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Development of in‑airway 
laser absorption spectroscopy 
for respiratory based 
measurements of cardiac output
Nicholas M. J. Smith1, John Couper1, Graham Richmond1, Dominic Sandhu1, Gus Hancock1, 
Peter A. Robbins2 & Grant A. D. Ritchie1*

Respiratory approaches to determining cardiac output in humans are securely rooted in mass balance 
and therefore potentially highly accurate. To address existing limitations in the gas analysis, we 
developed an in‑airway analyser based on laser absorption spectroscopy to provide analyses every 
10 ms. The technique for estimating cardiac output requires both a relatively soluble and insoluble 
tracer gas, and we employed acetylene and methane for these, respectively. A multipass cell was used 
to provide sufficient measurement sensitivity to enable analysis directly within the main gas stream, 
thus avoiding errors introduced by sidestream gas analysis. To assess performance, measurements 
of cardiac output were made during both rest and exercise on five successive days in each of six 
volunteers. The measurements were extremely repeatable (coefficient of variation ~ 7%). This new 
measurement technology provides a stable foundation against which the algorithm to calculate 
cardiac output can be further developed.

The accurate measurement of cardiac output, Q ̇, in humans has proven to be a far less tractable problem than it 
may at first  appear1. The ‘reference’ technique is generally considered to be that based on an application of mass 
balance originally proposed by  Fick2. This technique requires both pulmonary and arterial catheters, relying on 
the relationship between Q,̇ the arterio-venous blood oxygen content difference, and oxygen consumption meas-
ured from respired gas. As the accurate measurement of oxygen consumption in the critical care setting has been 
difficult, a much more widely used approach in that scenario has been that of indicator dilution. This avoids the 
measurement of oxygen consumption, but still requires pulmonary arterial catheterisation. In the early twenty-
first century, safety concerns related to pulmonary arterial catheterisation arose, and subsequent studies found 
that their use was not associated with any improvement in  mortality3. The use of pulmonary arterial catheters 
subsequently declined dramatically, and the measurement of Q ̇ has moved towards less invasive approaches.

One non-invasive approach is to measure the rate of uptake of a tracer amount of acetylene from the breath. 
This approach was introduced by Grollman in  19284 and became the ‘reference’ technique prior to the devel-
opment of right-heart  catheterisation5,6. Like the direct Fick and indicator dilution methods, Grollman’s tech-
nique is based on mass balance. For many years a closed-circuit implementation was used, where the uptake of 
acetylene could be determined from the change in its concentration in a bag from which the subject rebreathed. 
However, closed-circuit rebreathing methods are more awkward to use than their open-circuit counterparts, 
and furthermore they affect alveolar/arterial Pco2 and Po2 levels. Such considerations led to the development 
of open-circuit  methods7,8 using mass spectrometers for the continuous acetylene analysis. The capacity of such 
sidestream analysers to measure breath-to-breath gas exchange is typically limited by difficulties associated with 
obtaining accurate measures of total flow, and time-aligning these with gas concentration measurements made 
following transportation from the principal path of gas flow.

The aim of the present study was to improve the measurement technology associated with the open-circuit 
acetylene approach for measuring Q ̇. In 2016, Ciaffoni et al. developed new technology for measuring the 
respiratory exchange of  CO2 and  O2 that yielded a more than tenfold improvement in precision over existing 
 techniques9. The approach used laser absorption spectroscopy to provide a highly precise, nearly instantaneous 
measure of gas composition in the respired gas flow, and the knowledge of this composition in turn allowed a 
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highly precise determination of gas flow. The instrument capable of making these contemporaneous measure-
ments was termed the molecular flow sensor (MFS). Here, we extend that approach by developing laser absorp-
tion spectroscopy to measure the uptake of trace amounts of acetylene and methane, and introducing this into 
a MFS device. As a proof of principle, a human study is conducted to determine the precision of cardiac output 
measurements obtained with the device.

Results
Development of acetylene and methane spectrometers. Acetylene has a well-resolved absorption 
spectrum in the near-infrared which lends itself to quantification by absorption spectroscopy using a diode 
laser. For this application, we chose a laser operating at 1.53 µm to probe a rovibrational transition. Methane was 
chosen as a relatively insoluble reference tracer gas, another species that absorbs well within the same region. A 
laser operating at 1.65 µm was used to probe a methane absorption feature that results from three overlapping 
transitions. These two spectral regions are sufficiently close that both laser sources could be multiplexed through 
the same optical fibre.

As a target, we chose to employ tracer concentrations of 3000 ppm for acetylene and 9000 ppm for meth-
ane—the threefold difference arises because of a threefold difference in absorption cross-section between the two 
molecules. To obtain the required sensitivity, a spherical Herriott cell was designed and constructed, illustrated 
in Fig. 1a. The optical path length is extended with the radiation reflected a number of times, travelling back 
and forth through the sample  gas10. The cell featured 20 reflections, yielding an optical path length of 56.7 cm. 
Furthermore, this design allows the incorporation of a V-path9 to measure  CO2 and water concentrations (shown 
in Fig. 1b) without sacrificing sensitivity. The measurement of  O2 at the same spatial position is also unaffected. 
Further details of the cell design are provided in “Methods”.

