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Human postural sway during stance arises from coordinated multi-joint movements.

Thus, a sway trajectory represented by a time-varying postural vector in the

multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It

has been proposed that the subspace corresponds to a manifold defined by a kinematic

constraint, such that the position of the center of mass (CoM) of the whole body is

constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM). A

control strategy related to this hypothesis (CoM-control-strategy) claims that the central

nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a

continuous feedback controller, leading to sway patterns that mostly occur within the

kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed

by the authors (intermittent control-strategy) claims that the CNS stabilizes posture by

intermittently suspending the active feedback controller, in such a way to allow the CNS

to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of

the system, referred to as the dynamic-UCM, when the state point is on or near the

manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are

completely different, both UCMs play similar roles in the stabilization of multi-joint upright

posture. The purpose of this study was to compare the dynamic performance of the

two control strategies. In particular, we considered a double-inverted-pendulum-model

of postural control, and analyzed the two UCMs defined above. We first showed that

the geometric configurations of the two UCMs are almost identical. We then investigated

whether the UCM-component of experimental sway could be considered as passive

dynamics with no active control, and showed that such UCM-component mainly consists

of high frequency oscillations above 1Hz, corresponding to anti-phase coordination

between the ankle and hip. We also showed that this result can be better characterized

by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis

highlights the close relationship between the two control strategies, namely their ability

to simultaneously establish small CoM variations and postural stability, but also make it

clear that the intermittent control hypothesis better explains the spectral characteristics

of sway.

Keywords: posture control, uncontrolled manifold, intermittent control, postural sway, double inverted pendulum,

postural stability
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INTRODUCTION

Traditionally, the major origin of human postural sway during
quiet stance has been considered to stem from rotational body
motion around the ankle joints (Winter et al., 1998). However,
accurate sway measurements in recent years have revealed that,
along with ankle joint motion, several other joint movements
(including the hip joints) are involved in postural sway (e.g.,
Aramaki et al., 2001; Creath et al., 2005; Hsu et al., 2007). It is now
a common view that inter-joint coordination plays a substantial
role in maintaining upright posture. In fact, the coordination
of multiple joints during quiet stance can be considered as a
natural extension of adaptive responses (e.g., ankle, hip, and
mixed strategies) to external disturbances (Horak and Nashner,
1986). For example, Aramaki et al. (2001) measured ankle and
hip joint motion during quiet stance and reported that ranges
of angular rotation, velocity, and acceleration of the hip joint
angle are comparable with, or even greater than, those of the
ankle joint. Moreover, they revealed that angular acceleration
of the ankle and hip joints is negatively correlated with each
other at a specific ratio, suggesting that such specific coordination
might reflect active control of the central nervous system (CNS)
in minimizing the acceleration of the center of mass (CoM)
position of the whole body. Sasagawa et al. (2009) simultaneously
measured ankle and hip joint motion with the ground reaction
force during quiet stance, and compared two different estimates
of the CoM acceleration, one obtained as a linear combination
of the ankle and hip joint accelerations and the other as the
horizontal component of the ground reaction force divided by the
body mass. Using this approach, they demonstrated that the two
estimates are well matched, i.e., the latter estimate is characterized
by the former with specific weight coefficients, implying indeed
that hip joint motions make substantial contributions to neural
control during quiet stance.

Because of the coordinated, multiple joint movements that
occur during quiet stance, the posture of the multi-link body at
every instance of time, represented by a vector in the multiple-
joint angle space, is not distributed evenly in that space as it tends
to be constrained to a specific low-dimensional space (Creath
et al., 2005; Pinter et al., 2008). This fact indicates that the
kinematic degrees of freedom of the human body during upright
stance are redundant for achieving the goal of postural stability,
and that control mechanisms that reduce the functional number
of degrees of freedom must exist. Candidate mechanisms range
from active neural feedback control including spinal reflexes and
supra-spinal circuitry (e.g., see a recent review by Mori et al.,
2016) to simple stiffness control, which is related to the passive
characteristics of human biomechanics including mechanical
impedance of muscles and joints, or a combination of the two.
This study aimed to examine which mechanism was the most
physiologically plausible.

