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Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative
agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug
and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux
pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of
solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work
on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS.

1. Introduction

Drug and multidrug resistant bacterial pathogens that are
causative agents of infectious disease constitute a serious pub-
lic health concern. Bacterial multidrug efflux pump systems
of the major facilitator superfamily (MFS) and resistance-
nodulation-cell division (RND) superfamily represent com-
mon mechanisms for bacterial resistance to antimicrobial
agents. As such these bacterial transporters make suitable
targets for modulation in order to restore the clinical efficacy
of relevant chemotherapeutic antibacterial agents. Here, we
briefly review the drug transporter systems of the MFS (and
to a lesser extent the RND superfamily) and discuss their
modulation via regulation of expression and efflux pump
transport inhibition.

2. Bacteria and Pathogenesis

Bacteria are unicellular, microscopic living organisms that
are rod shaped, ball shaped, or spiral shaped when observed
under the microscope. Most bacteria are not harmful; rather,
they aid in food preparation and digestion, compete with

pathogens, provide vitamins to the body, are useful for
basic and applied research purposes, and are important
in biotechnology. However, less than one percent of the
bacteria of different types are responsible for causing bacterial
infections. Bacterial cells are capable of quickly reproducing
and releasing chemicals and toxins; pathogenic bacteria
can cause damage to cells and tissues in the body and
cause clinical disease. Some of the common diseases and
infections caused by pathogenic strains of bacteria include
food poisoning caused by Escherichia coli and Salmonella [1–
6], gastritis and ulcers caused by Helicobacter pylori [7], the
sexually transmitted disease gonorrhea caused by Neisseria
gonorrhoeae [8], meningitis caused by N. meningitides [9],
skin infections like boils, cellulitis, abscesses, wound infec-
tions, toxic shock syndrome, pneumonia, and food poisoning
caused by Staphylococcus aureus [10–13], and pneumonia,
meningitis, otitis, and strep throat caused by streptococcal
bacteria [14–16]. Thus, it is important to investigate bacterial
mechanisms that confer pathogenesis in order to reduce
the conditions that foster their emergence and movement
through populations.
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3. Bacterial Resistance Mechanisms to
Antimicrobial Agents

Antimicrobial chemotherapy is frequently indicated for
infections caused by the bacteriamentioned above and others
[17]. Bacterial resistance, however, to antimicrobial agents
has emerged in many of these pathogens, often confounding
treatment efforts [18]. Bacterial pathogens that are resistant
to a single drug are also quite frequently resistant to multiple
antimicrobial agents and are considered potentially untreat-
able “superbugs” [19, 20]. Even though some efforts are
underway to overcome this problem by developing new lines
of antibiotics with novel mechanisms and newly improved
activities, bacteria are nonetheless quickly acquiring resis-
tance determinants and are prevailing as multidrug resistant
pathogens [21–25]. In the competition between bacteria and
antimicrobial agents, pathogenic bacteria are thought to have
an upper hand by transferring drug resistance genetic deter-
minants between distinct bacterial species and acquiring
resistant phenotypes against most antimicrobial agents [26–
29]. The spread of antibiotic resistance in the last decade
has been a major challenge when dealing with human health
concerns [30]. Releasing antibiotics into the environment
is also a major cause in the development and emergence
of bacterial antibiotic resistances [31–36]. Inappropriate use
and misuse of antimicrobials can foster conditions in which
less susceptible bacterial variants survive, become adapted to
low drug concentrations, and eventually develop resistance
[37, 38]. Interestingly, a bacterial strain that is selected as
a single-drug resistant variant by exposure to a single drug
is frequently multidrug resistant to antimicrobials that are
structurally distinct from the original selective drug [39–
42]. General mechanisms which are responsible for bacterial
resistances to antimicrobial agents are shown in Figure 1 and
include (a) alteration of the sites where the drugs are targeted,
(b) enzymes that inactivate the antibiotics, (c) decreased
membrane permeability, and (d) active efflux of antimicro-
bials. Bacterial resistance mechanisms such as these men-
tioned above provide investigators with good cellular targets
for potential modulation. Studies of the modulatory effects
on bacterial drug resistance mechanisms, especially those
dealing withmultidrug resistances, may lead to restoration of
the efficacy of antimicrobial agents that have previously been
less than efficacious in multidrug resistant pathogens.

