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Abstract

Multilevel Models are widely used in organizational research, educational research, epidemiol-

ogy, psychology, biology and medical fields. In this paper, we recommend the situations where

Bootstrap procedures through Minimum Norm Quadratic Unbiased Estimator (MINQUE) can

be extremely handy than that of Restricted Maximum Likelihood (REML) in multilevel level lin-

ear regression models. In our simulation study the bootstrap by means of MINQUE is superior

to REML in conditions where normality does not hold. Moreover, the real data application also

supports our findings in terms of accuracy of estimates and their standard errors.

Introduction

Multilevel data or clustered data are commonly observed in schools, health institutions, and

epidemiology. Multilevel models are also called hierarchical, mixed effects, or random effects

models Snijders and Bosker [1], Raudenbush and Bryk [2].

Maximum likelihood (ML) method estimates and estimates standard errors were used by

Maas and Hox [3]. Wen et al. [4] concluded that Bayesian spatial-temporal model is superior

to the random effects model and spatial model for investigating the effects of weather and

roadway characteristics on crash incidence.

Brown and Draper [5] utilized ML method of estimation and accomplished that in small sam-

ple sizes the estimates are biased. MINQUE recommended by Rao [6], as an alternate to ML esti-

mator. The method, however, does not rely on the assumption of normality in multilevel linear

models. According to Bagakas [7], one major problem with the MINQUE estimators is that stan-

dard errors of the minimum norm quadratic unbiased estimators cannot be computed because of

the non-existence of formulae. In situations, where a researcher attempts to construct confidence

interval and perform testing of hypothesis about the parameter then the MINQUE is not appro-

priate. The researcher then needs to use an alternate scheme such as bootstrapping, where not

only the parameter estimates but also their standard errors can be estimated by applying different

estimation methods such as MINQUE or ML method of estimation.

In practice, both parametric and nonparametric bootstrap can be used. However, when the

assumption of normality does not exist the nonparametric bootstrap is handy. As the MINQUE

method of estimation is free from the normality assumption, so the bootstrap by means of MIN-

QUE will be used. Swallow and Monahan [8] compared REML, ML and MINQUE estimators.
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Bagakas [7] used bootstrap by means of MINQUE. Similarly, Meijer et al. [9] concluded that

multilevel bootstrapping performance was excellent in small sample sizes in multilevel models.

Carpenter et al. [10] carried out a simulation study where they compared the relative performance

of parametric bootstrap and nonparametric residuals bootstrap methods by using multilevel linear

models. Hutchison et al. [11] successfully carried out simulation study on a two-level model. They

applied the procedure of nonparametric cases bootstrap and promising standard errors of the esti-

mates were obtained. Wang et al. [12] used multilevel linear model to apply nonparametric resid-

ual bootstrap through a SAS macro. Nonparametric residual bootstrap estimates standard errors

were promising. Delpish [13] also compared REML and Bootstrap by means of MINQUE in her

study. Ali et al., [14] concluded that ML gave better results than Penalized Quasilikelihood (PQL)

for small sample conditions in multilevel model. To get accurate estimates of both fixed and ran-

dom effects ML requires relatively small sample compared to PQL in multilevel logistic models

(Ali et al. [15]). In a study by Zeng et al. [16] revealed that univariate spatial model gave lower devi-

ance information criteria (DIC) and accurate estimates of parameters as compared to bivariate spa-

tial model while investigating the factors responsible for vehicle crash on freeway. The proposed

multivariate random-parameters spatio-temporal Tobit model gave lower Deviance Information

Criteria (DIC), Mean Absolute Deviance (MAD) and Mean Squared Prediction Errors (MSPE)

then the competing model such as multivariate random-parameters Tobit model and a multivari-

ate random-parameters spatial Tobit model (Zeng et al. [17]. It was confirmed from the results

that spatio-temporal correlation and interaction have significance in the area wide crash data.

In this paper, the researchers investigate the performance of REML and Bootstrap by

means of MINQUE under varying conditions of the number of groups, Intra-class correlation

and different skewed distributions.