Following the successful implementation of the Herriott cell, it was integrated into the 3-gas  (CO2,  O2 and 
water vapour) MFS that provides highly accurate measurements of respiratory flow, total gas pressure, and gas 
 temperature9. The result was a 5-gas MFS, also capable of providing precision measurements of acetylene and 
methane. Absorption spectra for each species were recorded at a frequency of 200 Hz and averaged to provide a 
spectrum every 10 ms. Example spectra recorded whilst a nominal 3000 ppm methane, 3000 ppm acetylene in 
synthetic air mixture flowed through the MFS device are shown in Fig. 1c,d, respectively. The excellent signal-to-
noise ratio reflects the significant absorption that results from the extended optical path. The Voigt distribution 
fits these spectra extremely well, with number densities of the two species derived using the Beer-Lambert law. 
These number densities are then used to calculate the fractional concentration of each species. The minimum 
detectable concentrations were determined to be 48 ppm for methane and 15 ppm for acetylene, obtainable at 
100 Hz. An overall precision of 1.6 and 0.6% is achieved for measurements of 3000 ppm mixtures of methane 
and acetylene, respectively.

To evaluate the performance of the new 5-gas MFS, an experiment was undertaken with a volunteer breathing 
through the device with their nose occluded. Following 4 min of air-breathing, the inspiratory gas was changed 
to a mixture nominally containing 9000 ppm methane and 3000 ppm acetylene in a balance of synthetic air. This 
mixture was breathed as the inspiratory gas for a period of 4 min before returning to air again for the final 4 min. 
The results are shown in Fig. 2. During the tracer gas wash-in phase, the expiratory gas fraction for methane 
approaches that of the inspired gas mixture more rapidly than acetylene (Fig. 2a). This reflects the larger solubil-
ity of acetylene in the blood. During the washout phase, a similar behaviour is observed with the expiratory gas 
fraction of methane dropping quickly, whilst acetylene continues to be removed from the dissolved stores in the 
body. The solubility differences are also apparent within the tracer gas cumulative volume profiles (Fig. 2b). These 
profiles are the result of direct integration of the product of the measured flow and species concentration over 
time. The rate of acetylene uptake remains consistent throughout the wash-in period whilst the methane in the 
inspiratory mixture equilibrates more rapidly with the gas in the lung, slowing the rate of uptake. Throughout the 
procedure, the  O2 consumption and  CO2 production remained consistent (Fig. 2c). The same is true for the nitro-
gen, where the absence of any significant uptake or output illustrates the success of the flow measurement system.

Human dataset. Data were collected for a group of six healthy male volunteers (21–40 years) in order both 
to develop the algorithm for deriving Q̇ and to provide an initial data set for comparison with literature. In order 
to assess within-person variability, each volunteer visited the laboratory on 5 consecutive days, with measure-
ments made at rest and during light (50 W) exercise on each visit.

Figure 3 shows an example record of the tidal gas flow for each gas for one volunteer for rest and exercise. 
Points to note are: (1) The relative stability of the  N2 record where there is no net-uptake or output from the body; 
(2) The larger tidal swings associated with the larger breaths that occur during exercise as compared with rest; (3) 
The approximately threefold greater  O2 uptake and  CO2 output during exercise compared with rest, as indicated 
by the steeper slopes of the  O2 and  CO2 records; (4) The difference in wash-in profile for methane versus acetylene, 
where the uptake of acetylene continues while that of methane slows because of their differing solubilities in blood.

Development of algorithm to estimate Q̇. The accurate estimation of Q̇ from respiratory data required 
development of an algorithm which utilised data from the initial phase of the tracer gas wash-in. Within this 
algorithm, tracer gas uptake occurs by three mechanisms: equilibration with gas in the lung, uptake into lung 
tissue, and uptake into blood. The volumes of methane and acetylene taken up by the body at an adjusted func-
tional residual capacity (FRC) are modelled and compared with recorded values. The estimated Q̇ and lung 
volume are those which minimise the sum of the squared differences between the modelled and measured 
tracer gas volumes. The assumptions inherent to this algorithm are now outlined, with further detail provided 
in “Methods”.
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The time points when the lung is at a constant standardised volume, the adjusted FRC, are indicated on 
representative acetylene and methane uptake records by the circles in Fig. 4a. If there is incomplete emptying of 
the lung, then no point is identified and the modified breath may be comprised of more than one actual breath. 
This is the case for the modified breath spanning either side of the 40 s time point in Fig. 4a.

Figure 1.  Implementation of multipass Herriott cell within the molecular flow sensor. (a) Schematic of the 
Herriott cell system. The spatially multiplexed radiation for probing  CH4 and  C2H2 is injected into the cell via a 
collimator, it follows a 21-pass optical path, and it is then detected by the photodiode labelled ‘Herriott detector.’ 
(b) Schematic illustrating the incorporation within the Herriott cell of the simple optical v-path used to probe 
 CO2 and  H2O. (c,d) Absorbance spectra from the Herriott cell are shown for 3030 ppm methane (c) and 
2760 ppm acetylene (d) in synthetic air. Measured absorption spectra were obtained over 10 ms and are shown 
as filled red circles. The fitted Voigt distributions are shown as black lines.
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The measured end-tidal partial pressures for acetylene and methane are used to infer both the concentra-
tions of the gases in the lung, and the profiles for the partial pressures with which the blood is equilibrating as 
it flows through the lung. This enables a regression for the uptakes of acetylene and methane to be formed with 
the end-tidal values as the input, and with the lung volume and Q ̇ as parameters to be estimated. The predicted 
uptakes from the regression are shown in Fig. 4a with crosses, generally lying very close to the measured data.