4. Antimicrobial Efflux Pumps of Bacteria

Active efflux as a mechanism for bacterial resistance to
inhibitory substances, such as toxic compounds and antibi-
otics, is mediated by integral membrane transporters, known
simply as drug efflux pumps [43]. There are several main
categories of active drug efflux pumps that transport drugs
against their concentration gradients across the membrane;
see Figure 2. The first category consists of pumps, called
primary active transporters, which utilize the energy stored
in ATP to catalyze transport of drug across the membrane by
ATP hydrolysis [44]. The second category consists of pumps,
called secondary active transporters, which are driven by the

energy stored in ion gradients that are in turn generated
by respiration, to catalyze the transport of drug across the
membrane [45–48]. These primary and secondary active
drug efflux pumps are largely responsible for conferring
antibacterial resistances, and in many cases multiple drug
resistances [49–51]. These efflux pumps are located on the
cytoplasmic or plasma membranes of bacteria and prevent
drug accumulation inside the bacterial cells, thereby con-
ferring resistance [40]. A third category of drug pumps,
called the phosphotransferase system (PTS), catalyzes the
transport of drug with a concomitant phosphorylation of
the drug, usually for cellular entry of the drug substrate
[52, 53]. Bacterial genome sequencing projects facilitate the
identification of the putative genes responsible for building
antimicrobial resistance [54–56]. The genes responsible for
building resistance are collectively called a “resistome” [57].

Based on the modes of energy, amino acid sequence
similarities, predicted secondary protein structures, known
3D crystal protein structures, and phylogenetic relationships,
bacterial drug efflux transporters are classified into five
different major superfamilies and are shown in Figure 2:
(i) the major facilitator superfamily (MFS) [58, 71]; (ii) the
ATP-binding cassette (ABC) superfamily [72, 73]; (iii) the
small multidrug resistance (SMR) superfamily [74]; (iv) the
resistance-nodulation-cell division (RND) superfamily [75,
76]; and (v) the multidrug and toxic compound extrusion
superfamily (MATE) of transporters [69].

5. The Major Facilitator Superfamily

The major facilitator superfamily (MFS) of transporters
comprises uniporters, symporters, and antiporters and has
been called the uniporter-symporter-antiporter (USA) family
[77]; see Table 1. The MFS was discovered by Henderson and
coworkers [78–80]. These investigators found the seemingly
distinct transporters of diverse substrates shared similar
deduced amino acid sequences, predicted secondary protein
structures within the membrane, and evolutionary related-
ness [46, 80–83]. Since their initial discovery, the MFS of
transporters has become an important and intensive area of
investigation [50, 58–60, 71, 84, 85]. Since many members
of the MFS confer bacterial drug and multidrug resistance,
these transporters collectively represent a good system for the
study of modulation, both at the level of gene expression and
of inhibition of drug transport across the membrane. Both
of these avenues hold promise for eventually restoring the
clinical efficacy of clinically important antimicrobial agents.

5.1. MFS Multidrug Efflux Pumps. The efflux proteins of the
MFS (Table 1) belong to the antiporter group, which may
be comprised of either monomeric (e.g., qacA/B, mdfA, and
emrD-3) or multicomponent systems (e.g., EmrAB-TolC)
[86]. The genes encoding these efflux pumps are largely
chromosomal, but some others such as qacA/B are plasmid
borne [121]. About half of the 39 putative drug efflux pumps
in the E. coli genome are of the MFS-type, which is about
10% of all the proteins encoded in the whole genome of
this organism [122, 123]. With the whole genomes of several
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Figure 1: Mechanisms representing antibacterial resistance. A generic bacterium is depicted in which various mechanisms for resistance
to antimicrobial agents are indicated. (a) Drug target modification, (b) drug inactivation by enzymes, (c) reduced drug permeability by
membrane modification, and (d) active efflux of drugs from the bacterial cell. Yellow circles indicate antimicrobial agent molecules; red
arrows indicate movement of molecules, and black arrows are pointing to intra- and extracellular structures.

H+

H+

H+
H+

H+H+

H+

H+ADP + Pi

Na+

Na+

Cytoplasm

Outer
membrane

Inner 
membrane

Periplasm

Drugs

MFS

LmrS
(14 TMS)

Drugs

MFS

LmrA

Drugs
ABC

ATP

SugE

SMR

Drugs

AcrB

Drugs

TolC

RND

AcrA AcrA
EmmdR

Drugs
MATE

12 TMS

Phospholipid

EmrD-3

Figure 2: Antibacterial resistance by multidrug efflux pumps. Transporters of the MFS are capable of carrying solutes across the biological
membrane, and the energy for solute translocation comes from the chemiosmotic gradient of cations [58–60]. EmrD-3 from V. cholerae [61]
represents a MFS multidrug efflux pump (a drug/H+ antiporter) with 12 transmembrane domains, and LmrS from S. aureus [62] represents
a MFS drug/H+ antiporter with 14 TMS. The transporters of the ABC superfamily can transport ions, small molecules, and macromolecules
in and out of the cell using the hydrolysis of ATP [63, 64].The SMR family members confer resistance to quaternary ammonium compounds
as well as a variety of antibiotics and are represented by SugE [65, 66]. The RND superfamily of tripartite efflux pumps works by cation
gradients and can be found in bothGram-positive andGram-negative bacteria [67, 68].TheMATE superfamily of drug efflux pumps extrudes
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Table 1: Efflux pumps of the MFS family with clinically relevant
antibiotics as their substrates.