Materials and methods

For this study a random intercept and random slope multilevel linear model was used. The

model has single explanatory variable at each level. The model is given below:

Yij ¼ b0j þ b1jXij þ eij ð1Þ

Level 1 model

b0j ¼ g00 þ g01Wj þ uoj ð2Þ

Level 2 models

b1j ¼ g10 þ g11Wj þ u1j ð3Þ

The combined model was obtained by substituting level 2 model in level 1 model:

Yij ¼ ðg00 þ g10Xij þ g01Wj þ g11XijWjÞ þ ðuoj þ u1jXij þ eijÞ ð4Þ

(Fixed part)+(Random part)

Where Xij is the Level 1 explanatory variable, Wj corresponds to Level 2 explanatory vari-

able, γ00, γ10, γ01 and γ11 are the fixed effects, eij is assumed to follows a normal distribution i.e

eij* N (0, s2
e ). In case of normality, uoj and u1j assumed to follow a multivariate normal dis-

tribution as

uoj

u1j

" #

� N
0

0

" #

;
s2
u su1

su1 s2
1

" # !

ð5Þ
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s2
u Corresponds to the random intercept variance, s2

1
is the random slope variance and σu1

is the covariance term.

Design factors

1. Three levels of number of groups were used in this study: 30,100 and 120.

2. Three levels of intra-class correlations were used: 0.01, 0.10 and 0.20. Where the intra-class

correlation coefficient (ICC) is given as

ICC ¼
s2
u

s2
u þ s

2
e

ð6Þ

3. Three distributions were used: Normal distribution, Lognormal distribution and Exponen-

tial distribution

Analysis

Two estimation procedures Restricted Maximum Likelihood and Bootstrap by means of MIN-

QUE were used in all the three distribution conditions. All the simulations and bootstrapping

were performed in SAS 9.2 to obtain estimates and their standard errors.

Algorithm. The procedure for cases bootstrap is as given below:

1. Draw with replacement J group level units along with corresponding scores on group level

variable W�
j .

2. Then draw with replacement nj individual level units within group level unit j, j = 1,

2. . .. . .. . ., J. This results the bootstrap data (Y�, X�) and this data set is then combined with

the group level variable W�
j in order to get (Y�, X�, W�

j ) the desired bootstrap sample.

3. Obtain the minimum norm quadratic unbiased estimates of the model parameters from the

bootstrap replicated sample.

4. Replicate steps 1–3 B times, b = 1, 2, 3. . .. . . B, and then obtain the minimum norm qua-

dratic unbiased estimates of the model parameters.

5. Obtain the mean value of estimates by using

ŷ�ð:Þ ¼
1

B

XB

b¼1

ŷ�ðbÞ ð7Þ

And the bootstrap parameter estimate standard error is obtain as

s:eB ¼ ½
XB

b¼1

ðŷ�ðbÞ � ŷ�ð:ÞÞ2

B � 1
Þ�

1=2
ð8Þ

The real data was selected from High School & Beyond Survey data set, which is a national

survey of United States conducted by National Center for Educations Statistics (NCES) about

Public and Catholic schools. For the purpose of illustration, a dataset of 30 schools was ran-

domly selected from the data of 160 schools.
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Results

Tables 1 and 2 show that the bootstrap procedure showed perfect results in terms of accuracy

of the fixed and random effects estimates, however, REML method estimates were comparable

to that of the bootstrap procedure at 100 and 1200 groups respectively. Similarly, from Table 3

it is evident that the bootstrap CI outclassed the REML CI at the first two levels of the number

of group (30 and 100) factor when the distribution was normal.

The bootstrap procedure was superior to REML in terms of accuracy of the fixed effects

and random effect estimates as can be seen in Tables 4 and 5 for lognormal distribution. More-

over, Table 6 reveals that the bootstrap CI outperformed the REML CI at all levels of the num-

ber of groups when data was generated from lognormal distribution. Furthermore, when the

distribution of the data was exponential again the bootstrap method outshined the REML

method estimates as shown in Tables 7–9 respectively.

Real data application

The application of bootstrap by means of MINQUE method to the real data is demonstrated in

this section. A two-level model was fitted to a subsample data drawn from High School &

Beyond (HSB) data. The data consist of two levels i.e school level and student level. HSB data

consists of 7185 students nested within 160 schools. The data contains four level 1 or individ-

ual level variables and six level 2 or group level variables in total. For the purpose of illustration

of bootstrap by means of MINQUE method only 30 schools were drawn randomly from 160

schools. The total numbers of level 1 units are 1447 and level 2 units are 30. Students MATH

Table 1. Average relative parameter bias of fixed effects estimates obtained for normal distribution data (First = REML estimation procedure, Second = Bootstrap

estimates are enclosed in parenthesis).