Hsu et al. (2007) considered double- and six-link inverted
pendulum models of upright posture during quiet stance
(operating in the sagittal plane), and performed uncontrolled
manifold (UCM) analysis (Scholz and Schöner, 1999) for the
time-varying postural vector in the corresponding two- and
six-dimensional joint angle spaces, respectively. Specifically,

they defined UCMs (one- and five-dimensional hyperplanes in
the two- and six-dimensional joint angle spaces, respectively)
that satisfied the kinematic constraint of keeping the anterior-
posterior position of the whole-body CoM fixed and constant
in time, referred to here as the kinematic-UCM; subsequently,
they analyzed experimental sway data assimilated to each of the
models and decomposed the sway patterns into a component
in the kinematic-UCM and a complemental component in
the subspace orthogonal to the kinematic-UCM. Their analysis
revealed that the postural vector mainly moves in the kinematic-
UCM, relative to the orthocomplemental direction. Because
joint motion in the kinematic-UCM does not cause changes
in CoM position, this observation suggests that sway motion
in the kinematic-UCM is generated when the CNS suspends
interventional actions on postural control, whereas joint motions
that cause changes in CoM position (i.e., sway motion in
the orthocomplemental direction to the kinematic-UCM) are
impeded by active control. Based on this interpretation, Hsu
et al. claimed that the CNS stabilizes the position of the whole-
body CoM using a neural feedback controller that forces the
postural vector close to the kinematic-UCM, referred to here
as the CoM-control strategy or the CoM-control hypothesis. In
this case, the neural feedback controller is inactivated when the
postural vector is located within the kinematic-UCM, whereby
joint movement in the kinematic-UCM appears as the major
component of postural sway.

Small variability in the whole-body CoM in the anterior-
posterior direction implies that the two major body segments
with large masses, namely the upper body (head-arms-trunk
complex; HAT) and the lower extremities, tend to move in
opposite directions (anti-phase coordination) rather than in
the same direction (in-phase coordination). Indeed, quantitative
analyses of motion-captured data for postural sway—assuming a
double inverted pendulum model with HAT and lower extremity
links connected by two joints (i.e., ankle and hip joints)—
have shown that the two links exhibit in-phase coordination at
low frequencies (below 1 Hz) and that anti-phase coordination
occurs at high frequencies (between 1 and 5Hz) (Creath et al.,
2005; Zhang et al., 2007; Kato et al., 2014). Because anti-phase
coordination contributes to a reduction of CoM-shift while in-
phase coordination induces a CoM-shift, it is expected that the
high- and low-frequency components of postural sway might
correspond, respectively, to movements of the postural vector
in the kinematic-UCM and those in the orthocomplemental
subspace. In this study, we examined this expectation in a
quantitative manner.

It is possible to associate the UCM, as well as postural
variation along the UCM, with the intermittent feedback control
hypothesis that has recently been proposed as a mechanism for
stabilization during quiet standing, steady-state walking, and
stick balancing (e.g., Bottaro et al., 2008; Asai et al., 2009;
Suzuki et al., 2012; Fu et al., 2014; Yoshikawa et al., 2016). The
intermittent feedback control hypothesis assumes intermittent
inactivation of the active feedback controller, by which the CNS
intermittently exploits purely mechanical, passive dynamics of
the human body in the absence of active feedback control. More
specifically, upright posture without active feedback control is a
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saddle-type, unstable equilibrium point (i.e., the saddle-point)
in the state space (Bottaro et al., 2008; Asai et al., 2009, 2013;
Suzuki et al., 2012; Morasso et al., 2014). Since the saddle-point is
accompanied by both stable and unstable manifolds in the state
space, the state point can transiently approach the saddle-point
while exhibiting hyperbolic dynamics in the state space if it is
close to the stable manifold. This would then be followed by
a departure from the saddle-point along the unstable manifold
and would determine a fall without feedback intervention. See
Figure 1 (left panel) illustrating this situation, based on a single
inverted pendulum modeling as in Asai et al. (2009). In this
paper, the model of postural control without active feedback will
be referred to as the off-model, describing purely mechanical,
passive dynamics of the human body, while the system with
active feedback, i.e., dynamics of the human body actuated
by a neural feedback controller, will be referred to as the on-
model. The intermittent feedback control model hypothesizes
that the CNS alternates between the off- and on-models, and
that this alternation depends on time delay-affected feedback
information about the state point. That is, the intermittent
controller prescribes that when the state point remains “near”
the stable manifold of the off-model, the active feedback control
is inactivated (switched off), thus allowing the state point to
transiently approach the saddle-point without active feedback
control. In contrast, when the state point shifts “far” away from
the stable manifold, feedback control is re-activated (switching
from the off-model to the on-model). Typically, the intermittent
feedback control model operates with small feedback gains for
the on-model (Asai et al., 2009; Suzuki et al., 2012), namely
gain values that would be incapable to achieve stability even if
feedback control were to remain persistently activated. Moreover,
regardless of the feedback gain values, persistent feedback control
is highly prone to delay-induced instability, leading to an
expanding, divergent oscillation around the upright equilibrium
point. On the other hand, such unstable dynamics can also be
exploited as a kind of “affordance” because they provide an
opportunity for the state point (or the sway trajectory) of the
on-model to transverse the stable manifold of the off-model at
some time during the globally unstable oscillation; inactivating
the active feedback controller at that time (switching from the
on-model to the off-model) would trigger another transient
dynamic approach to the saddle-point along the stable manifold.
See Figure 1 (right panel) illustrating this situation, based on
a single inverted pendulum modeling as in Asai et al. (2009).
What is remarkable is that although the two control models
(off-model and on-model) are both unstable, the combination
of the two, according to the switching mechanism described
above, can achieve “bounded stability” (Bottaro et al., 2008) by
constraining the position of the state point to a kind of limit
cycle around the unstable upright equilibrium point. Another
remarkable characteristic of the intermittent feedback control
model is the small joint impedance that originates from the
null feedback gain in the off-model and the small feedback
gain in the on-model, leading to joint flexibility accompanied
by moderate movement variability (Nomura et al., 2013). See
Figure 1, in which state-dependent switching between the left
and right panels would lead to a cyclic trajectory (a limit cycle)