Bacterium Efflux pump Antibiotic
substrates References

Acinetobacter baumannii SmvA EM [86, 87]
CraA CM [88]
CmlA CM [89]

Bacillus subtilis Bmr3 FQ, PU [90]

LmrB DR, FQ,
LC, PU [91]

MdtP AT, FU,
NO, SM [92]

Bordetella bronchiseptica CmlB1 CM [93]
Clostridium difficile Cme EM [94]
Clostridium
saccharolyticum Tet(40) TC [95]

Enterobacter aerogenes QepA FQ [96]
Enterococcus faecium EfmA FQ [97]
Escherichia coli Mef(B) MC [98]

QepA2 FQ [99]
EmrAB-TolC FQ, TE [100]

Fsr TM [101]

MdfA FQ, MC,
TE, CM [102]

Enterobacter aerogenes CmlB CM [103]
Listeria monocytogenes Lde FQ [104]
Mycobacterium smegmatis LfrA FQ [105]
Salmonella Typhimurium EmrAB NA, NO [106]

MdfA CM, DR,
NF, TC [106]

Serratia marcescens SmfY NF [107]

Staphylococcus aureus MdeA FU, MU,
NO, VM [108]

NorA FQ, CM [109]
NorB, NorC FQ [110, 111]

MsrA MC [108, 112]

LmrS
LZ, EM,
CM, TM,

FU
[62]

SdrM NF [113]
Tet(38) TC [111]

Stenotrophomonas
maltophilia Smlt0032 MC [114]

Streptococcus agalactiae MefB MC [115]
Streptococcus pyogenes MefA TC [116]
Streptococcus pneumoniae MefA, MefE MC [117, 118]
Streptomyces coelicolor CmlR1 CmlR2 CM FP [119]

Vibrio cholerae VceCAB NA, CM,
EM [120]

EmrD-3 LZ, EM [61]
CM: chloramphenicol; DR: doxorubicin; EM: erythromycin; FP: florfenicol
FQ: fluoroquinolones; FU: fusidic acid; LC: lincosamides; LZ: linezolid;
MC: macrolides; MU: mupirocin; NF: norfloxacin; NO: novobiocin; PU:
puromycin; SM: streptomycin; TC: tetracyclines; TM: trimethoprim; VM:
virginiamycin.

bacteria available now in the public databases, homologues
of known efflux pumps can be identified easily by BLAST
searches. For example, homologues of EmrD-3, a Vibrio
cholerae multidrug efflux pump [61] with >65% amino acid
identity, could be found in whole genome sequences of a
large number of Gram-negative bacteria belonging to Vib-
rio, Shewanella, aeromonad, enterobacteria, pseudomonad,
Moraxella, and Alcaligenes groups. Similarly, a BLAST search
using the multidrug efflux pump from a clinical isolate of
Staphylococcus aureus (LmrS) [62] identified homologues
of this protein in the whole genome sequences of many
species of Gram-negative and -positive bacteria, especially in
genomes of Staphylococcus and Bacillus. However, it is not
known if these homologous proteins have similar substrate
profiles, a feature highly unpredictable in the case of drug and
multidrug efflux pumps.

5.1.1. Regulation of Efflux Pump Expression. Though, by
far, efflux pumps may not confer clinical levels of resis-
tance to antimicrobials, their actions reduce the intracellular
concentrations of antibiotics to sublethal levels leading to
the development of specific modes of resistance via gene
mutations or antibiotic degradation [124, 125]. However,
exceptions to this general perception, especially in Gram-
positive bacteria, have made efflux pumps clinically relevant
and are the focus of intense research [124]. Such efflux pumps
are either constitutively expressed or expressed at a higher
level in clinical isolates or are induced to express at a higher
level due to prolonged exposure to antimicrobial compounds
[126]. Some of the efflux pump genes are under the tight
control of regulators which control their expressions. The
genes encoding efflux protein and the regulator of the efflux
pump coexist and have overlapping promoters as seen in
tetracycline efflux pumps [127]. When there is no antibiotic,
the tetracycline repressor prevents the transcription of both
efflux and regulatory gene by binding to the operator region.
When present in the growth medium, tetracycline binds to
the repressor protein preventing it from interacting with the
operator thus allowing the transcription of tetA structural
genes [127].

