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Drug-induced liver injury (DILI) is a disease that remains difficult to predict

and prevent from a clinical perspective, as its occurrence is hard to fully

explain by the traditional mechanisms. In recent years, the risk of the DILI

for microbiota dysbiosis has been recognized as a multifactorial process.

Amoxicillin-clavulanate is the most commonly implicated drug in DILI

worldwide with high causality gradings based on the use of RUCAM in

different populations. Antibiotics directly affect the structure and diversity of

gut microbiota (GM) and changes in metabolites. The depletion of probiotics

after antibiotics interference can reduce the efficacy of hepatoprotective

agents, also manifesting as liver injury. Follow-up with liver function

examination is essential during the administration of drugs that affect intestinal

microorganisms and their metabolic activities, such as antibiotics, especially

in patients on a high-fat diet. In the meantime, altering the GM to reconstruct

the hepatotoxicity of drugs by exhausting harmful bacteria and supplementing

with probiotics/prebiotics are potential therapeutic approaches. This review

will provide an overview of the current evidence between gut microbiota

and DILI events, and discuss the potential mechanisms of gut microbiota-

mediated drug interactions. Finally, this review also provides insights into the

“double-edged sword” effect of antibiotics treatment against DILI and the

potential prevention and therapeutic strategies.
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Introduction

Drug-induced liver injury (DILI) is an underappreciated
adverse drug reaction, in that the diagnosis of it still relies
on the causality assessment, and that the Roussel Uclaf
Causality Assessment Method (RUCAM) (1, 2) is the most
commonly used scale recommended by various liver and
Gastrointestinal associations (3–5). DILI can mimic features
of various liver diseases, such as acute liver failure, drug-
induced autoimmune hepatitis, and drug-associated fatty liver
disease. The dramatic increase in drug-induced acute liver
failure, setbacks in anti-tumor treatment, and herbal-related
liver injury have raised global public health concerns (6).
Specifically, the epidemiology and etiology of DILI differ
in various countries and populations (7). The incidence
rates range from 2.3 per 100,000 people in Sweden (8)
to 19.1 per 100,000 people in Iceland (9). Even with
rigorous preclinical toxicology tests, DILI events still occur
unpredictably (5).

Since their invention in 1928, antibiotics have become
life-saving medicines (10). Removal of bacterial taxa
involved in the occurrence and progression of liver injury
by vancomycin could alleviate liver disease in recent
years (11, 12). However, the irrational use of antibiotics
is a serious public health issue, and antibiotics appear to
be a common cause of DILI, according to the etiology
studies on causative agents tested for causality by RUCAM
(13–15). Recently, antibiotics have been reported as the
major agents responsible for DILI events in COVID-19
patients, which were the second only to antiviral drugs
(16) (Supplementary Table 1). The drug-drug interactions
(DDIs) mediated by the GM may trigger unpredictable
adverse effects known as idiosyncratic DILI (iDIL) events
(17). Notably, the use of antibiotics can also be involved in
the protection and detoxification of DILI, and the mechanism
and clinical manifestation of these two opposite situations
may microbiologically share some common features as well as
diversities (12, 18).

Metabolism has an overall effect on generating new
toxicity or eliminating drug toxicity (19). Aside from the
liver, the microbiota dispersed throughout the human body,
especially in the intestine, also plays a crucial role in drug
metabolism (20, 21). On the other hand, genomics links
human genome variation to the unpredictability of DILI.
Genome-wide association studies (GWAS) is a well-established
field revealing how human leukocyte antigen (HLA) alleles
or non-HLA variants increase susceptibility to DILI (22,
23). Nevertheless, their application in the diagnosis and
management of DILI has been difficult (24). The microbial
genome is considered to be the second human genome. The
concept of pharmaceutical microbiomes brings a prospective
approach to understand and address drug safety issues, as it is
a modifiable pharmacogenomics (25).