Groups ICC γ00 γ10 γ01 γ11

30 0.01 -0.0209/ (0.0037) -0.0182/ (0.0028) -0.0149/ (0.0019) 0.0164/ (0.0031)

0.10 -0.0311/ (0.0041) -0.0244/ (0.0029) -0.0206/ (0.0022) 0.0196/ (0.0036)

0.20 -0.0389/ (0.0055) -0.0401/ (0.0046) -0.0315/ (0.0022) 0.0283/ (0.0041)

100 0.01 0.0051/ (0.0000) 0.0029/ (0.0000) -0.0039/ (0.0002) 0.0018/ (0.0004)

0.10 -0.0096/ (0.0009) 0.0069/ (0.0004) 0.0032/ (0.0008) 0.0055/ (0.0009)

0.20 -0.0126/ (0.0024) -0.0093/ (0.0014) 0.0088/ (0.0010) 0.0079/ (0.0012)

120 0.01 0.0004/ (0.0000) 0.0002/ (0.0000) -0.0006/ (0.0000) 0.0000/ (0.0000)

0.10 0.0009/ (0.0001) 0.0012/ (0.0000) 0.0016/ (0.0000) 0.0010/ (0.0000)

0.2 0.0013/ (0.0002) 0.0018/ (0.0001) 0.0021/ (0.0000) 0.0015/ (0.0000)

https://doi.org/10.1371/journal.pone.0259960.t001

Table 2. Average relative parameter bias of the random effects estimates obtained for normal distribution data (First = REML estimation procedure,

Second = Bootstrap estimates are enclosed in Parenthesis).

Groups ICC σu σ1 σu1 σe
30 0.01 -0.0411/ (0.0082) -0.0366/ (0.0049) -0.0249/ (0.0073) -0.0039/ (0.0003)

0.10 -0.0544/ (0.0121) -0.0485/ (0.0097) -0.0402/ (0.0081) -0.0053/ (0.0011)

0.20 -0.0719/ (0.0129) -0.0679/ (0.0141) -0.0593/ (0.0109) -0.0066/ (0.0020)

100 0.01 -0.0207/ (0.0039) -0.0216/ (0.0019) -0.0172/ (0.0026) -0.0009/ (0.0000)

0.10 -0.0231/ (0.0051) -0.0238/ (0.0033) -0.0189/ (0.0046) -0.0013/ (0.0000)

0.20 -0.0301/ (0.0057) -0.0251/ (0.0046) -0.0201/ (0.0053) -0.0016/ (0.0001)

120 0.01 -0.0060/ (0.0000) -0.0048/ (0.0000) -0.0019/ (0.0001) 0.0000/ (0.0000)

0.10 -0.0088/ (0.0001) -0.0079/ (0.0000) -0.0032/ (0.0002) 0.0000/ (0.0000)

0.2 -0.0101/ (0.0002) -0.0089/ (0.0000) -0.0061/ (0.0002) 0.0000/ (0.0000)

https://doi.org/10.1371/journal.pone.0259960.t002
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ACHIEVEMENT SCORE was taken as a response variable, SES was selected as a level 1 vari-

able and MEANSES was selected as a level 2 variable. A two-level model used in this real data

application is given below

Yij ¼ b0j þ b1jSESþ eij ð9Þ

Level-1 model

b0j ¼ g00 þ g01MEANSESþ uoj ð10Þ

Level-2 models

b1j ¼ g10 þ g11MEANSESþ u1j

i ¼ 1; 2; . . . nj and j ¼ 1; 2; . . . J

The combined model can be written as

Yij ¼ ðg00 þ g10SESij þ g01MEANSESj þ g11ðSESijÞðMEANSESjÞÞ þ ðuoj þ u1jSESij þ eijÞ ð11Þ

REML and bootstrap by means of MINQUE estimation procedures were used to estimate

both fixed effects and random effects using HSB: 30 schools data set for the model in equation

(1.8). The SAS package procedure PROC MIXED was used to obtain REML estimates and esti-

mates standard errors. The REML confidence intervals were then constructed for each

Table 3. Impact of groups and ICC on estimates 95% coverage probability for normal distribution data (First = REML estimation procedure, Second = Percentile

bootstrap estimates are enclosed in Parenthesis).