The acr and mar Loci Gene Expression. In some instances,
global regulatorymechanisms control the expression of efflux
pumps, and as a consequence of this, any single mutation
in the regulator gene can lead to several efflux pumps
being up- or downregulated in a single bacterium [128, 129].
In E. coli, for example, expression of some of the efflux
pumps responsible for bile resistance is regulated by acr
and mar loci [130]. Constitutive expression of marA or its
orthologs soxS and ramA in some pathogenic bacteria such
as Salmonella Typhimurium, Klebsiella pneumoniae, and E.
coli could make these microorganisms resistant to organic
solvents andmultiple drugs [131, 132].The role ofmarA and its
orthologs has been confirmed by gene deletion experiments
in which deletion mutants were found to be more virulent
than the wild types [133]. Okusu et al. [134] discovered that
the marA-mediated antibiotic resistance was in fact due to
the increased expression of the acrAB efflux pump in E.
coli. Following this, the roles of marA, acrR, and ramA in
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antibiotic resistance via the overexpression of efflux pumps
have been reported from other Enterobacteriaceae [135, 136].
In clinical isolates of E. coli, a frame shift mutation in marR
was responsible for the constitutive overexpression of marA
and acrAB resulting in tigecycline resistance [137]. Deletion
of AraC-like protein-encoding genes dramatically decreased
intestinal colonization in a mouse model [138], while in the
case of S. TyphimuriumDT104, deletion of the gene encoding
MarA resulted in the reduced survival in chicken spleen and
caecum [139]. These data clearly suggest that multiple viru-
lence genes and genes necessary for survival and colonization
are regulated by the araC groupof proteins. Likewise, deletion
of araC orthologues in other pathogenic bacteria such as
P. aeruginosa (ExsA), V. cholerae (ToxT), and Yersinia pestis
(LcrF) also resulted in attenuation of these pathogens in
mouse models [140–142]. The araC family of transcriptional
regulators such asMarA can regulate, positively or negatively,
the expression of several genes including virulence andMDR
genes [143]. Due to their critical roles in the survival and
virulence of pathogenic bacteria, the araC family or similar
regulons make ideal targets for the inhibitors.

The fact that overexpression of efflux pumps is induced
by the antibiotics during the course of treatment is a
serious concern, since such bacteria may show antibiotic
sensitivity in laboratory tests. The problem is confounded
when efflux pumps are overexpressed by unrelated antibiotics
and even antimicrobials like disinfectants and household
chemicals [86, 125, 144]. A similar phenomenon has also been
observed in gastrointestinal E. coli [145]. The overexpression
of TolC has been found to be responsible for clinical Shigella
developing fluoroquinolone resistance [146]. The decreased
permeability to antibiotics via decreased porin expression
has been associated with overexpression of AcrAB [136].
On the other hand, mutations in regulator genes may lead
to unregulated expression of the efflux pump conferring
constitutive multidrug resistance to the bacterium [147].
Thus, it is important to understand the mechanisms of efflux
pump regulation, specifically during antimicrobial treatment.
The overexpression of efflux pumps in some clinical strains
is responsible for antibiotic resistance, and this mechanism
has not been understood well [148]. In a clinical isolate of K.
pneumoniae, the overexpression of KmrA and KdeA confers
elevated tolerance to quinolones [149, 150].

Bmr and blt Efflux Pumps of B. subtilis and Regulation of
Expression. It is intriguing that the bacteria have distinct
regulatory mechanisms for homologous efflux pumps, and
presumably the chemical and biological inducers of these
regulators are also different as seen in the case of two
homologous efflux pumps bmr and blt of B. subtilis. bmr is
constitutively expressed, while blt is not expressed under
normal growth conditions [151]. The expression of bmr is
under the control of a regulatory gene bmrR, the protein
product of which binds to the promoter upstream of bmr
gene. The binding of bmrR is stronger in the presence of
compounds such as Rhodamine 6G resulting in higher levels
of expression of bmr [152]. A second regulator, BltR, which
has no homology with bmrR, regulates the expression of blt
[151].

QacA of S. aureus and Regulation of Expression. The role
of multiple regulators on the expression of efflux pumps
is well elucidated in S. aureus and has been recently and
extensively reviewed by Schindler et al. [153]. QacA/B efflux
pumps are some of the earliest discovered efflux pumps of
the MFS family from S. aureus that confer resistance to
biocides such as quaternary ammonium compounds [121,
154]. This efflux pump has been subjected to intense studies
of its transmembrane structure, substrate binding domains,
and amino acid residues critical for substrate binding and
substrate efflux [50, 155–159]. The expression of qacA is
controlled by a repressor protein QacR which is induced by
structurally dissimilar compounds [160].