Gut microbiota (GM) is an abundant and complex
ecosystem containing 1013 microorganisms, mainly including
Firmicutes (79.4%), Bacteroides (16.9%), Actinobacteria (2.5%),
and Proteobacteria (1%) (26, 27). GM formation is influenced by
multivariate determinants, such as host genetic factors, diet and
lifestyle, environments, and oral drug use (28–30). Antibiotics
appear to be a correlative drug for the microbiota remodeling
(31), especially in newborns (32). GM and its metabolites
are significant partakers in liver physiological functions, such
as energy metabolism regulation, immune regulation, and
modulation of resistance to infection (33, 34), which may also
result in liver diseases such as inflammation, hepatic steatosis,
and fibrosis (35–38).

In recent years, a model based on sterile or antibiotic-
supplemented microbiota-depleted rodents has been used to
explore the role of microbial intervention in experimental
pharmacomicrobiomics. Summarizing the results of these
experiments will help us to further understand the interaction
between antibiotics and microorganisms, as well as their
relationship with drug-induced hepatotoxicity. However, no
past review had comprehensively examined whether GM
could mitigate or aggravate DILI. This review will provide
an overview of the current evidence between GM and DILI
events, and discuss the potential mechanisms underlying the gut
microbiota-mediated drug interactions. Finally, this review will
also provide insights into the “double-edged sword” effect of
antibiotics treatment against DILI and the potential prevention
and therapeutic strategies. Finally, we hope that this frontier
and conceptual research can at least provide a different tack to
better understand the mechanism of iDILI, and find ways to
prevent or treat it.

The role of gut microbiota in
drug-induced liver injury

Gut-liver axis is the structural basis of
drug-induced liver injury

Numerous viewpoints have emphasized the importance
of a balanced intestinal microbiome in liver physiology and
pathology (39). GM forms an axis with the liver primarily
through a portal circulation, known as the gut-liver axis (40).
This symbiotic relationship allows GM and its metabolites
to be transferred from the gastrointestinal tract to the liver.
In return, the liver secretes bile acids and antibodies to the
intestinal lumen to regulate the composition and distribution of
microbiota (41).

A functional gut-liver axis relies on a complete and
solid intestinal barrier. So, there are several layers of defense
that make up the intestinal barrier. The outermost layer
is the mucus barrier, containing the bacterial colonization
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layer and the adhesive aseptic layer (42). In addition to
immobilizing bacteria, the mucus barrier is also a source of
nutrients for bacteria. For example, Akkermansia municiphila
is a potential hepatoprotective bacterium that can maintain
its growth by degrading mucins (43). The second layer is
the epithelial barrier formed by a monolayer of epithelial
cells, providing protection through its chemical and physical
stability. Adjacent epithelial cells are closely connected by
tight junctions, forming a physical barrier (44). Antimicrobial
peptides and secreted IgA on the intestinal mucosa can
block intestinal immune responses induced by microbial
pathogens stimulation. Interactions among epithelial cells,
immune cells, and mesenchymal cells create the intestinal
mucosal ecological network that enables intestinal homeostasis
(45). Gut vascular barrier (GVB) is another layer that prevents
bacteria and their metabolites from entering the portal
circulation when the outer mucus and epithelial barrier are
broken (46).

Disruption of the three-layer barrier increases intestinal
permeability, and the translocation of bacterial and microbial
metabolites to the liver plays a key role in the pathogenesis
of DILI (47, 48). Antigens derived from pathogenic
microorganisms or drugs, such as lipopolysaccharides (LPS),
cause microbiota-associated molecular pattern (MAMP) to
activate nuclear factors κB (NF-κB) through toll-like receptors
(TLRs) and nod-like receptors (NLRs), subsequently the
released inflammatory cytokines and chemokines enter the
portal circulation and reach the liver (49), where they trigger
the proinflammatory cascade (50, 51). These antigens also lead
to a series of excessive hepatic innate or acquired immune
activation, such as NK cells, macrophages, and the release
amounts of proinflammatory cytokines (52).

Interestingly, barrier damage may cause the involvement of
activated stellate cells in fibrosis and, in turn, cirrhosis allows
GM to enter the portal-venous circulation by destroying these
barriers (42, 53). Cytokines downregulate the expression of tight
junction proteins, thus changing the tight junction, of which the
increase of intestinal permeability may be the mechanism (54).