Parameters Groups P-value ICC P-value

30 100 120 0.01 0.10 0.20

γ00 0.935 (0.940) 0.947 (0.952) 0.961 (0.962) 0.00 (0.00) 0.948 (0.949) 0.948 (0.951) 0.947 (0.953) 0.77 (0.51)

γ10 0.940 (0.950) 0.949 (0.959) 0.962 (0.965) 0.00 (0.00) 0.950 (0.959) 0.949 (0.956) 0.950 (0.956) 0.95 (0.60)

γ01 0.939 (0.951) 0.948 (0.956) 0.958 (0.960) 0.00 (0.07) 0.948 (0.958) 0.950 (0.955) 0.948 (0.953) 0.90 (0.31)

γ11 0.939 (0.948) 0.951 (0.955) 0.960 (0.960) 0.00 (0.03) 0.951 (0.956) 0.951 (0.955) 0.948 (0.952) 0.72 (0.53)

σu 0.907 (0.946) 0.935 (0.950) 0.946 (0.950) 0.00 (0.21) 0.928 (0.951) 0.930 (0.949) 0.933 (0.948) 0.44 (0.63)

σ1 0.906 (0.948) 0.929 (0.950) 0.946 (0.950) 0.00 (0.76) 0.924 (0.950) 0.927 (0.948) 0.930 (0.948) 0.32 (0.76)

σu1 0.914 (0.950) 0.930 (0.955) 0.952 (0.956) 0.00 (0.29) 0.930 (0.955) 0.932 (0.952) 0.933 (0.952) 0.68 (0.71)

σe 0.945 (0.949) 0.950 (0.953) 0.954 (0.955) 0.09 (0.25) 0.951 (0.954) 0.948 (0.953) 0.950 (0.949) 0.90 (0.36)

https://doi.org/10.1371/journal.pone.0259960.t003

Table 4. Average relative parameter bias of fixed effect estimates obtained for lognormal distribution data (First = REML estimation procedure,

Second = Bootstrap estimates are enclosed in parenthesis).

Groups ICC γ00 γ10 γ01 γ11

30 0.01 -0.0169/ (0.0015) 0.0148/ (0.0010) 0.0171/ (0.0008) -0.0200/ (0.0012)

0.10 -0.0315/ (0.0016) 0.0211/ (0.0030) 0.0219/ (0.0011) -0.0291/ (0.0015)

0.20 -0.0409/ (0.0019) 0.0397/ (0.0050) 0.0412/ (0.0020) -0.0329/ (0.0019)

100 0.01 0.0039/ (0.0000) 0.0081/ (0.0000) 0.0066/ (0.0000) 0.0055/ (0.0004)

0.10 -0.0051/ (0.0002) 0.0097/ (0.0000) 0.0073/ (0.0003) -0.0069/ (0.0009)

0.20 -0.0056/ (0.0006) 0.0110/ (0.0002) 0.0081/ (0.0003) -0.0089/ (0.0012)

120 0.01 0.0002/ (0.0000) 0.0000/ (0.0000) 0.0000/ (0.0000) 0.0001/ (0.0000)

0.10 0.0006/ (0.0000) 0.0001/ (0.0000) 0.0006/ (0.0000) 0.0011/ (0.0000)

0.2 0.0009/ (0.0000) 0.0004/ (0.0000) 0.0012/ (0.0000) 0.0015/ (0.0000)

https://doi.org/10.1371/journal.pone.0259960.t004
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parameter using normal theory. For all the eight parameters in the model (1.8), B = 1000 boot-

strap replicates were obtained using cases bootstrap. The mean of 1000 estimates were then

taken to obtain the bootstrap estimate. This means that the bootstrap estimate of any parame-

ter is the average of one thousand estimates. On the other hand, single estimate for each

parameter was obtained under REML method of estimation. Bootstrap confidence intervals

were constructed for each parameter in the model by using the percentile method. The data set

of 30 schools randomly selected from 160 school’s data is presented in Table 10.

Table 11 illustrates estimates and estimated standard errors under REML and bootstrap by

means of MINQUE methods of estimation. Moreover, 95% CI’s are also given in Table 11.