NorA of S. aureus and Regulation of Expression. The other
important efflux pump of S. aureus, NorA, was initially
discovered as a fluoroquinolone-specific pump [161] and later
was found to transport several nonquinolone compounds
[162]. Several other efflux pumps that are homologous to
norA such as norB and norC have been discovered in S.
aureus, and all these are negatively regulated by MgrA
[110, 163]. The overexpression of norA in clinical isolates
has been observed, and this is due to a mutation in the
norA promoter that resulted in the inability of the regulator
protein to bind to the promoter [164]. A two-component
regulator ArlSR also has a role in norA expression, since its
deletion from S. aureus resulted in constitutive expression
of norA [165]. NorB is negatively regulated by MgrA but
positively by NorG [166], though the deletion of norG did
not change the fluoroquinolone resistance of S. aureus [166].
Though NorG binds to the promoters of norA, norB, norC,
and abcA (a transporter of the ABC-family), its regulatory
effect is more pronounced on NorB, since its overexpression
resulted in a 3-fold increase in norB transcripts and a 4-fold
increase in quinolone resistance [166].This study showed that
multiple regulators occurring in a single bacterium can have
completely different regulatory roles on efflux pumps.

The development of resistance can occur when a bac-
terium is constantly exposed to an antibacterial agent. S.
aureus exposed to increasing concentrations of ethidium
bromide developed higher levels of resistance to fluoro-
quinolones and biocides compared to the parent strain, and
this increased resistance was due to a several-fold increase in
the expression of the norA efflux gene, which in turn was due
to a 70 bp deletion in the norA promoter region [167].

6. Modulation of Efflux Pump Activity

Several studies have demonstrated the development of antibi-
otic resistance in pathogenic bacteria during the course of
antibiotic treatment which involved efflux pumps [20, 25,
40, 132, 168]. Therefore, by hypothesis, the antibiotic therapy
can be made effective if (i) efflux pumps are inhibited, (ii)
the expression of efflux pumps is downregulated, or (iii) the
antibiotics are redesigned, so that they are no longer suitable
efflux substrates, and thus their clinical efficacy is restored
[169].

One of the rational approaches towards confronting efflux
of clinically relevant antibiotics is to discover or design potent
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efflux pump inhibitors. In line with the enzyme-substrate-
competitive inhibitor concept, it may be hypothesized that
if efflux pumps have natural inhibitors, they may also have
artificial inhibitors. A number of known compounds have
been identified as inhibitors of efflux pumps in addition to
novel natural and synthetic products being reported as efflux
pump inhibitors [170]. Some efflux pumps are essential for
survival, biofilm formation, host colonization, and virulence,
and hence their inhibition potentially affects bacterial patho-
genesis [124]. To achieve this, critical information on molec-
ular interactions between the efflux pumps and their drug
targets, stoichiometry of the drug/proton antiport process,
and the regulation of efflux gene expression itself are needed.

7. Inhibition of RND Bacterial
MDR Efflux Pumps

A brief overview of the scientific literature suggests that new
and novel efflux pumps and their preferred antimicrobial
substrates are being reported regularly from pathogenic
and nonpathogenic bacteria. However, studies to understand
the molecular basis of their drug preference, 3-dimensional
structures of the efflux pumps, and ways of overcoming them
to make antimicrobial therapy more effective are not forth-
coming in at the same pace. Despite the lack of physical data
on 3-dimensional structures of efflux pumps, bioinformatics
tools have helped to understand the efflux pump/drug or
efflux pump/proton interactions during active transport to a
greater extent. However, this approach also suffers from seri-
ous drawbacks when an efflux protein in question does not
have close structural homology with proteins whose crystal
structures have been determined [171, 172]. With multidrug
resistance efflux pumps, determining the crystal structure
for multiple antibiotics is a difficult task. Recent elucidation
of crystal structures of some important efflux pumps have
helped to understand the structure-function relationships
in these pumps. The crystal structure of AcrB with bound
minocycline and doxorubicin has been described [173, 174].
AcrB is a MDR efflux pump with multiple important sub-
strates apart from those used for crystal structure derivation.
Using docking tools, the interaction of theAcrBdrug-binding
pocket with several antibiotics has been studied, and this is an
example of how bioinformatics tools can help understanding
the efflux pump-drug interactions and the testing of potential
efflux pump inhibitors (EPIs) [175]. This in silico study
showed different binding pockets for different antimicrobials
within the main protein domain [171]. This finding has far
reaching implications in the efficacy of competitive EPIs,
and due to differences in binding pockets for two different
antibiotics of the same efflux pump, a competitive inhibitor
may not be able to block the efflux of both antibiotics with
the same efficiency [31, 176]. However, it must also be noted
that the docking experiments and in vitro observations on
the substrate specificity of efflux pumps may not always
correlate as observed in the case of AcrAB-TolC andMexAB-
OprM systems, in which the observed antibiotic specificity
did not correlate well with the docking studies [177, 178], and
such discrepancies can occur due to unique conformational