Composition and metabolites of
gut microbiota and drug-induced
liver injury

DILI is considered the consequence of a combination
of variable host or non-host risk factors (55, 56), which
may act by influencing the gut microbiota composition and
metabolites (Table 1). Numerous studies have indicated that
the reduced abundance of GM species and genes are the
drivers of individual susceptibility to DILI (37, 52, 57–
60). Microorganisms are enriched in genes encoding various
enzymes which influence drug metabolism and increase the

TABLE 1 List of main alteration of metabolites/composition in drug
induced liver injury.

References Drug Alter of
metabolites/composition

Clayton et al. (113) Acetaminophen β-glucuronidase/Firmicutes, Bacteroides

Gong et al. (37) Acetaminophen 1-phenyl-1,2-propanedione/Escherichia
coli, Citrobacter freundii

Yildirim et al. (114) Neomycin,
ampicillin,
metronidazole

Enterobacteriales, anaerobic bacteria,
Clostridiales phylum

Miao et al. (60) Scutellarein Enterococcus

Sun et al. (115) Antithyroid Prevotellaceae_UCG-003, Oscillibacter,
Rikenellaceae_RC9

Zheng et al. (12) Acetaminophen P-cresol/Clostridium difficile

Yip et al. (59) Tacrine β-glucuronidase/Lactobacillus,
Bacteroides, Enterobacteriaceae

Xia et al. (34) Acetaminophen SCFA/Oscillibacter, Colidextribacter,
Mucispirillum

Yin et al. (116) D-galactosamine Proteobacteria, Blautia, Romboutsia,
Parabacteroides, UCG-008, Parasutterella,
Ruminococcus, norank_f:
Lachnospiraceae,
Eubacterium_xylanophilum, Oscillibacter,
Eisenbergiella.

potential for liver injury (61, 62). Yip et al. (59) detected
that Lactobacillus, Bacteroides, and Enterobacteriaceae, which
would produce β-glucuronidase, were enriched in the strong
responder groups (AST elevation≥ 3 measurements) compared
to the non-responder groups. Meanwhile, administration of
β-glucuronidase to rats prior to administration of tacrine
further confirmed it enhanced the potential hepatotoxicity
induced by tacrine. In addition, host genes can also shape
GM composition (35, 63). Previous studies have reported that
modulation of key hepatic cytochrome enzymes expression
results in individual differences in pharmacokinetics (64, 65).
The expression of cyp3a11 was significantly higher in male
mice than in female mice, whereas in mice lacking GM, the
gender difference and cyp3a11 expression were approximately
the same in both genders, indicating that gender differences
and the composition/function of GM may importantly affect
the patient’s response to drugs. Another microbiome-circadian
rhythm study reported that circadian changes in GM could
mediate different susceptibility to APAP-induced liver injury.
Meanwhile, alcohol abuse would also aggravate the likelihood of
DILI (4, 66). A recent review showed that alcoholic liver disease
resulted in small intestinal bacterial overgrowth (SIBO), such as
E. coli, and Enterococcus spp. (39). E. coli, Enterococcus spp. has
been confirmed to generate 1-phenyl-1,2-propanedione (PPD),
a microbial metabolite that could synergistically reinforce
APAP-induced liver injury (37).

Apart from PPD, microbial metabolites such as bile acids,
para–cresol, lysozyme, and lysophosphatide play pivotal roles
in drug metabolism pathways in the liver (37, 57, 58, 67, 68).
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According to available studies, trigeminal, campesterol, and
lithocholic acid varied significantly with the severity of liver
injury (69). P-cresol produced by Clostridium difficile would
increase toxicity by competing for the glutathione-dependent
detoxification of phenolic drugs such as acetaminophen (68). In
addition, abnormal metabolism of bile acids (BAs) would lead
to decreased activation of nuclear receptors farnesoid X receptor
(FXR) and TGR5 in ileal, thereby exacerbating hepatic steatosis
and inflammation (70, 71).

