descriptions of those genes. It

also states whether each CpG was a novel association or if it was previously found by Martino

Fig 5. Best accuracy on hidden data and average AUROC as a function of the number of features. The bar graph

shows the average accuracy on the hidden data achieved by the best individual classifier for a given number of CpG

features, while the line graph shows the best average AUROC.

https://doi.org/10.1371/journal.pone.0218253.g005

Table 4. Top classifiers using twelve features averaged across 8 independent folds.

Number CpG Average

Accuracy

AUROC

1 cg06410630, cg10461264, cg06116095, cg06628000, cg26963090, cg18988685,

cg02788266, cg03068039, cg19287711, cg24616138, cg07060505, cg00936790

100% 1

2 cg06410630, cg10461264, cg06116095, cg06628000, cg26963090, cg18988685,

cg02788266, cg03068039, cg19287711, cg24616138, cg07060505, cg07033513

100% 1

Eleven of the twelve CpGs were common for the two cases; cg00936790 and cg07033513 were the two CpGs that

differed. Perfect classification, averaged on the eight completely hidden test cohorts, was achieved.

https://doi.org/10.1371/journal.pone.0218253.t004
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et al. 2015 [14]. The top five CpGs appear in all 26 of the 12-feature classifiers. Interestingly,

7 of the 13 genes were also identified by Martino et al. 2015 [14], while six of the genes are

unique to this study. The overlap of genes with those of Martino et al. 2015 [14], as well as the

identification of additional genes, seems to validate the approach and findings of this study,

since no a priori information was used in this completely data-driven approach.

Visualizing key CpGs. Fig 7 shows the methylation values of the top two CpGs,

cg06628000 and cg06410630, plotted against each other for the FA and sensitized samples.

There is some overlap between FA and sensitized values, but most of the samples can be sepa-

rated using just these two features. As one can see from the plots, it is possible to differentiate

between FA and sensitized samples using only small combinations of the features found in this

study.

RNF213 and ABCF2. cg06410630, which is associated with the gene RNF213, is the most

discriminative CpG found in this study and a strong biomarker of FA. RNF213 has previously

been connected to immune response and virus defense [41]. The fact that RNF213 has previ-

ously been associated with immune responses is significant, as FA is an immune-based disease.

The CpG cg02788266 is sixth on the list and maps to the gene ABCF2. ABCF2 is one of the

ABC proteins, which transport various molecules across extracellular and intracellular mem-

branes [42] and are associated with the immune system [43].

Hidden data accuracy across many data permutations

To validate the diagnostic strength of the 18-CpG signature, the top 26 12-CpG classifiers were

evaluated on a large number of hidden test sets, where the samples were repeatedly randomly

allocated to the train-validation-test datasets. As shown in Table 6, the first two models

Fig 6. The plot shows the CpGs that appear in the classifiers with the highest accuracy for a given number of features. The shaded box indicates

that the CpG appeared in the feature list of one of the best classifiers for that number of features. Note that at times there were multiple combinations of

CpGs that achieved the same accuracy, due to which the number of shaded boxes may be more than the number of features.

https://doi.org/10.1371/journal.pone.0218253.g006

A novel 13-gene signature to diagnose clinical reactivity to food allergies

PLOS ONE | https://doi.org/10.1371/journal.pone.0218253 June 19, 2019 11 / 21

https://doi.org/10.1371/journal.pone.0218253.g006
https://doi.org/10.1371/journal.pone.0218253


achieved an average hidden-data accuracy of 95.3125% (AUROC 0.98328125) and 95.625%

(AUROC 0.9853125). Similarly, the remaining 24 models averaged an accuracy of 94.15% to

95.625%. This high accuracy across a large number of randomly-generated dataset permuta-

tions further validates the strength of the 18-CpG signature.

Biological insights: Connecting to biological systems and pathways

Gene expression in tissues. BSCE body atlas uses data from RNA-seq expression studies

taken from the Genotype-Tissue Expression project (GTEx [44]).