changes in the efflux proteins upon drug binding which
are not contemplated by the docking tools [178]. In Gram-
negative bacteria, phenyl-arginine-𝛽-naphthylamide (Pa𝛽N)
has been demonstrated to be a potent EPI and could diminish
the norfloxacin resistance activities conferred by Mex efflux
systems of Pseudomonas aeruginosa [179], the AcrAB efflux
system of the Enterobacteriaceae family [176], and the ery-
thromycin efflux system of Campylobacter jejuni [180].

The ability of a majority of antimicrobial efflux pumps to
bind and transport a range of structurally different substrates
offers both advantages and disadvantages. From a favorable
perspective, there is a greater scope to screen structurally
dissimilar compounds as inhibitors of efflux pumps. On the
other hand, it is difficult to determine a single structural
conformation responsible for drug efflux and to identify
specific residues as critical for the transport of a range of
substrates [178]. Nevertheless, the possibility remains of using
some compounds as efflux pump inhibitors along with the
antibiotics, so that the extrusion of the antibiotics does not
take place, and thus sufficient intracellular concentration can
kill the bacteria. This idea has gathered interest primarily
because by doing so successfully, the antibiotics that are
otherwise dismissed as ineffective can nowbe used again clin-
ically [101, 176]. Quinolone derivatives used as competitive
inhibitors of the AcrB efflux pump showed varying effects
across different Enterobacteriaceae. Also, the effectiveness
of an EPI will be different when being used with different
antibiotics [181], and this may also depend on the level of
expression of efflux pumps as well as the relative affinity of
the antibiotic binding site for different antibiotics. Recently,
the antimicrobial activity of tetracycline was enhanced by the
addition of silver to bacterial cells that had been previously
resistant to this antimicrobial agent, although the specific
drug efflux pump system responsible was not definitively
identified in this study [182].

8. Inhibition of MFS Bacterial
MDR Efflux Pumps

Bacterial drug and multidrug efflux pumps of the MFS
are common amongst clinically important pathogens [50,
51, 59, 60, 71, 183]. Multidrug resistant bacterial pathogens
compromise the clinical utility of antimicrobial agents during
treatment of their infectious disease [20]. Modulation of
bacterial multidrug efflux pumps of the MFS would be,
therefore, of tremendous importance in order to eventually
restore the clinical utility of antimicrobial agents [170, 184].

8.1. CCCP andMFSMDRPumps. One of the straightforward
approaches to inhibiting efflux pumps is to prevent their
energization by protons, such as in the case of drug/H+
antiporters. Since these efflux pumps are potentiated by
protons, compounds which have proton scavenging activ-
ities can block the activity of these efflux pumps. A well
known example of an inhibitor that uses this blocking of
energization (energy uncoupler) as a mechanism is car-
bonyl cyanide m-chlorophenylhydrazone (CCCP), which is
a proton-conducting uncoupler of the proton potential that
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dissipates the respiration-generated proton gradient and thus
inhibits secondary active transporters [185]. CCCP and other
proton conductors are frequently used during the initial
physiological characterizations of newly discovered drug and
multidrug efflux pumps to ascertain whether the new pumps
are primary or secondary active transporters. Several natural
compounds such as the plant alkaloid reserpine, kaempferol
rhamnoside, and capsaicin inhibit NorA function [186, 187].
The mechanism of inhibition for reserpine and kaempferol
rhamnoside involves direct binding and competitive inhibi-
tion of the efflux pump during drug/H+ antiport [188], but
the mechanism for capsaicin-mediated inhibition is unclear.
Several natural products have been shown to be potent
EPIs and have been extensively reviewed elsewhere [86, 169,
189]. Some of the desirable properties of clinically useful
EPIs are that they should be nontoxic to humans and non-
human animals and should not lead to development of cross-
resistance to other antibiotics [190], and therefore, careful
selection and testing of EPIs are very critical.