representing a postural sway during quiet standing without
motor noise.

Interestingly, the stable manifold of the saddle-point in
the off-model can be considered as a type of uncontrolled
manifold because the feedback control is inactivated when
the state point is located near the stable manifold. In this
paper, we refer to the stable manifold of the off-model as
the dynamic uncontrolled manifold (dynamic-UCM) because
it is determined by dynamic equations of motion of the
off-model, whereby the majority of postural sway in the
intermittent feedback control model appears as joint motion
in/along the dynamic-UCM. For double inverted pendulum
modeling with typical body parameter values, the dynamic-
UCM is defined as a three-dimensional stable manifold (the
direct sum of a two- and one-dimensional stable manifold)
in the four-dimensional state space of the off-model (Suzuki
et al., 2012). The complemental subspace of the dynamic-
UCM is a one-dimensional unstable manifold. Dynamic modes
associated with the one-dimensional stable manifold and the
one-dimensional unstable manifold in the off-model exhibit
monotonic recovering and falling toward and from the vertical
upright equilibrium, respectively, where ankle and hip joint
angles both rotate in the same direction (stable and unstable
in-phase modes, respectively). A dynamic mode associated with
the two-dimensional stable manifold in the off-model exhibits a
quasi-stable oscillation, where ankle and hip joint angles exhibit
an anti-phase, damped oscillation (two joint angles alternating
in opposite directions) toward upright equilibrium (stable anti-
phase mode). Despite the fact that the equilibrium point of the
on-model is unstable due to delay-induced instability (Suzuki
et al., 2011), the upright posture of the double inverted pendulum
model can be robustly stabilized by the intermittent feedback
control strategy that exploits transiently convergent dynamics
along the dynamic-UCM, particularly the two-dimensional stable
manifold of the off-model (Suzuki et al., 2012). Thus, for the
intermittent feedback control model with the double inverted
pendulum, postural sway during off-phases appears as anti-phase
coordinated movements between the ankle and hip joints near
the two-dimensional stable manifold as a major part of the
dynamic-UCM.