The 13-gene signature was correlated to genes expressed in the Urogenital system (esp.

Uterus), Respiratory system (esp. Lung), Digestive (Liver and Stomach fundus), Nervous Sys-

tem (Trigeminal ganglia and Dorsal root ganglia), Immune System (Thymus gland, Bone mar-

row, and Tonsil), and Endocrine System (Thyroid gland). The association of these genes with

the respiratory, digestive, nervous, immune, and endocrine systems demonstrates the rele-

vance of the thirteen genes with FA.

Table 5. CpGs and associated genes from top 12-CpG classifiers.

CpG Frequency Gene Gene description Identified Martino et al. [14]

1 cg06410630 26 RNF213;

LOC100294362
Ring finger protein 213 Yes

2 cg06628000 26 SARS Seryl-TRNA Synthetase Yes

3 cg03068039 26 ZNF252;

TMED10P
Zinc Finger Protein 252,

Pseudogene

Transmembrane P24

Trafficking Protein 10

Pseudogene 1

No

4 cg10461264 26 - No

5 cg18988685 26 - No

6 cg02788266 25 ABCF2 ATP Binding Cassette

Subfamily F Member 2

No

7 cg26963090 22 TIMP2 TIMP Metallopeptidase

Inhibitor 2

Yes

8 cg19287711 22 - No

9 cg00939931 21 MAFK MAF BZIP Transcription

Factor K

Yes

10 cg25890092 17 CD7 CD7 Molecule Yes

11 cg07060505 16 - No

12 cg06116095 13 PANX1 Pannexin 1 Yes

13 cg24616138 13 CTBP2 C-Terminal Binding

Protein 2

Yes

14 cg14414100 8 SLC24A2 Solute Carrier Family 24

Member 2

No

15 cg07033513 8 - No

16 cg27027230 7 ARID5B AT-Rich Interaction

Domain 5B

No

17 cg00936790 7 KIF13B Kinesin Family

Member 13B

No

18 cg06669701 3 FAM190B Coiled-Coil Serine

Rich Protein 2

No

This table shows the frequency, associated genes, and gene descriptions of the 18 unique CpGs obtained from the 26 twelve-feature classifiers. The frequency shows the

number of times each CpG was used across the 26 classifiers. Interestingly, seven of the thirteen genes identified in this study appeared in previous work conducted by

Martino et al. 2015 [14]. The two pseudogenes [40], ZNF252 and TMED10P, are counted as a single gene, resulting in a 13-gene signature.

https://doi.org/10.1371/journal.pone.0218253.t005
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Canonical Wnt pathways. Canonical Wnt pathways “are involved in the control of gene

expression, cell behavior, cell adhesion, and cell polarity” [45]. Twenty-seven canonical path-

ways were identified by BSCE for the 13-gene signature. The top four are listed below.

1. Oxidative Stress Induced Gene Expression Via Nrf2—MAFK is the common gene across

the two gene sets. Nrf2 is associated with innate immunity [46].

2. Genes involved in The NLRP3 inflammasome—PANX1 is the common gene across the two

gene sets. NLRP3 inflammasome is associated with innate immunity [47].

3. Genes involved in Cytosolic tRNA aminoacylation—SARS is the common gene across the

two gene sets. Cytosolic tRNA aminoacylation is also associated with the immune system

[48].

Fig 7. Plot of methylation values for cg06628000 versus cg06410630 for allergy and sensitized samples. The o markings denote allergy samples,

while the � markings denote sensitized samples. There is some overlap in the middle region, while most other samples can be differentiated.

https://doi.org/10.1371/journal.pone.0218253.g007

Table 6. Average hidden data accuracy across a large number of dataset permutations.