8.2. Reserpine and MFS MDR Pumps. Reserpine has long
been known to be a competitive inhibitor of both primary
and secondary active transporter systems [191, 192]. One
of the first transporters of the major facilitator superfamily
to be analyzed with reserpine was a multidrug transporter
from the Gram-positive bacterium Bacillus subtilis, bmr
[193], which had previously been shown to transport ethid-
ium bromide and confer resistance to structurally distinct
antimicrobial agents, such as rhodamine, chloramphenicol,
puromycin, tetraphenylphosphonium, and cetyltrimethy-
lammonium bromide [194]. The reserpine inhibition study
showed that in cells with reduced accumulation of ethid-
ium bromide by bmr, the reduced drug accumulation was
reversed by reserpine and that ethidium bromide efflux
from preloaded cells containing bmr was completely abol-
ished by reserpine [193]. Random mutagenesis of the bmr
gene, selection of mutants that lost reserpine sensitivity and
DNA sequencing of the bmr genes of the mutants, showed
that the residues Phe-143, Val-286, and Phe-306 had been
replaced, indicating that reserpine interacts with bmr at
these residues to inhibit drug transport [195, 196]. Another
MFS multidrug efflux pump, NorA from S. aureus, is closely
related to bmr [194]. Reserpine also effectively inhibited
the ethidium bromide transport activities of NorA [162].
Reserpine also affected the transport activities of two distinct
MFS-associated chloramphenicol efflux pumps, CmlR1 and
CmlR2, from the Gram-positive bacterium Streptomyces
coelicolor [119].TheGram-positive bacterial pathogenListeria
monocytogenes harbors the drug efflux pump, Lde, which
confers resistance to the fluoroquinolones ciprofloxacin and
norfloxacin and is inhibited by reserpine [104]. In our hands,
reserpine reduced the MICs of kanamycin and fusidic acid
but not of linezolid and lincomycin in cells harboring the
multidrug efflux pump LmrS from a methicillin-resistant S.
aureus clinical isolate [62] suggesting that reserpine does
not completely overlap with the substrate binding sites of
multidrug efflux pumps and that inhibition may be depen-
dent on the type and nature of the substrate. Unfortunately,
reserpine is neurotoxic and is thus not a suitable agent for

chemotherapy against infections caused by bacteria harbor-
ing MFS multidrug efflux pumps such as NorA [197].

8.3. Piperine and MFS MDR Pumps. An alkaloid compound,
piperine, frompepper plants, was implicated to be an effective
inhibitor of ciprofloxacin efflux pump activity in the Gram-
positive bacterium S. aureus [198]. Piperine is known to
inhibit the activities of a variety of bacterial drug transporters
[198–201]. MdeA is known to transport ethidium bromide
and Hoechst 33342 across the membrane and to confer resis-
tance to the compounds benzalkonium chloride, doxoru-
bicin, daunorubicin, novobiocin, tetraphenylphosphonium
chloride, rhodamine 6G, and virginiamycin [108, 202]. In
another study published at about the same time, piperine
was found to inhibit drug transport of the multidrug efflux
pump, MdeA, from S. aureus [199]. When combined with
the antibiotic mupirocin, piperine reduced the MIC of the
antibiotic against S. aureus by several-fold [199]. Piperine was
subsequently found to inhibit ethidium bromide efflux activ-
ity from the acid-fast bacterium Mycobacterium smegmatis,
although the affected pump was not definitively identified in
that study [203]. The mechanism of modulation for piperine,
however, is believed to be direct inhibition of drug efflux.

8.4. Inhibitors of NorA Drug Efflux. Two plant-derived alka-
loid compounds, called berberine and palmatine, were found
to modulate the transporter activity of NorA from S. aureus
by directly binding to the pump and inhibiting drug transport
[179, 204]. Additionally, a proton pump inhibitor agent
used to treat gastroesophageal reflux disease omeprazole and
newly synthesized derivative analogues of this compound
were found to inhibit norfloxacin transport by the multidrug
efflux pump NorA [205]. Interestingly, paroxetine, a sero-
tonin reuptake inhibitor, inhibits drug efflux by NorA as
well as other non-MFS drug efflux pumps, such as those of
the MATE family [69, 206]. Derivatives of the quinolone
antimicrobial agent ciprofloxacin, called quinolone esters,
were found to be poor substrates for NorA and effective
inhibitors of drug efflux by NorA [207]. Recently, derivatives
of the COX-2 inhibitor celecoxib were found to be potent
inhibitors of NorA [208]. Along these lines, derivatives of
2-phenylquinoline were shown to be good inhibitors of
ethidium transport by NorA [209].