The role of antibiotics in gut
microbiota

DILI is one of the adverse drug events (ADEs) following
inappropriate or appropriate use of antibiotics (72).
Nevertheless, emerging evidence has suggested that the
administration of antibiotics had both negative and positive
influences on the initiation and progression of DILI (Table 2).
Positive influences include that hepatotoxic drugs no longer
induced liver damage in mice after the mice were pretreated
with antibiotics, while further studies found that it may be
because the GM that causes liver inflammation was removed
(37, 57). Here, we preliminarily focus on the mechanisms
underlying the negative effects of antibiotics treatment on DILI.

Since the discovery in 1950 that terramycin can affect
the GM in human (73), there has been increasing evidence
that antibiotics may cause dysbiosis through the reactive
proliferation of potentially pathogenic microorganisms,
depletion of beneficial bacteria, loss of α-diversity, and leakage
of gut activities (73). Dysbiosis causes irreversible variation
and functional impairment of GM at the gene or protein level,
leading to disturbances of the immune system in intestinal
epithelial cells, ultimately affecting hepatic metabolism (74)
(Figure 1). However, it must be emphasized that some
antibiotics had effects on intestinal barrier function and resulted
in major changes in the microbiome, but not all, for example,
metronidazole treatment had no effect on the microbiota (75).
Due to different classes of antibiotics and individual responses,
these effects could leave a few days or permanent imprints in
the intestinal environment (76, 77), which might explain the
significant difference in the onset time and course of various
antibiotic-mediated liver injury.

Several human cohort studies have demonstrated the
association between antibiotics use and changes in microbial
composition and function (29, 78). Antibiotic therapy aims to
eliminate pathogenic bacteria, however, this microbial clearance
will also reduce the beneficial commensal bacteria, which
has important pathological implications for the liver (36,
79). β-lactam antibiotics and the antibiotics cocktails were
observed to increase the Bacteroidetes/Firmicutes ratio and
decrease the microbial diversity. In particular, the abundance
of Firmicutes and Actinobacteria (31, 60, 80), which contained

bacteria that played an important role in reducing oxidative
stress, inflammation, and liver-protective properties, such
as Bifidobacterium and Lactobacillus (81–83). Noteworthy,
antibiotics also increase the abundance of pathogenic bacteria,
such as Enterococcus, which may exacerbate the progression of
liver diseases (84).

Moreover, a handful of studies have proposed that flora
changes could also alter the distribution of bacterial metabolites
(85). For example, ciprofloxacin, a novel quinolone antibiotic
with antimicrobial activity against lithocholic acid-producing
bacteria, might lead to a reduction of lithocholic acid in the
liver, thereby reducing the expression of the hepatic drug-
metabolizing enzyme CYP3A (86).

Antibiotics can lead to impairment of the intestinal
biological barrier and affect intestinal permeability. Ceftriaxone
and ciprofloxacin have been proven to cause severe damage and
histomorphological changes in the intestinal villus wall in an
animal model (87). Expression of Toll-like receptor 4 protein
and Myeloid differentiation primary response (Myd) 88 mRNA,
which activated the NF-κB signaling pathway, was increased in
both gut and liver after ceftriaxone treatment (88). In a separate
study (89), lower expression of occludin and occludens-1 (ZO-
1) mRNA in the ileum, which was the most critical component
in tight junction proteins and functional organization to protect
intestinal barrier permeability and epithelial integrity, was
seen in different groups treated with ampicillin, vancomycin,
neomycin, metronidazole, and mixtures of them (90–92).

On the other hand, the leakage of the gut activates the
overexpression of nitric oxide (NO) synthesis (39, 93). NO
induce the enhancement of tubulin nitration and oxidation,
leading to further disruption of the barrier function by the
microtubule cytoskeleton. In addition, increased NO synthesis
leads to oxidative stress in hepatocytes (94). Numerous studies
have demonstrated that lipopolysaccharide (LPS) spilled into the
systemic circulation through the permeable intestine, resulting
in hepatic immune activation (95).

Another related concept is colonization resistance, which
plays an important role in preventing pathogen colonization
and protecting intestinal function (96). Some animal and human
studies have suggested that antibiotics could sabotage this ability
(97, 98). However, how this destruction affects the occurrence of
liver diseases is not completely understood.