Number Signature n Average Accuracy AUROC 95% CI for Accuracy

1 12-CpG #1 200 9.5.313 0.98328 (94.175, 96.451)

2 12-CpG #2 200 9.5.625 0.98531 (94.483, 96.767)

3 18-CpG 200 9.3.438 0.98047 (92.216, 94.734)

This table shows the average accuracy and AUROC across n randomized hidden test cohorts. The 95% Confidence Interval for accuracy is also shown and provides an

estimate for the true population accuracy of each classifier on similar cohorts of patients.

https://doi.org/10.1371/journal.pone.0218253.t006
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4. Genes involved in Degradation of the extracellular matrix—TIMP2 is the common gene

across the two gene sets. This pathway is also associated with the immune system [49].

Interestingly, all four of these canonical pathways have been associated with the immune

system. The gene TIMP2 also mapped to the “ADAM 33 in asthma” canonical pathway [50].

Connecting to Gene Ontology (GO). In GO, gene function is classified along three cate-

gories: molecular functions, cellular components, and biological processes. Table 7 shows the

results from the GO enrichment analysis.

S2 Table shows the top 37 GO terms that were mapped with at least one gene from the

13-gene signature using the Generic Gene Ontology Term Mapper [36]. The GO term

“immune system process” (GO Id GO:0002376) is the seventh term in the 37-term list in S2

Table. This GO term is a direct child node of the “biological process” node and is defined as

“Any process involved in the development or functioning of the immune system, an organis-

mal system for calibrated responses to potential internal or invasive threats [52]” This is signif-

icant, as FA has been previously linked with the immune system.

Table 8 contains the results from the clustering using REVIGO [38][39], where the 37

terms have been clustered into 16 representative terms. The table highlights some of the repre-

sentative terms that have been known to be associated with the immune system.

1. Two GO terms, signal transduction (GO:0007165) and response to stress (GO:0006950)

cluster to a higher-order representation, “response to stress”. Stress has been associated

with allergic and inflammatory disease, such as asthma, and its association with food allergy

is a growing area of research [53].

2. The representative term “cytoskeleton organization” has three GO terms mapped to it extra-

cellular matrix organization (GO:0030198), cellular component assembly (GO:0022607),

and cytoskeleton organization (GO:0007010). The cytoskeleton plays an important role in

innate immunity and cellular self-defense [54].

3. The “cell cycle” representative term has five GO terms mapped to it: cellular amino acid

metabolic process (GO:0006520), cell-cell signaling (GO:0007267), cell cycle (GO:0007049),

mitotic cell cycle (GO:0000278), and small molecule metabolic process (GO:0044281). The

representative term “cell proliferation” has the term GO:0008283 mapped to it. The process

of immune response is complex and dependent on the cell cycle. Immune response pro-

ceeds through different phases, from activation of lymphocytes, to rapid expansion by cell

division, cell differentiation, stopping of cell division, and eventual death of most of the

newly generated cells [55].

4. Homeostatic, associated with GO:0042592 and represented by the term “homeostatic pro-

cess”, is the process of the body maintaining its internal environment, i.e., normal ranges

Table 7. Gene Ontology enrichment analysis.

GO Annotation Data Set Concept Number (Homo sapiens)

1 Biological process 3250

2 Molecular function No statistically significant results

3 Cellular component No statistically significant results

The 13-gene signature mapped to 3250 GO biological-process concepts, while there were no statistically significant

matches for the molecular function and cellular component GO concepts. This match is based on GO Ontology

database released on 2018-12-01 and was created through the GO Enrichment Analysis Tool [51].

https://doi.org/10.1371/journal.pone.0218253.t007
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for temperature, growth, and energy intake. The immune system, which fights foreign

organisms such as bacteria, is the main system that maintains homeostasis [56].

5. Catabolism process, as represented by GO:0009056, breaks down complex substances into

simpler ones with the production of energy. The immune system requires energy to counter

pathogens, and this energy is obtained by catabolism of nutrients in activated immune cells

[57].

Table 8 demonstrates a high association between the GO-based representative terms and

the immune system.