In this way, although mathematical definitions of the
kinematic- and dynamic-UCMs are completely different, these
two types of UCM play similar roles in the sense that the goal
of the active feedback controller is to drive the postural state
close to the UCM (either kinematic- or dynamic-UCM), while
the CNS can suspend active interventions in postural control
when the postural state is located near the UCM because the
resulting intrinsic dynamics is indeed consistent with global
stabilization. In this paper, we assimilated experimental sway data
to the double inverted pendulummodel, and analyzed kinematic-
and dynamic-UCMs. We showed that geometric arrangements
of the kinematic-UCM and two-dimensional stable manifolds
of the dynamic-UCM in the joint angle and angular velocity
spaces were too similar to be distinguished (at least with the
resolution provided by postural sway measurements). Thus, we
were unable to experimentally determine which hypothetical
control strategy (i.e., CoM-control hypothesis or intermittent
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FIGURE 1 | A qualitative illustration of the intermittent feedback control model in human quiet stance based on a single inverted pendulum modeling

as in Asai et al. (2009). The left panel illustrates typical dynamics of an inverted pendulum without active feedback control (off-model), where the upright posture (the

origin of the phase plane) is a saddle-type unstable equilibrium point with stable and unstable manifolds. The right panel illustrates dynamics of the pendulum with

time-delayed active feedback control (on-model), where the system shows unstable oscillation due to delay-induced instability. Appropriate state-dependent

intermittent switching between these two unstable dynamics make the overall dynamics stable, characterized by a bounded stability (typically with limit cycle

oscillation).

control hypothesis) was employed by the CNS to stabilize upright
posture.

We then quantitatively investigated whether postural
sway near the dynamic-UCM could be considered as purely
mechanical, passive dynamics of the human body without
active neural feedback control (i.e., off-model). In order to
evaluate this question, we analyzed experimental postural sway
data and dynamics of the off-model using the double inverted
pendulum. It was expected that postural sway dynamics near
the UCM could be characterized by dominant eigenvalues
(eigenfrequency) associated with the dynamic-UCM, in
which the uncontrolled body (off-model) would exhibit anti-
phase coordinated oscillations of the ankle and hip joints
(stable mode of unstable dynamics). We will show that this
expectation is valid under certain conditions of passive joint
impedance (passive viscoelasticity of the ankle and hip joints)
that determine the eigenfrequency of the off-model in the
dynamic-UCM. This is because large (small) passive joint
elasticity likely results in high (low) eigenfrequency in the
off-model. Thus, the expectation is that if the experimental
postural sway near the kinematic-UCM were to exhibit high-
frequency oscillations close to the eigenfrequency of the
dynamic-UCM for a range of physiologically plausible passive
joint impedances, we conclude that purely mechanical, passive
dynamics (dynamics of the off-model) is responsible for postural
sway near the UCM. At the same time, this would enable us
to identify the passive joint-viscoelasticity of the ankle and
hip by examining a range of elastic and viscous coefficients
of the ankle and hip joints that are capable of producing a
characteristic sway frequency close to the eigenfrequency of the
dynamic-UCM.

MATERIALS AND METHODS

In order to model human quiet stance, we considered a
double inverted pendulum model working in the sagittal plane
(Figure 2A), where mi (i = {L, HAT}) and li are the mass and
lengths of the lower (L) and upper (HAT) links, hL is the distance
from the ankle joint to the CoM of the lower link, and hHAT is
the distance from the hip joint to the CoM of the upper link
(see also Table 1). θ a and θh represent, respectively, the tilt angle
of the lower link from the upright position, referred to simply
as the ankle joint angle, and the hip joint angle defined as the
angle between the upper and the lower links. Angular velocities
of the ankle and hip joints are denoted as ωj = dθj/dt (j =
{a, h}). Because the angular displacements and velocities of the
ankle and hip joints are small during quiet stance, the following
approximations were performed:

sin θj ≈ θj, cos θj ≈ 1, sinωj ≈ ωj, cosωj ≈ 1. (1)

Thus, the linearized equation of motion for the double inverted
pendulum model could be described as:

M
d2

dt2
θ + Gθ = Q ≡ Qp +Qa, (2)

where θ=(θ a, θh)
T is the joint angle vector,M the inertia matrix,

and Gθ the gravitational toppling torque vector. Q represents
the joint toque vector exerted at the ankle and hip joints, which
is modeled by a sum of the passive torque vector (Qp) and the
active torque vector (Qa). These vectors and matrices are defined
in Appendix A (Supplementary Material). Note that the passive
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FIGURE 2 | A double inverted pendulum model of upright posture with

marker positions used for the experimental measurement of posture

during quiet stance. (A) A double inverted pendulum model consisting of

upper (HAT) and lower (L) links with ankle and hip joints. See Table 1 for

symbols. (B) Positions of markers used for experimental measurements. All

markers, except marker “c”, were mounted on left and right sides at the

following anatomical landmarks, a, ear; b, shoulder; c, xiphoid; d, lower rib; e,

iliac crest; f, anterior superior iliac spine; g, hip; h, knee; I, ankle. See Table 3

for details of marker names and positions.

torque vector continuously acts on the ankle and hip joints
without time-delay, since passive joint torques are generated by
intrinsic mechanical properties of muscles, tendons, and soft
tissues around the joints. On the other hand, active joint torques
generated by the CNS are affected by the feedback time-delay due
to neural signal processing and signal transmission.