Administration of antibiotics as a
factor in drug-induced liver injury

Sole antibiotic treatment

A couple of studies have highlighted the association
between antibiotics and DILI by affecting GM. Luo et al. (52)
have documented that ceftriaxone significantly reduced GM
diversity, increased the levels of pathogenic bacteria such as
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TABLE 2 List of main studies in animals associating antibiotics treatment and drug induced liver injury.

References Type-of animal
used

Courses-of
antibiotic

treatment (day)

Antibiotic treatment Combined
treatment

Main findings in gut
microbiota

Effect on drug-induced liver
injury

Main mechanisms involved

Yip et al. (59) Male C57BL/6 mice 7 Ampicillin, Neomycin,
Metronidazole, Vancomycin

Triptolide Depletion of intestinal flora Aggravate liver injury Dysregulation of arachidonic acid
metabolism

Lama et al. (88) Male C57BL/7 mice 15 Ceftriaxone - Diversity↓ Dysbiosis and bacterial translocation into
the liver, triggering hepatic inflammation

The expression of Toll-like receptor 4
protein and Myeloid differentiation
primary response

Yildirim et al. (114) Male
Sprague–Dawley
rats, high-fat diet

14 Neomycin, Ampicillin,
Metronidazole

Melatonin Enterobacteriales↑,
Anaerobic bacteria↑,
Clostridiales phylum↓

Enhanced hepatic injury and dysfunction Increased neutrophil accumulation to
liver

Zheng et al. (12) Male SD and Wistar
rats and C57 mice

4 Vancomycin Acetaminophen The activity of
β-glucuronidase↓,
Firmicutes↓, Bacteroides↓

Attenuation on AP-induced liver injury Decreased hepatic Cyp7a1 expression.
Increased GSH level.
Up-regulated mRNA expression of
Nqo-1 and Gclc gene, and
downregulated Tnf-a and Il-1b

Kolodziejczyk et al.
(18)

Male C57BL/8 mice 14 Ampicillin, Neomycin,
Metronidazole, Vancomycin

Acetaminophen
and
Thioacetamide

Depletion of Intestinal flora APAP and TAA-induced liver toxicity
were attenuated

Suppress MYC-dependent program

Li et al. (107) Male C57BL/6 mice,
ethanol-fed

3 Terramycin, Erythromycin Berberine Depletion of Intestinal flora Berberine did not show any positive effect
on alcohol-induced hepatic injury

Inhibited the activation of
granulocytic-myeloid-derived
suppressor cell-like population

Miao et al. (60) Male BALB/c mice 35 Ampicillin, Neomycin sulfate,
Metronidazole, Vancomycin

Carbon
Tetrachloride,
Scutellarein

Bifidobacterium↑,
Lactobacillus↑,
Enterococcus↓

Reversed the hepatoprotective effect of
Scutellarein in Carbon
Tetrachloride-induced chronic liver injury

Activated CYP2E1 expression and
worsened CYP2E1-mediated lipid
peroxidation and oxidative stress

Luo et al. (52) Male BALB/c mice 8 Ceftriaxone - Damages of gut microbial
barrier

It mediates the occurrence of chronic
hepatitis

Activation of immunocytes, such as
NK cells, γδT cells, NKT cells et al.

Blake et al. (117) Male C57BL/7 mice 7 Neomycin, Ampicillin Anti-CD40 and
anti-CD137
immunotherapies

Depletion of Intestinal flora Significantly reduced the liver damage
after immune agonist antibodies treatment

Modulates anti-CD40-induced
changes to lipid and bile acid
metabolism in the liver

Gong et al. (37) Male C57BL/6 mice 3 Vancomycin, Neomycin sulfate,
Metronidazole, Ampicillin

Cisplatin Depletion of Intestinal flora Cisplatin hepatotoxicity was prevented The phosphorylation of proteins
involved in the JNK and p38 pathways