A limited number of breaths from the initial phase of the wash-in is used to estimate Q ̇because, after that, the 
amount of acetylene returning to the lung via the blood will become significant. Precisely how many breaths to 
include in the regression is arbitrary. We excluded the first two breaths because inhomogeneity within the lung 
means that the associated end-tidal measurements are unlikely to reflect overall lung concentration accurately. 
To explore the total number further, we plotted the relation between the number of breaths included in the 
estimation process and the average values obtained for Q ̇, which is shown in Fig. 4b. For both rest and exercise 
the calculated Q ̇ decreases with increasing breath number. In the further analysis, we limit the calculations to 
the first 10 breaths of the wash-in period.

A final consideration is that the gas remaining in the lung may either be in the gas phase or dissolved in the 
lung tissue. We used a standard value of 0.2 for the volume for lung tissue as a fraction of the end-expiratory 
lung  volume11. To explore this assumption, we calculated the mean sum of squared residuals across the totality 
of the datasets with this fraction set to different values in the range 0 to 0.5. The results are shown in Fig. 4c and 
demonstrate that the best overall model fit is consistent with the value of 0.2 derived from the literature.

Validation of cardiac output values. Of 60 experimental procedures performed, only three failed to 
return usable data. In two of these cases, irregular breathing patterns during the initial wash-in period led to the 

Figure 2.  Gas fractions and cumulative gas exchange recorded before, during and after a tracer gas wash-in. (a) 
Gas fractions for methane (magenta) and acetylene (blue). (b) Cumulative uptake of methane (magenta) and 
acetylene (blue). (c) Cumulative gas exchange for oxygen (green), nitrogen (black), and carbon dioxide (red).
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Figure 3.  Example datasets for measurement of cardiac output at rest (left) and during exercise (right). 
(a,b) Cumulative gas exchange at rest (a) and during exercise (b) for oxygen (green), carbon dioxide (red), 
and nitrogen (black). (c,d) Cumulative uptake at rest (c) and during exercise (d) for methane (magenta) and 
acetylene (blue). The data illustrate the greater oxygen consumption, carbon dioxide production and tidal 
volumes during exercise. Total methane uptake is comparable at rest and during exercise, whilst acetylene 
uptake is significantly greater during exercise.
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inability to identify a reasonable adjusted FRC. A third dataset was excluded due to significant rebreathing dur-
ing the wash-in period of an exercise procedure. Thus, 57 datasets remained for analysis.

Values recovered for Q ̇ from each dataset for each subject during rest and exercise are plotted against oxygen 
consumption, V ̇o2, in Fig. 5. Mean values for V ̇o2 and Q ̇ for each participant are given in Table 1. Analysis of 
variance (ANOVA) was performed on the individual values for Q ̇ with participant as a random factor, V ̇o2 as 
a co-variate, both without and with the inclusion of the interactive term (participant * V̇o2). The former gave 
the mean regression slope (see Fig. 6) and the latter gave regression slopes for the individuals (see Fig. 5 and 
Table 1). The residual mean squared error of 0.243 l  min−1 gives an estimate for the test to test variability and is 
7% of the mean value for Q ̇.

Values for Q ̇ were also determined using a previously published algorithm (OpCirc1)12. With this algorithm, 
the mean for Q ̇ at rest was 2.7% higher, whilst during exercise it was 6.1% lower.

While it was not possible to obtain direct measurements of Q ̇with a pulmonary arterial catheter in our volun-
teers, there are nevertheless a number of reports in the literature giving regression relations between Q̇ measured 
using the direct Fick approach and Vȯ2

12,13. Figure 6 illustrates the predicted cardiac outputs for rest and exercise 
from these studies, allowing comparison with the measured data and regression relation obtained in this work.

Figure 4.  Calculation of cardiac output. (a) Example record of first 60 s of gas uptake for methane (magenta) 
and acetylene (blue). Symbols (methane, black; acetylene, blue) indicate values at the ends of modified breaths 
chosen so that lung volume is the same at each time point. Circles are data, and crosses are values predicted 
from the model. Note that there are no symbols associated with the breath ending close to 40 s as expiration 
was incomplete. The modified breath then becomes a double breath. (b) Average overall cardiac output (rest, 
black line; exercise, grey line) as a function of the number of breaths included in the analysis. (c) Mean sum of 
squared residuals across the 57 collected datasets as a function of lung tissue volume, expressed as a fraction of 
functional residual capacity. The optimal fraction was ~ 0.2 where the mean sum of squared residuals was at a 
minimum, showing good agreement with the value taken from the  literature11.
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Discussion
There is a plethora of indirect techniques for determining Q1̇4–17. Each is associated with limitations, but another 
reason behind the range of different technologies is that requirements differ between applications. For example, 
monitoring of Q ̇ during anaesthesia requires a technology capable of near continuous measurement of cardiac 
output, such as thoracic impedance or Doppler ultrasonography. More generally, important considerations 
include safety, convenience, validity, precision, and accuracy.