There is not much difference to choose between the two procedures as for as the accuracy of

the estimates is concerned. However, both fixed and random effects estimate standard errors

were lower under bootstrap by means of MINQUE. The widths of the REML CI’s were clearly

higher than that of the percentile bootstrap CI’s. Overall, for real data, bootstrap by means of

MINQUE performs better than that of the REML method of estimation especially in terms of

precision. Simulation results also exposed that bootstrap by means of MINQUE procedure

outperformed the REML method of estimation particularly in terms of estimates promising

standard errors.

Conclusion

REML produced unbiased fixed effects estimates at the second level and third level of the num-

ber of groups (100 and 120) factor. On the other hand, the bootstrap fixed effects estimates

Table 5. Average relative parameter bias of the random effect estimates obtained for lognormal distribution data (First = REML estimation procedure,

Second = Bootstrap estimates are enclosed in parenthesis).

Groups ICC σu σ1 σu1 σe
30 0.01 -0.0398/ (0.0102) -0.0501/ (0.0129) -0.0289/ (0.0029) -0.0091/ (0.0002)

0.10 -0.0611/ (0.0137) -0.0721/ (0.0148) -0.0377/ (0.0041) -0.0122/ (0.0002)

0.20 -0.0814/ (0.0152) -0.0912/ (0.0162) -0.0602/ (0.0066) -0.0147/ (0.0003)

100 0.01 -0.0194/ (0.0018) -0.0279/ (0.0021) -0.0251/ (0.0018) 0.0011/ (0.0000)

0.10 -0.0206/0.0024) -0.0296/ (0.0023) -0.0302/ (0.0021) 0.0015/ (0.0001)

0.20 -0.0213/ (0.0027) -0.0310/ (0.0026) -0.0320/ (0.0026) 0.0015/ (0.0002)

120 0.01 -0.0085/ (0.0000) -0.0092/ (0.0000) -0.0059/ (0.0000) -0.0003/ (0.0000)

0.10 -0.0095/ (0.0000) -0.0096/ (0.0000) -0.0065/ (0.0000) -0.0005/ (0.0000)

0.2 -0.0103/ (0.0002) -0.0097/ (0.0001) -0.0070/ (0.0000) -0.0006/ (0.0000)

https://doi.org/10.1371/journal.pone.0259960.t005

Table 6. Impact of groups ICC on estimates 95% coverage probability for lognormal distribution data (First = REML estimation procedure, Second = Percentile

bootstrap estimates are enclosed in parenthesis).

Parameters Groups P-value ICC P-value

30 100 120 0.01 0.10 0.20

γ00 0.914 (0.944) 0.930 (0.949) 0.948 (0.952) 0.00 (0.20) 0.936 (0.952) 0.931 (0.948) 0.925 (0.945) 0.12 (0.18)

γ10 0.921 (0.947) 0.936 (0.952) 0.944 (0.954) 0.00 (0.18) 0.936 (0.955) 0.934 (0.952) 0.930 (0.947) 0.36 (0.13)

γ01 0.918 (0.945) 0.929 (0.951) 0.945 (0.955) 0.00 (0.21) 0.935 (0.953) 0.931 (0.951) 0.926 (0.946) 0.18 (0.21)

γ11 0.916 (0.941) 0.930 (0.947) 0.945 (0.950) 0.00 (0.15) 0.934 (0.951) 0.929 (0.946) 0.928 (0.941) 0.31 (0.09)

σu 0.702 (0.898) 0.734 (0.905) 0.759 (0.908) 0.00 (0.22) 0.752 (0.909) 0.732 (0.904) 0.712 (0.898) 0.00 (0.17)

σ1 0.709 (0.906) 0.731 (0.911) 0.766 (0.915) 0.00 (0.20) 0.756 (0.915) 0.732 (0.910) 0.716 (0.907) 0.00 (0.28)

σu1 0.722 (0.915) 0.749 (0.919) 0.779 (0.921) 0.00 (0.37) 0.760 (0.921) 0.749 (0.919) 0.741 (0.915) 0.10 (0.38)

σe 0.920 (0.944) 0.931 (0.948) 0.935 (0.950) 0.02 (0.24) 0.930 (0.950) 0.928 (0.947) 0.928 (0.945) 0.76 (0.34)

https://doi.org/10.1371/journal.pone.0259960.t006
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were unbiased across all conditions. Additionally, the bootstrap procedure outperformed the

REML method in terms of accuracy of the random effects estimates when the number of

groups was 30. Based on the above normal data results, it is recommended that at least 30

groups are essential to obtain unbiased fixed effects estimates and their standard errors under

REML method of estimation. Furthermore, 100 groups are essential to achieve accurate ran-

dom effects estimates and their standard errors under REML method of estimation. It is also

Table 7. Average relative parameter bias of fixed effect estimates obtained for exponential distribution data (First = REML estimation procedure,

Second = Bootstrap estimates are enclosed in parenthesis).