Huang et al. (58) Male Lister hooded
rats

3 Vancomycin, Imipenem Tacrine β-glucuronidase–producing
bacteria such as Bacteroides
and Enterobacteriaceae ↓

The susceptibility of Tacrine induced
hepatotoxicity was significantly reduced

Ischemia or reperfusion

Luo et al. (89) Male C57BL/6 mice,
high-fat diet

7 Penicillin Cassiae
Semen
extract

Diversity↓ TC↑, FFA↑, ALT/AST↑ Hepatoprotective efficacy of CS was
inhibited or eliminated

Metronidazole TC↑, FFA↑, TG↑

Clindamycin TC↑, FFA↑, ALT↑

Vancomycin TC↑, FFA↑, LDL-c↑, ALT/AST↑

Neomycin TC↑, FFA↑, ALT/AST↑

Penicillin, Metronidazole,
Clindamycin, Vancomycin,
Neomycin

TC↑, FFA↑, LDL-c↑, ALT↑
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FIGURE 1

The pathological state of the gut-liver-immune axis and gut microbiota under antibiotic treatment.

Firmicutes, Tendericutes, and Vibrio bacteria, caused damage
to intestinal barrier, promoted the expression of LPS, and
activated liver lymphocytes. The H&E staining of the liver
showed hepatic steatosis and hepatitis. And the expression levels
of ALT, AST, IL-6, and TNF- α in serum increased. These
findings were consistent with similar findings in other studies
of different classes of antibiotics (88, 99). In another study
(80), it was confirmed that various antibiotic combinations had
different effects on host BA metabolism. In particular, a stronger
effect was observed in combination of two antibiotics than in
single antibiotics.

Antibiotics combined with chemical
agents

To date, there are not enough studies showing that the
combination of antibiotics and chemical agents might lead
to potential DDIs and impact the development of DILI (100,

101). Yoo et al. (102) indicated that antibiotic treatment of
patients taking lovastatin might lead to adverse pharmacokinetic
effects by suppressing GM. The failure of plasma cholesterol
control exerted an influence on hepatic steatosis (103).
Besides, hepatotoxic chemicals could also be exposed to
the environment, and in an animal model, an antibiotics
cocktail containing ampicillin, vancomycin, neomycin, and
metronidazole increased polychlorinated biphenyls-induced
inflammation but decreased hepatic fibrosis (91).

Antibiotics combined with herbal
agents

Similarly, the disturbance of GM by antibiotics also
modulated the susceptibility to natural compounds-induced
transaminitis (33, 104). Clearance of GM before Triptolide
treatment could increase bile acids and long-chain fatty acids
in plasma and liver (58). The accumulation of bile acids may
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lead to necrosis and apoptosis of hepatocytes, and stimulate
the release of TNF-α, IL-6 and IL-8 (105, 106). The study also
found that the mRNA levels of inflammatory indicators in the
liver were significantly elevated in the TP + antibiotic group,
but downregulated in the antibiotics alone group, which has
identified the risk of TP and its preparations administrated in
combination with antibiotics. However, co-administration with
propionate almost eliminated this inflammatory response.

Another hypothesis was that antibiotics interfered with GM
and significantly reduced or even reversed the hepatoprotective
effects of other drugs. Berberine did not show any positive
effect on alcohol-induced liver injury in an antibiotic molded
pseudo-germ-free (PGF) mouse model (107). Scutellarein was
a herbal flavonoid thought to have hepatoprotective potential
(108), however, Miao et al. (60) confirmed that when scutellarein
was used in combination with antibiotics, it activated IκBα/NF-
κB pathway, CYP2E1 expression, and aggravated CYP2E1-
mediated lipid peroxidation and oxidative stress through
intestinal ecosystem disorder (60), which was consistent with
another study (89). The hepatoprotective effects of Cassiae
Semen on mice were weakened or eliminated in different classes
of antibiotics groups. The antibiotic-induced liver injury needs
to be vigilant, especially during hepatoprotective therapy.