The present study has developed a technology that falls within the general class of those based on respiratory 
 exchange16. These technologies have the significant advantage that the calculation of Q ̇is based upon mass bal-
ance of the respiratory gases. Thus, their potential to give precise and accurate determinations is considerable 
when compared with, for example, a technique based on variations in transthoracic impedance, where there will 
always be uncertainty around the calibration factors required to transform these variations into measures of Q ̇.

Figure 5.  Intraparticipant relationships between cardiac output and oxygen consumption. (a–f), Cardiac output 
measurements are plotted against measured oxygen consumption for each participant in a separate panel, with 
intraparticipant linear fits shown with solid black lines. The quality of the fits is reflected in the coefficients of 
variation (CoV); below 10% of the mean cardiac output for every participant.

Table 1.  For each participant, the measured oxygen consumptions (V̇o2) and determined cardiac outputs (Q̇) 
at rest and exercise are given (mean ± SD). The gradient (m) and offset (c) of linear fits to each participant’s data 
are shown (mean ± SE), with the coefficient of variation (CoV) stated in each case. The parameters shown for 
the group, including CoV, describe a linear regression to all 57 data points. The overall CoV (within subject, 
between day) for this technology was found to be 6.9%.

Subject number V̇O2 rest/ml  min−1 Q̇ rest/l  min−1 V̇O2 ex/ml  min−1 Q̇ ex/l  min−1 m/10–3 c/l  min−1 CoV/%

1 382 ± 44 4.79 ± 0.60 1011 ± 31 9.79 ± 0.78 8.06 ± 0.46 1.68 ± 0.37 5.8

2 307 ± 28 4.83 ± 0.24 1013 ± 33 9.63 ± 0.33 6.81 ± 0.12 2.73 ± 0.09 1.9

3 291 ± 23 3.38 ± 0.21 1002 ± 39 9.24 ± 0.26 8.23 ± 0.17 0.99 ± 0.12 3.0

4 310 ± 25 4.51 ± 0.54 1035 ± 14 10.17 ± 0.52 7.83 ± 0.41 2.08 ± 0.31 6.4

5 315 ± 25 4.63 ± 0.69 975 ± 32 10.40 ± 0.92 8.76 ± 0.78 1.87 ± 0.59 9.8

6 294 ± 17 4.76 ± 0.26 969 ± 81 9.14 ± 0.61 6.48 ± 0.24 2.86 ± 0.16 3.6

Group 317 ± 33 4.47 ± 0.67 1001 ± 25 9.75 ± 0.72  7.69 ± 0.23 2.05 ± 0.17 8.5
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The development of open-circuit  approaches7,8 has added substantially to the convenience of a respiratory-
based measurement, whilst also removing the potential that closed-circuit approaches have to perturb Q ̇ itself. 
However, these approaches still required a mass spectrometer to measure the acetylene and a reference gas with 
the same sample-line delay and dynamics. These devices, simply because of their cost, complexity, maintenance 
and calibration requirements, have never been adopted outside of a few specialist centres. Furthermore, the 
general lack of overall accuracy associated with open-circuit techniques for determination of breath-to-breath 
gas exchange would have applied to tracer gas uptake in these studies as it has done to measurements of respira-
tory gas exchange more  generally18.

Recently, Ciaffoni et al. introduced the use of laser absorption spectroscopy across the main respired gas 
flow for the major gas species that are naturally exchanged across the  lung9. This not only provided a far more 
convenient instrument than a respiratory mass spectrometer, it also provided a greater than tenfold increase in 
precision for the integration of the flow of specific gases into and out of the lung over time. This increase in preci-
sion arose in part because of the physical basis of the measurement (absorption spectroscopy), but also because 
the measurements were made completely contemporaneously (no sampling catheter) with those of flow in the 
mainstream gas under precisely the same physicochemical conditions. The present study has extended the path 
length for spectroscopic measurement across the main gas stream enabling measurement of tracer gas concentra-
tions. The sensitivity has enabled a reduction in acetylene concentration from either 0.7%12 or 0.5%19 to < 0.3%, 
a considerable advantage given that a number of individuals can taste acetylene at concentrations above 0.5%20. 
The sensor was incorporated into the instrument of Ciaffoni et al.9 and consequently, the flow of the tracer gases 
can be integrated with the same overall precision as for the main components of the gas.

Measurement of Q ̇ in healthy humans using MFS technology resulted in an overall coefficient of variation, 
CoV, (within subject, between day) of 6.9%. This demonstrates that the device is capable of highly-precise 
measurements, especially given that some of the overall variation will be real physiological variation. A detailed 
assessment for the CoV for the thermodilution technique (which employs a pulmonary arterial catheter) sug-
gests that a value of 25% is appropriate for a single measurement, and a standard procedure has been to repeat 
the measurement three times in order to gain a value of ~ 15%21. Values are available for other  techniques15,22, 
and while generally lower than for thermodilution, they generally do not relate to a between-day assessment.