Connecting to Broad positional gene sets. Broad positional gene sets correspond to each

human chromosome and its chromosomal location or cytogenetic band that has at least one

Table 8. Gene Ontology terms summarization using clustering by Revigo [39].

Representative Terms GO Term (GO ID) Uniqueness

1 anatomical structure development aging (GO:0007568) 0.781

anatomical structure development (GO:0048856) 0.781

2 biosynthesis biosynthetic process (GO:0009058) 0.946

3 catabolism catabolic process (GO:0009056) 0.936

4 cell cycle cellular amino acid metabolic process (GO:0006520) 0.757

cell-cell signaling (GO:0007267) 0.813

cell cycle (GO:0007049) 0.813

mitotic cell cycle (GO:0000278) 0.836

small molecule metabolic process (GO:0044281) 0.858

5 cell proliferation cell proliferation (GO:0008283) 0.894

6 cytoskeleton organization extracellular matrix organization (GO:0030198) 0.762

cellular component assembly (GO:0022607) 0.762

cytoskeleton organization (GO:0007010) 0.777

7 growth growth (GO:0040007) 0.944

8 homeostatic process homeostatic process (GO:0042592) 0.924

9 immune system process immune system process (GO:0002376) 0.944

10 locomotion locomotion (GO:0040011) 0.944

11 neurological system process neurological system process (GO:0050877) 0.944

12 protein targeting cell motility (GO:0048870) 0.767

transport (GO:0006810) 0.847

transmembrane transport (GO:0055085) 0.848

vesicle-mediated transport (GO:0016192) 0.865

protein targeting (GO:0006605) 0.869

13 reproduction reproduction (GO:0000003) 1

14 response to stress signal transduction (GO:0007165) 0.778

response to stress (GO:0006950) 0.911

15 symbiosis, encompassing

mutualism through parasitism

symbiosis, encompassing mutualism

through parasitism (GO:0044403)

0.944

16 tRNA metabolism translation (GO:0006412) 0.827

cellular protein modification process (GO:0006464) 0.853

cellular nitrogen compound metabolic process (GO:0034641) 0.862

tRNA metabolic process (GO:0006399) 0.868

The 37 GO terms were clustered into 16 representative terms using Revigo [38][39]. The concepts are sorted alphabetically using the representative terms. The GO

terms within each representative term are sorted based on uniqueness, where smaller values denote higher uniqueness. The bolded representative terms have been

known to be associated with the immune system.

https://doi.org/10.1371/journal.pone.0218253.t008
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gene [58]. Three of the genes: RNF213, TIMP2, and CD7, are on chromosome 17 and intersect

with chr17q25 [59]. The region chr17q25 has also been associated with psoriasis, a complex

disorder of the skin and immune system [60]. Interestingly, Naumova et al. 2013 [61] identify

sex- and age-dependent DNA methylation at the nearby 17q12-q21 locus to be associated with

childhood asthma. Genes ZNF252P and TMED10P1, both located on chromosome 8, intersect

with the chr8q24 [62]. The other positional gene sets overlapping with the 13-gene signature

are as follows: chr1p13 (SARS), chr7p22 (MAFK), chr11q14 (PANX1), chr9p22 (SLC24A2),

chr8p21 (KIF13B), chr10q26 (CTBP2), chr10q11 (ARID5B), and chr10q23 (FAM190B).

Conclusion

Accurate machine learning diagnostic classifiers

This research demonstrates a generalized data-driven machine learning approach to create

accurate classifiers that distinguish between food-allergic and food-sensitized patients. By care-

fully adding a feature at a time (SFS) and leveraging two-layer-deep machine learning classifi-

ers, two classifiers of twelve features each were created that achieved perfect classification on

hidden data, averaged across eight independent folds in which the training, testing, and cross-

validation samples were varied.