8.5. Tigecycline andTetAEffluxPumps. Asynthetic derivative
of an older antimicrobial agent that successfully restored the
efficacy of therapy of bacterial infectious disease treatment
was that of tigecycline [210–214]. Originally referred to as
a glycylcycline because of a synthetic addition of a glycine
moiety to the tetracycline derivative minocycline, tigecycline
became an importantmember of the glycylcycline antimicro-
bial agents [215, 216]. As such tigecycline was quite effective
in treating bacterial infections caused by both Gram-positive
and Gram-negative pathogens [217, 218]. Tigecycline was
found to circumvent the activity of the class B tetracycline
efflux pump (TetB) thus inhibiting the growth of TetB-
harboring host bacteria that were resistant to tetracycline
[213]. This property of tigecycline is known as a bypass
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mechanism when considered in light of its relationship to
bacterial multidrug efflux. Unfortunately, bacterial resistance
to tigecycline has emerged, thus confounding the clini-
cal efficacy of this agent [219]. A multidrug efflux pump
belonging to the RND family of transporters was found
to be largely responsible for resistance to tigecycline [220].
A tetracycline derivative called DMG-DMDOT (9-(N,N-
dimethylglycylamido)-6-demethyl-6-deoxytetracycline) is a
glycylcycline that was found to be a neither a substrate nor
an inhibitor of TetB but rather a good inducer of TetB protein
expression by its binding to the TetR repressor protein [221].
Further work will be necessary to enhance the effectiveness
of these modulators that bypass multidrug efflux pumps as a
mechanism.

8.6. Capsaicin and NorA. In a more recently published study,
capsaicin, a plant compound used in foods, was found to
inhibit the transport of the fluorescent reagent ethidium bro-
mide across themembrane in S. aureus cells containingNorA
[186]. In the same study, the authors found that capsaicin also
prevented S. aureus invasion of macrophage cells in culture
[186]. Newer and related plant-derived compounds may also
be promising toward efflux pump transport modulation.

9. Concluding Remarks

In summary, modulation of bacterial drug and multidrug
efflux pumps is an important approach to understanding
how bacterial resistances may be circumvented in order to
restore the clinical efficacy of chemotherapy against presently
recalcitrant infectious diseases. We predict that this restora-
tive goal for currently compromised therapeutics will be
accomplished by conducting mechanistic molecular studies
of drug and multidrug translocation across the membrane
and the modulation of both the expression and transport
activities of bacterial multidrug efflux pumps.
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[14] Å. Örtqvist, J. Hedlund, and M. Kalin, “Streptococcus pneumo-
niae: epidemiology, risk factors, and clinical features,” Seminars
in Respiratory and Critical CareMedicine, vol. 26, no. 6, pp. 563–
574, 2005.

[15] N. N. Lynskey, R. A. Lawrenson, and S. Sriskandan, “New
understandings in Streptococcus pyogenes,” Current Opinion in
Infectious Diseases, vol. 24, no. 3, pp. 196–202, 2011.

[16] T. Q. Tan, “Antibiotic resistant infections due to Streptococcus
pneumoniae: impact on therapeutic options and clinical out-
come,” Current Opinion in Infectious Diseases, vol. 16, no. 3, pp.
271–277, 2003.

[17] C. Walsh, Antibiotics: Actions, Origins, Resistance, ASM Press,
Washington, DC, USA, 2003.

[18] S. B. Levy, “Antimicrobial resistance: a global perspective,”
Advances in Experimental Medicine and Biology, vol. 390, pp.
1–13, 1995.

[19] A. Morris, J. D. Kellner, and D. E. Low, “The superbugs:
evolution, dissemination andfitness,”CurrentOpinion inMicro-
biology, vol. 1, no. 5, pp. 524–529, 1998.

[20] S. B. Levy, “Antibiotic resistance—The problem intensifies,”
Advanced Drug Delivery Reviews, vol. 57, no. 10, pp. 1446–1450,
2005.

[21] G. D. Wright, “Molecular mechanisms of antibiotic resistance,”
Chemical Communications, vol. 47, no. 14, pp. 4055–4061, 2011.

[22] D. G. Maki, N. Safdar, and S. C. Ebert, “Prevalence, conse-
quences, and solutions,” Pharmacotherapy, vol. 27, no. 10, pp.
121S–125S, 2007.



International Journal of Bacteriology 9

[23] A. C. Croft, A. V. D’Antoni, and S. L. Terzulli, “Update on the
antibacterial resistance crisis,”Medical Science Monitor, vol. 13,
no. 6, pp. 103–118, 2007.

[24] A. T. A. El-Tahawy, “The crisis of antibiotic-resistance in
bacteria,” Saudi Medical Journal, vol. 25, no. 7, pp. 837–842,
2004.

[25] H. C. Neu, “The crisis in antibiotic resistance,” Science, vol. 257,
no. 5073, pp. 1064–1073, 1992.

[26] S. T. Chancey, D. Zahner, and D. S. Stephens, “Acquired
inducible antimicrobial resistance in Gram-positive bacteria,”
Future Microbiology, vol. 7, pp. 959–978, 2012.
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