Ethical considerations relating to pulmonary arterial catheterisation prevented us from comparing our results 
with simultaneous measurements of Q ̇ obtained using the direct Fick technique. Nevertheless, during exercise 
our results compared very favourably with those reported previously by Johnson et al.12 and Bevegard et al.13 
(Fig. 6). At rest, however, our values mostly fell below the mean values predicted from these previous studies.

These differences between studies may reflect genuine physiological differences between the participants. 
Brandfonbrener et al. demonstrated using the dye dilution technique that the standard deviation for basal car-
diac output measurements between subjects was very large, at 30% of the mean value across a group of 60 
 participants23. Furthermore, in the study by Bevegard et al.13, the participants were recruited from a pool of 
blood donors and had a mean haemoglobin concentration of 13.2 g  dL−1, compared with a mean value of 15.4 g 
 dL−1 for the present study. As reductions in haemoglobin concentration are associated with increases in cardiac 
 output24, we should expect the values for Q ̇ obtained by Bevegard et al. to be higher.

If the differences in resting Q ̇between our study and those using the direct Fick technique are not physiologi-
cal, then the most likely explanation is that the algorithm for recovering Q ̇ from the tracer gas measurements 
is biased at rest. Specifically, the algorithm assumes: (i) that the lung can be represented as a single well-mixed 
volume; (ii) that gas concentration in the overall lung volume can be reasonably approximated by interpolation 

Figure 6.  Fitted linear relationship between cardiac output and oxygen consumption. The linear fit to the 
measured cardiac output data is shown with a solid black line. Individual cardiac output measurements are 
shown with a different symbol and colour for each participant. Horizontal lines illustrate the predicted cardiac 
output values for the average measured oxygen consumptions at rest and during exercise from two studies using 
the direct Fick method. Data from Johnson et al.12 are shown as full lines, and those from Bevegard et al.13 as 
broken lines.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5252  | https://doi.org/10.1038/s41598-021-84649-0

www.nature.com/scientificreports/

between end-tidal values; and (iii) that recirculation of gas back into the lung can be discounted. All of these 
assumptions are flawed.  Swanson25 demonstrated that, for breath-to-breath variations in pulmonary gas exchange, 
the effective lung volume was significantly smaller than the true lung volume. This arises from inhomogeneity of 
ventilation to volume ratios through the lung. Busso et al.26 demonstrated that changes in end-tidal composition 
generally overestimate the real changes in gas concentration within the lung. Finally, the initial rise in tracer 
gas fraction in the blood returning to the lung can be quite rapid as a result of the highly uneven distribution of 
perfusion between the different organs of the body. For example, the total renal mass for humans is ~ 300 gm, 
but the blood flow to the kidneys is ~ 20% of the entire cardiac output and this is associated with a transit time 
through the entire systemic circulation of ~ 10 s. Overall, inhomogeneities in lung function may cause estimates 
of Q ̇ made from the first breath or two of uptake to be particularly inaccurate, while recirculation will progres-
sively reduce the accuracy associated with measurements made during the later breaths. Indeed, this second point 
is well illustrated by the dependency of Q ̇ on the number of breaths included in the analysis (Fig. 4b). Finally, 
these limitations are not confined to the algorithm employed in this study, but apply equally to the algorithms 
of others such as the OpCirc1 algorithm of Johnson et al.12.

Apart from their non-invasive nature, the reason behind continuing to develop respiratory techniques for 
estimating Q ̇ relates to their grounding in mass balance, and therefore their potential to deliver values that are 
not only highly repeatable and precise, but also accurate and unbiased. To deliver such results, potential sources 
of bias within the existing algorithms need to be removed. One possible way forward is suggested by the work of 
Mountain et al.27, who developed an approach to identify parameters describing person-specific lung inhomo-
geneities from the wash-in or washout of an inert gas. Their approach also incorporated a rudimentary model 
of body gas stores for  nitrogen28 to address recirculation. The findings from that study raise the possibility of 
simultaneously estimating Q ̇ and lung inhomogeneity in a manner that allows for the presence of recirculation 
using the wash-in of acetylene and methane. Such an algorithm should be substantially more accurate than 
those currently available that assume a uniform lung and no recirculation. The technological developments of 
the present study now provide a sound platform on which to base such future work.

In conclusion, this study has succeeded in developing a far more precise and convenient measurement tech-
nology for a respiratory approach to determining cardiac output. The associated human study demonstrates 
that the technology enables a precision of measurement that is probably greater than that achieved by any other 
method. However, despite good agreement with literature values during mild exercise, it appears that the meas-
urement is potentially biased under resting conditions. Future work needs to be directed at algorithm develop-
ment, in particular the removal of certain simplifying assumptions that have the potential to introduce measure-
ment bias. The determination of the absolute concentrations of the trace gases depends, for an assumed path 
length, upon the accuracy of the integrated absorption cross-sections as given in the HITRAN database. Reduced 
uncertainties in these measured quantities would aid in reducing uncertainties in such future measurements.

Methods
Development of methane and acetylene spectrometers. A pair of distributed feedback (DFB) 
diode lasers operating within the near-IR region were used as radiation sources to evaluate the concentrations of 
methane and acetylene by direct laser absorption spectroscopy. The spectral window used to probe each species 
was chosen to provide sufficient sensitivity and to avoid interference from transitions arising from other major 
components of breath, principally carbon dioxide and water.