Recommendation on the safety of
combination therapy: Perspective
of gut microbiota

RUCAM, as a well-established diagnostic scale, can
accurately assess the case of iDILI through the well-described
clinical characteristics. However, the variability of clinical
characteristics of iDILI, the difficulty in performing rigorous
mechanistic studies in humans, and the lack of an animal model
of experimental iDILI that can mimic the genetic requirements
of human iDILI, make it impossible to obtain satisfactory and
specific biomarkers for individuals with iDILI. The changes
of different antibiotics on different GM provide a new idea
and method for the experimental animal model, which can
imitate the genetic requirements of iDILI patients. Collecting
biological samples such as feces from iDILI patients for omics
analysis is the most common and meaningful means to identify
biomarkers, but the screening of the iDILI cases must be careful.
Further investigations in patients with idiosyncratic DILI with
high causality gradings based on the use of RUCAM is an
integral evaluating mechanistic step (109).

Antibiotics aggravate the susceptibility to DILI by causing
dysbiosis and barrier dysfunction affecting the disposal and
action of other drugs (25). For liver injury induced by drug
combination, DDIs should be explored, and the detailed
mechanism could help prevent unexpected accidents and
determine appropriate diagnosis and treatment. The drug

combination therapy might cause DDIs through the regulation
of drug metabolic enzymes and drug efflux pumps. However,
when drugs were used in combination with antibiotics,
subsequent changes in xenobiotics metabolism mediated by gut
microbial enzymes would occur (110). Similarly, even if primary
antibiotic treatment was safe, increased therapy might also cause
liver inflammation (59), which suggested that follow-up of liver
function test was essential during the administration of drugs
such as antibiotics that affect intestinal microorganisms and
their metabolic activities. In addition, we recommended that
avoiding the risk for liver injury should be considered when
establishing individual therapy, including the nature, duration
and intervention time of antibiotics, which would affect the
efficacy and toxicity of drugs.

Although some drugs have surprising curative effects, they
also have the risk of inducing the outbreak of liver failure
(57, 111). Altering the GM to reconstruct the hepatotoxicity
of drugs by exhausting harmful bacteria, and supplementing
probiotics/prebiotics or fecal microbiota transplantation are
therapeutically potential. Monitoring the composition and
metabolic activity of GM can provide a new target for early
diagnosis or prevention and treatment strategies for DILI (112).
Antibiotics are the most significant microbiome-targeted drugs
to alleviate drug-induced liver failure (18). Pharmacological
mechanisms include reducing bacterial density, eliminating
target harmful bacteria, inhibiting secondary bacterial
proliferation, and reducing bacterial translocation. But the
appropriate target remains an unknown problem, which can be
accomplished in multiomic integration, including combining
transcriptomics, genomics, and metabolomics. Disappointingly,
most studies used antibiotic mixtures or broad-spectrum
antibiotics to deplete all GM, which could only explain the
causal relationship between GM and DILI. Since the GM
have been proven to have a protective effect on a variety
of diseases, whether it could target specific flora had little
practical significance for the prevention and treatment of DILI.
Therefore, the therapeutic significance of “sterilization” to
human health needs to be further explored. And the choice of
antibiotics is also crucial. The effects of antibiotics on the overall
composition of the microbiome and the downstream effects
on the microbiome and host should be clarified in research.
Another potential therapeutic approach is probiotics/prebiotics,
for instance, Myxophilic bacteria has potential therapeutic value
to reduce oxidative stress and inflammation in the liver by
modulating GM composition and metabolic function, thereby
alleviating APAP-induced liver injury (34).

Conclusion

In general, the heterogeneous response of drugs presents
significant challenges for drug development and patient
management. With the intention to establish a valid diagnosis,
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the use of a diagnostic scale such as RUCAM is recommended.
Orally administered drugs may become toxic after being
metabolized by GM before entering the liver. Combination with
antibiotics leads to DDIs mediated by intestinal metabolism,
suggesting that the possibility of hepatotoxicity caused by
this combination should be vigilant. Other drugs metabolized
by intestinal microbial enzymes may also produce similar
antibiotic-induced pharmacokinetic effects. Therefore, a wider
range of drugs need to be further studied (102). In the
foreseeable future, the regulation of GM to improve treatment
will ameliorate clinical practice.
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