Groups ICC γ00 γ10 γ01 γ11

30 0.01 0.0221/ (0.0022) -0.0237/ (0.0006) 0.02456 (0.0013) 0.0207/ (0.0007)

0.10 0.0344/ (0.0024) -0.0401/ (0.0012) 0.0364/ (0.0016) 0.0418/ (0.0010)

0.20 0.0424/ (0.0029) -0.0515/ (0.0015) 0.0479/ (0.0019) 0.0461/ (0.0013)

100 0.01 0.0089/ (0.0001) 0.0116/ (0.0000) 0.0082/ (0.0001) 0.0049/ (0.0000)

0.10 0.0103/ (0.0002) -0.0129/ (0.0001) 0.0089/ (0.0002) -0.0057/ (0.0001)

0.20 0.0111/ (0.0002) -0.0141/ (0.0003) 0.0093/ (0.0003) -0.0059/ (0.0002)

120 0.01 0.0016/ (0.0000) 0.0030/ (0.0000) 0.0008/ (0.0000) 0.0005/ (0.0000)

0.10 0.0022/ (0.0000) -0.0033/ (0.0000) 0.0013/ (0.0000) 0.0016/ (0.0000)

0.20 0.0029/ (0.0000) -0.0039/ (0.0000) 0.0015/ (0.0000) 0.0016/ (0.0000)

https://doi.org/10.1371/journal.pone.0259960.t007

Table 8. Average relative parameter bias of the random effect estimates obtained for exponential distribution data (First = REML estimation procedure,

Second = Bootstrap estimates are enclosed in parenthesis).

Groups ICC σu σ1 σu1 σe
30 0.01 -0.0359/ (0.0122) -0.0446/ (0.0164) -0.0377/ (0.0101) -0.0114/ (0.0004)

0.10 -0.0572/ (0.0149) -0.0634/ (0.0164) -0.0495/ (0.0104) -0.0140/ (0.0005)

0.20 -0.0786/ (0.0182) -0.0809/ (0.0172) -0.0584/ (0.0114) -0.0161/ (0.0006)

100 0.01 -0.0224/ (0.0022) -0.0251/ (0.0028) -0.0277/ (0.0045) 0.0025/ (0.0000)

0.10 -0.0239/ (0.0028) -0.0269/ (0.0039) -0.0297/ (0.0049) -0.0029/ (0.0003)

0.20 -0.0270/ (0.0031) -0.0280/ (0.0051) -0.0306/ (0.0049) -0.0032/ (0.0003)

120 0.01 -0.0102/ (0.0000) -0.0081/ (0.0000) -0.0088/ (0.0000) 0.0008/ (0.0000)

0.10 -0.0106/ (0.0000) 0.0091/ (0.0000) -0.0089/ (0.0001) 0.0008/ (0.0000)

0.2 -0.0109/ (0.0001) -0.0102/ (0.0002) -0.0094/ (0.0001) 0.0011/ (0.0001)

https://doi.org/10.1371/journal.pone.0259960.t008

Table 9. Impact of groups and ICC on estimates 95% coverage probability for exponential distribution data (First = REML estimation procedure,

Second = Percentile bootstrap estimates are enclosed in parenthesis).

Parameters Groups P-value ICC P-value

30 100 120 0.01 0.10 0.20

γ00 0.914 (0.944) 0.930 (0.949) 0.948 (0.952) 0.00 (0.20) 0.943 (0.956) 0.939 (0.953) 0.934 (0.949) 0.11 (0.24)

γ10 0.921 (0.947) 0.936 (0.952) 0.944 (0.954) 0.00 (0.18) 0.936 (0.957) 0.931 (0.953) 0.927 (0.948) 0.15 (0.11)

γ01 0.918 (0.945) 0.929 (0.951) 0.945 (0.955) 0.00 (0.21) 0.947 (0.954) 0.942 (0.950) 0.939 (0.946) 0.20 (0.14)