To evaluate acetylene concentrations, a 10 mW DFB diode laser (NTT Electronics, NLK1C5EAAA) operating 
at 1.53 µm was used to probe the P(8) transition within a vibrational combination band (ν1 + ν3). A second 10 
mW DFB diode laser (NTT Electronics, NLK1U5EAAA) operating at 1.65 µm was used to probe the methane 
absorption feature resulting from three overlapping R(3) transitions within the first overtone band of one of the 
C–H stretching vibrations (ν3). This feature has previously been used to quantify atmospheric methane concen-
trations in field  conditions29. The pair of lasers was housed within an electronics module, along with the laser 
chip temperature and applied current control circuits.

To provide sufficient sensitivity for accurate evaluation of the tracer gas concentrations, a measurement cell 
based on a spherical Herriott cell was developed. In these cells, radiation is reflected a number of times, in a 
well-defined spatial pattern, by high reflectivity spherical concave mirrors. In this way, the optical path length 
is extended with the radiation travelling back and forth through the sample gas. Significant path lengths can be 
achieved in a low volume with little loss of optical power, leading to the implementation of multipass optical 
cells in a range of portable field systems and airborne applications, particularly in combination with sensitivity 
enhancing phase-sensitive  detection30. As shown in Fig. 1, the light enters and exits the optical cell via strategically 
placed holes on the  mirrors10. The nature of the spot pattern within a Herriott cell is dependent on a number of 
factors: the radius of curvature of the mirrors, the separation of the mirrors, and the angle and position of the 
radiation injection. When correctly aligned, the spot pattern, describing the positions of the reflections on the 
pair of mirrors, can be circular or elliptical. The optical and mechanical stability of Herriott cell-based systems 
has been found to be superior to other similar multipass optical systems, such as White  cells31.

The chosen cell design was based on modelled reflection spot patterns calculated using a ray propagation 
model described by Tarsitano and  Webster31. The model assumes that the beam propagates as a paraxial ray, a 
small reflection angle ray tracing  approximation32. The design selected used a mirror separation of 27.61 mm, 
each mirror with radius of curvature of 80 mm. Radiation entered the cell through an angled injection aperture in 
the first mirror and is then reflected between the mirror surfaces, before exiting the optical cell via an off-centre 
exit aperture on the second mirror. The optical path comprises 20 reflections, resulting in an overall path length 
of 56.7 cm. Radiation is ultimately detected with a photodiode placed behind the exit aperture in the second 
mirror. The spot pattern is contained well within the mirror surface diameter of 24 mm and both injection and 
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exit apertures are positioned away from the edges of the mirror surfaces, allowing sufficient space to incorporate 
the collimator and photodiode housing packages. The series of reflections leads to successive focusing and defo-
cusing of an optical beam. Large beam widths at reflection points neighbouring the injection and exit apertures 
could lead to signal loss and/or detection of radiation that has not traversed the entirety of the intended optical 
path. The optical beam was also modelled as a Gaussian beam, the width of which can be calculated using the 
complex beam  parameter33, to ensure that these effects did not occur.

A further advantage of the cell design, beyond the extended optical path length, is the potential to facilitate 
additional gas sensing channels within the pair of spherical mirrors. Crucially for the target application in this 
work, there is sufficient space at the centre of the injection mirror to allow the inclusion of an optical v-path 
similar to that in the pre-existing MFS, with both injection and exit apertures on the extended path’s input mirror. 
The schematic shown in Fig. 1a illustrates how the Herriott cell integrates into the pre-existing MFS reported 
by Ciaffoni et al.9. This integrated design allows sensitive measurement of methane, acetylene, carbon dioxide, 
and water concentrations within an MFS without negatively affecting the sensitivity of the device or increasing 
the device’s volume.

Mirrors with the specified diameter, radius of curvature, and aperture positions and angles were manufac-
tured (LBP Optics) and were comprised of nickel-plated aluminium blanks, with the mirror surfaces gold coated 
by electroplating. The mirrors were housed in a measurement cell, with an InGaAs photodiode (Hamamatsu, 
G12181-020K) installed beneath the output mirror surface.

The two near-IR lasers were spatially multiplexed, using a 2 × 2 fibre coupler with a 50:50 coupling ratio 
(Thorlabs, PN1550R5A2), allowing radiation from both to share a single optical path. Once multiplexed, the 
lasers could be sequentially scanned across the absorption features. As one laser is scanned over an appropriate 
spectral window, the other ‘stationary’ laser is held at a constant current (and hence wavelength) above thresh-
old. An ‘offset amplitude spectrum’ must be determined for each laser and subtracted before any data analysis is 
performed. The spectral ranges across which the lasers were scanned were evaluated using an optical spectrum 
analyser (Melles Griot, with a free spectral range of 0.067  cm−1), which provided the relative calibration to a 
precision of 0.3% (calculated from the uncertainty in measuring the spectrum analyser peak positions). The 
absolute wavelength was determined using a laser wavelength meter (Exfo WA-1000), and this allowed clear 
identification of the spectral features by comparison with the HITRAN  database34.