Interestingly, perfect classification was also achieved when 29 or more single-feature classi-

fiers (an ensemble of classifiers) were combined using a voting scheme. This single-feature

ensemble requires significantly less computational effort to derive than the process of building

higher-dimension classifiers and may prove useful for other DNAm datasets. Additionally,

simpler machine learning classifiers, such as those used in this study with 12-input features,

are preferred ceteris paribus.
The final 18-CpG list was re-validated on a large number of dataset permutations, where

the samples in the training, cross-validation, and test groups were shuffled. The 18-CpG signa-

ture and the 26 12-CpG signatures (subsets of the 18) consistently achieved around 94% to

96% accuracy. This high accuracy, similar to that achieved by previous work on this dataset, is

better than any known clinical test today [14][63][64][65].

13-Gene signature and biological enrichment

The 18-CpG list mapped to a novel 13-gene signature that is a strong biomarker of FA. Out of

these 13 genes, seven genes overlapped with the genes found by Martino et al. 2015 [14], while

the remaining six were unique. The identified genes are expressed in the Urogenital, Endo-

crine, Digestive, Immune, and Nervous Systems. The genes also mapped to a number of

canonical Wnt pathways, GO, and positional gene sets. These genes and pathways merit fur-

ther research for potential therapeutic applications. Many of the genes were also identified

with various aspects of the immune system, validating these findings since FA is an immune-

based disease. Moreover, the fact that such a few number of CpGs (12) achieved high accuracy

implies the strong associations of those genetic loci with FA.

Generalizable data-driven approach: Application to other diseases

The methods used in this study, being completely data-driven, are applicable to other prob-

lems that use High Dimension Low Sample Size (HDLSS) data. This methodology can be used

with DNAm data to gain new biological insights and create highly-accurate classifiers for dis-

eases such as certain cancers, Asthma, Crohn’s disease, and HIV [66]. The applicability of this

methodology to other diseases is even more significant due to the invention of the microarray
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[67] and the Illumina Infinium BeadChip, which have made high-throughput processing of

DNAm data easier [68] and more accessible.

Because they do not use a priori information, the classifiers used in this study can computa-

tionally evolve as new data are added, increasing in accuracy as time progresses. Additionally,

the ensemble approach using single-feature classifiers could provide computationally efficient

diagnostic classifiers for DNAm data.

Limitations and future work

Since not all of the possible CpG feature combinations have been exhaustively evaluated, it is

possible that there is a CpG signature with a smaller number of features that can perfectly clas-

sify the examples for this dataset. However, that approach is computationally expensive and

may not yield significant additional biological insights.

A greater limitation for both this research and future food allergy-related work is the lack of

publicly-available datasets and the low number of samples associated with FA. Classifiers gen-

erally improve with data, especially when the number of features is large [69]. Having more

DNAm FA-related data would validate and further increase the generalizability of the diagnos-

tic classifiers created in this study. Validation of the 13-gene signature in a second cohort

would also be of tremendous value. Additionally, since methylation values can change with

age [70], it will be insightful to evaluate the 18-CpG signature on an older cohort, as this data-

set consisted of 11-15 month infants.

Furthermore, as the data used in this study contained both peanut-allergic and egg-allergic

patients, future work should analyze the differences between the DNAm underpinnings for

the two allergens. Arasi et al. 2018 [71] also call out the need for researchers to build algorithms

for diagnosing FA by integrating data from different sources and technologies, and Tham and

Leung 2018 [72] point out that the mechanisms of FA may differ in different global popula-

tions. Thus, evaluating different DNAm datasets associated with FA may provide additional

unique insights.

Future work should be focused on creating clinical tests for distinguishing between FA and

sensitized patients, thus helping avoid misdiagnosis and dangerous OFCs. The genes and path-

ways highlighted by this research should also be further studied to elucidate the mechanisms

and possible treatments of food allergies. This data-driven machine-learning approach opens

the door to the computational analysis of other diseases, which may lead to enhanced research

and understanding of those ailments.
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