γ11 0.916 (0.941) 0.930 (0.947) 0.945 (0.950) 0.00 (0.15) 0.941 (0.949) 0.936 (0.946) 0.931 (0.941) 0.12 (0.17)

σu 0.702 (0.898) 0.734 (0.905) 0.759 (0.908) 0.00 (0.22) 0.762 (0.948) 0.735 (0.944) 0.701 (0.940) 0.00 (0.21)

σ1 0.709 (0.906) 0.731 (0.911) 0.766 (0.915) 0.00 (0.20) 0.749 (0.945) 0.722 (0.942) 0.695 (0.940) 0.00 (0.31)

σu1 0.722 (0.915) 0.749 (0.919) 0.779 (0.921) 0.00 (0.37) 0.763 (0.943) 0.739 (0.940) 0.711 (0.936) 0.10 (0.23)

σe 0.920 (0.944) 0.931 (0.948) 0.935 (0.950) 0.02 (0.24) 0.945 (0.951) 0.939 (0.948) 0.933 (0.945) 0.06 (0.32)

https://doi.org/10.1371/journal.pone.0259960.t009
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recommended that bootstrap by means of MINQUE can be superior to REML when the num-

ber of groups are 30 and normality holds.

In general, the estimates and estimated standard errors were biased for the two skewed dis-

tribution data when the number of groups was 30 under REML method of estimation. On the

other hand, the bootstrap estimates and estimated standard errors were unbiased across all

conditions. To put it differently, the bootstrap fixed effects and random effects estimates cover-

age rates were not only acceptable but also superior to that of REML estimates coverage rates

across all conditions. Furthermore, REML level 2 random effects estimates coverage rates were

Table 10. High school & beyond data (30 schools data set).

Serial number School ID Number of level 1 units per school Serial number School ID Number of level 1 units per school

1 1224 47 16 4458 48

2 1308 20 17 4868 34

3 1358 30 18 5192 28

4 1433 35 19 5650 45

5 1477 62 20 5762 37

6 2277 61 21 5783 29

7 2467 52 22 5838 31

8 2771 55 23 6074 56

9 3039 21 24 6144 43

10 3332 38 25 6291 35

11 3610 64 26 6443 30

12 4223 45 27 6464 29

13 4325 53 28 6484 35

14 4350 33 29 6600 56

15 4410 41 30 7688 54

Total number of level 2 units = 30 schools, Total number of level 1 units = 1447 students.

https://doi.org/10.1371/journal.pone.0259960.t010

Table 11. Fixed and random effects parameter estimates and CI Limits under both REML and bootstrap by means of MINQUE methods of estimation for real data.

Parameters Estimation Method Estimate S.Error L.L U.L Interval Width

γ00 REML 12.9118 0.3366 12.2521 13.5716 1.3195

Bootstrap 12.8811 0.2413 12.8383 13.4342 0.5959

γ10 REML 2.0665 0.3095 1.4599 2.6731 1.2132

Bootstrap 2.0641 0.1710 1.7690 2.4292 0.6602

γ01 REML 5.0705 0.7971 3.5081 6.6329 3.1248

Bootstrap 5.0301 0.7004 3.6674 6.4228 2.7554

γ11 REML 0.7676 0.6544 -0.5150 2.0502 2.5652

Bootstrap 0.7478 0.5224 -0.2986 1.8037 2.1023

σu REML 1.4151 0.2721 0.8817 1.9485 1.0668

Bootstrap 1.4202 0.2024 1.1335 1.9169 0.7834

σ1 REML 0.7216 0.3929 -0.0485 1.4917 1.5367

Bootstrap 0.7215 0.2749 0.2127 1.2953 1.0826

σu1 REML -0.0598 0.5034 -1.0465 0.9269 1.9734

Bootstrap -0.6220 0.4121 -1.3597 0.2457 1.6054

σe REML 6.0399 0.1235 5.7978 6.2820 0.4842

Bootstrap 6.0399 0.0666 5.8994 6.1504 0.2510

https://doi.org/10.1371/journal.pone.0259960.t011
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unacceptable across all conditions under both skewed distributions data. Moreover, real data

results and conclusion are clearly matching with the simulation results.

It is recommended on the basis of these study results, whenever the data are based on

skewed distributions and normality assumption does not hold, REML should not be used par-

ticularly for inference. In such situations, the bootstrap standard errors by means of MINQUE

can be used for inference to achieve precise results.
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