Spectra for each species are recorded at a frequency of 200 Hz, with 200 data points recorded per spectrum. 
Two spectra were averaged, providing a spectrum every 10 ms. For the real-time fitting of the data the first 30 data 
points of each spectrum are excluded to allow the ‘stationary’ laser sufficient time to establish a constant ‘offset 
amplitude’ signal level. A theoretically predicted Voigt distribution is regressed onto each measured absorbance 
spectrum in real-time. Using molecular transition line strengths taken from the HITRAN  database34 and the 
optical path length (calibrated using gas mixtures with defined methane and acetylene compositions), the fitted 
distributions enable evaluation of species number densities. Coupling these values with measurements of total 
gas pressure and temperature allows fractional gas concentrations to be determined. Temperature and pressure 
precisions were 0.07 and 0.10% respectively and were determined by comparing the instrument outputs with 
those measured with standard thermocouples and a high precision mercury barometer. These uncertainties were 
propagated linearly, giving a 0.17% uncertainty in gas fraction.

The minimum detectable concentration of each system is calculated as the species concentration that cor-
responds to a level of absorbance equal to one standard deviation of the residuals between the measured spec-
trum and the fitted Voigt distribution. The precision of the fitting to the assumed Voigt function proved the 
major source of uncertainty in our measurements. The minimum detectable concentrations were propagated in 
quadrature with the uncertainties associated with temperature and pressure measurements and that from the 
wavenumber axis calibration to evaluate the overall precision of the spectrometers. Prior to use, the multiplexed 
system is calibrated; offset and baseline spectra recorded with pure nitrogen flowing through the measurement 
cell at 5 l  min−1.

Modelling body tracer gas uptake. The clinical potential of the highly accurate contemporaneously 
measured gas compositions and respiratory flows relies on the computational model used to interpret the 
recorded data. A model of methane and acetylene uptake in the body was written in order to determine cardiac 
output, Q ̇. Tracer gas uptake is assumed to occur by three mechanisms: equilibration with the gas in the lung (the 
tracer gas volume remaining in the lung at the end of each breath is equal to the product of the lung volume and 
end-tidal tracer gas fraction), uptake into the lung tissue (with a volume equal to the product of the lung tissue 
volume, end-tidal tracer gas fraction, and solubility of the tracer gas), and uptake by the blood (the volume of 
which in each breath is given by the product of gas solubility, Q̇, alveolar pressure of the tracer gas, and the dura-
tion of the breath). Thus, the basis of the uptake modelling is the following equation:

 where VE
g(i) is the cumulative uptake volume of gas g at the end of expiration of breath i, VL is the lung’s gas 

volume at functional residual capacity (FRC), FE
g(i) is the end-tidal gas fraction of gas g for breath i, Vtiss is the 

lung’s tissue volume, β g is the solubility of gas g, k is a constant conversion factor from a dry gas fraction to a 
pressure in units of atm under body temperature and pressure saturated (BTPS) conditions, PA

g(i) is the alveolar 
pressure of gas g for breath i, and tE(i) is the time of the end-tidal point of breath i.

In order to evaluate the model at a consistent lung volume, for both gas and tissue, the model would ideally 
be evaluated when the lungs are at FRC. However, although end-expiratory volume approximates FRC, there is 
significant breath-to-breath variation in this quantity, making it difficult to identify a consistent volume at which 
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the lungs are at FRC. To estimate where FRC is on the tidal volume record, a cubic smoothing spline is fitted to 
the end expiratory points for the total gas flow into and out of the lung. The lung will be close to FRC when this 
spline intersects this tidal volume record. Due to breath-to-breath tidal volume variations, however, there will 
be a large number of breaths with end-expiratory lung volumes greater than FRC. In order to provide the model 
with cumulative volume data from the majority of recorded breaths, an adjusted FRC volume is used. To address 
this, the fitted smoothing spline was translated upwards so that it intersected the volume record towards the end 
of expiration for most breaths. It was found that this translation was small, specified ultimately as one standard 
deviation of the residuals of the spline fit. The adjusted FRC indices are then identified as the times at which 
the shifted spline crosses the tidal volume record during expiration (descending volume). For breaths where 
the end-expiratory volume lies above this shifted spline, the expiration is judged incomplete and the following 
modified breath consists of data from two true breaths. Associated end-inspiratory points are identified as the 
maxima of the tidal volume record.

The gas fractions are directly measured by the 5-gas MFS, and the uptake volumes calculated as the cumulative 
integral of the product of the measured flow and gas fractions. The alveolar pressure of gas g for breath i, PA

g(i), 
cannot be measured directly and so an average pressure during the breath is estimated using:

where tins (i) is the inspiratory time period of breath i, tex(i) is the expiratory time period of breath i, tbreath(i) is 
the total time period of breath i.

The solubility constant, βg, used in this work is a Bunsen coefficient, with units of ‘volume of gas at STPD per 
volume of fluid measured at atmospheric pressure and body temperature’35. Literature values for methane and 
acetylene Bunsen coefficients in blood display significant variation. The greater number of studies seeking to 
determine the acetylene solubility in human blood reflects the long-standing use of this gas within physiological 
experiments. The Bunsen coefficients for methane, β CH4, and acetylene, β C2H2, in blood used in this work are 
taken from  Wagner36.

A number of assumptions are present within this model of tracer gas uptake. The first to note is that Q ̇ and 
VL are assumed to be constants over the range of breaths used for analysis. Associated with this initial assump-
tion is the fact that the model assumes a homogeneous lung. The VL parameter determined from this modelling 
is, in reality, an estimation of the lung volume into which the inspired tracer gas mixture is well mixed. In a 
lung with inhomogeneous ventilation, peripheral lung units may require multiple breaths before good mixing 
with the inspired tracer gas mixture is achieved. Inhomogeneity inherent within the lungs provides deviation 
from two further modelling assumptions. The first is that the calculated parameter PA

g(i) represents an effective 
mean alveolar pressure for the period of the ith breath, and the second is that measured end-tidal fraction FE

g(i) 
represents an effective end expiratory fraction within the lung.

The tracer gas solubilities in lung tissue volume are assumed to be the same as those used for blood, justified 
for acetylene by the similarity of the measured solubilities of this gas in blood and lung  tissue37. Methane is a 
significantly less soluble species, so deviations from this assumption are unlikely to introduce significant error.

The model also makes no consideration of the recirculation of tracer gases in the blood. Both tracer gases are 
non-physiological gases and as such the blood concentrations are assumed to be zero before inspiration of a tracer 
gas mixture. During the tracer gas breathing period acetylene, and to a lesser extent methane, will be taken up 
by the blood. Mixed venous blood containing tracer gas will later return to the lungs. The recirculation of tracer 
gas-laden blood reduces the uptake of further gas from the lungs into the blood, and thus from the perspective 
of this model which does not take this into account, an associated reduction in estimated Q ̇ would be predicted.

The model solution method adopted was multiple linear regression. The number of variables within the 
multiple linear regression was limited to two. This was achieved by introducing the constant tissue volume mul-
tiplier, X, such that the lung tissue volume, Vtiss, is equal to VL × X. Tracer gas uptake expressions for the 3rd to 
10th breaths of the tracer gas wash-in were used within the analysis. The first two breaths are excluded due to the 
significant effects of ventilation inhomogeneity within the lung in these early breaths; lung inhomogeneity isn’t 
considered within the model. Data from breaths beyond the 10th were excluded to avoid the estimation utilising 
data in which the recirculation of the tracer gases into the lungs would contribute significantly.

Human dataset. A proof of principle study was performed in order to assess the success of this non-inva-
sive Q̇ determination technique, combining the highly-precise 5-gas MFS with the physiological model of meth-
ane and acetylene uptake. A group of volunteers were studied on 5 days, at rest and during exercise.

Six men, aged 21–40 years, who had no history of cardiac or respiratory illnesses, volunteered for the study. 
The experimental work was carried out in accordance with the general principles of the declaration of Helsinki, 
with ethical approval obtained from the South Central Oxford A Research Ethics Committee (reference number 
17/SC/0172) and all participants providing written informed consent prior to the study.

Each volunteer visited the laboratory on 5 consecutive days. On each visit, tracer gas wash-ins were performed 
at rest and then during submaximal exercise. Experimental data were collected by the 5-gas MFS. An open-circuit 
breathing system was used, with inspiratory gas supplied to the volunteers using a flow past system at flow rates 
of 30 and 60 l  min−1 for the rest and exercise procedures respectively. The inspiratory gas changed from air to a 
9000 ppm methane, 3000 ppm acetylene, and 21% oxygen with a balance of nitrogen mixture for the tracer gas 
wash-in period. All experimental procedures were carried out with the volunteers seated on a bicycle ergom-
eter, and consisted of a period of air breathing, followed by a tracer gas wash-in. At rest, these two periods each 
lasted 4 min, whilst at exercise each period was shortened to 3 min. Submaximal exercise was performed with 
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the bicycle set to 50 W, with the volunteers asked to maintain a revolution rate of 60 rpm. Volunteers pedalled 
for 7 min prior to the start of data collection to ensure an elevated and approximately constant cardiac output 
throughout the recorded procedure.

Each of the recorded datasets was analysed using the model of tracer gas uptake by the body. Within this 
model a constant tissue volume multiplier, X, is defined, such that the lung’s tissue volume is equal to X multiplied 
by the determined lung volume. For each input dataset, the determined cardiac output and lung volume will 
therefore vary with the chosen tissue volume multiplier, X. In order to optimise the value of X used in this work, 
the quality of the model fits to the measured data were evaluated for a range of X values. X was varied between 0 
and 0.5 in steps of 0.1 and the model was fit to the data by multiple linear regression for each of the datasets. To 
evaluate the optimal X value, the sum of squared residuals between simulated and measured tracer gas uptakes 
for all of the datasets is analysed. The trend was fitted with a quadratic function, with the X value at the minimum 
of this fitted function taken as the optimal tissue volume multiplier as shown in Fig. 4c. Estimated Q ̇ parameters 
were then found for each dataset using this optimised tissue volume multiplier.

ANOVA was performed on the values for Q ̇ with participant as a random factor, V ̇o2 as a co-variate, both 
without and with the inclusion of the interactive term (participant * Vȯ2). The former provided a mean regression 
slope, with the latter giving regression slopes for each individual. It is from these regression slopes that a residual 
mean square error is calculated to give an estimate of the error associated with the Q ̇ parameters.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper. Additional data related to this 
paper may be requested from the authors.
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