The Kinematic-UCM
The anterior-posterior position of the CoM of the double
inverted pendulum model (xCoM) was calculated as follows:

xCoM =
mLhLθa +mHAT

{

lLθa + hHAT(θa + θh)
}

mL +mHAT
. (3)

TABLE 1 | Variables and parameters for the double pendulum model.

Symbol Description Value/Unit

θa Ankle joint angle — rad

θh Hip joint angle — rad

ωa Ankle angular velocity — rad/s

ωh Hip angular velocity — rad/s

Total body mass, obtained from experimental data — kg

g Gravitational acceleration 9.8 m/s2

mL Lower link mass

mHAT Upper link mass

lL Lower link length — m

lHAT Upper link length — m

hL Distance from the distal end to the CoM of the lower

link

lL × 0.5

hHAT Distance from the distal end to the CoM of the

upper link

lHAT × 0.5

m Total mass of the lower and upper links mL + mHAT

h Height of the total CoM for θh =0 (see Equation A.9) — m

Ka Passive elastic coefficient at the ankle 0.8mgh Nm/rad

Ba Passive viscosity coefficient at the ankle joint 4.0 Nms/rad

Kh Representative passive elastic coefficient at the hip

joint

0.4mgh Nm/rad

Bh Representative passive viscosity coefficient at the

hip joint

10.0 Nms/rad

Pa Proportional gain of neural feedback control at the

ankle

— Nm/rad

Da Derivative gain of neural feedback control at the

ankle

— Nms/rad

Ph Proportional gain of neural feedback control at the

hip

— Nm/rad

Dh Derivative gain of neural feedback control at the hip — Nms/rad

The kinematic-UCM used for the CoM-control hypothesis is a
low-dimensional space that satisfies a kinematic constraint such
that the anterior-posterior position of the CoM does not change
in time, i.e., xCoM = constant (hence dxCoM/dt= 0). In the double
inverted pendulum model, the kinematic-UCM is defined as the
one-dimensional subspace in the joint angle space (θ a-θh plane)
and angular velocity space (ωa-ωh plane):

θh = −
mLhL +mHATlL +mHAThHAT

mHAThHAT
θa + constant, (4)

ωh = −
mLhL +mHATlL +mHAThHAT

mHAThHAT
ωa. (5)

In this study, we set the constant in Equation (4) as 0 for
simplicity, i.e., we assumed a vertically upright posture as the
equilibrium of the system. From Equations (4) and (5), the
kinematic-UCM forms a straight line with a negative slope,
passing through the origin both in the θa-θh and ωa-ωh planes.
Note that negative slopes in the θ a-θh and ωa-ωh planes are
determined only by body parameters, and are exactly the same. In
this way, the kinematic-UCM is defined only by the static balance
of the body in the gravitational force field, and independent of the
equation of motion (i.e., body dynamics).
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The Off-Model of the Intermittent Control
System and the Dynamic-UCM
For the off-model, the joint torque vector includes only the
passive torque vectorQp, i.e.,Qa = 0 andQ=Qp, since the active
neural feedback control is inactivated in the off-model. In this
study, we modeled the passive torque using a linear viscoelastic
element as follows:

Qp = Tp









θa
θh
ωa

ωh









, (6)

where the matrix Tp represents the viscoelasticity matrix defined
in Equation (A.5) of Appendix A (Supplementary Material),
determined by the elastic and the viscous coefficients of the
ankle and hip joints (Ka, Ba, Kh, Bh). Then, the state space
representation of the off-model in the four-dimensional state
space (θ a-θh-ωa-ωh space) is obtained as follows:

d

dt









θa
θh
ωa

ωh









=

{(

0 I

−M−1G 0

)

+

(

0
M−1Tp

)}









θa
θh
ωa

ωh









≡ A









θa
θh
ωa

ωh









,

(7)

where I is the 2 × 2 identity matrix, and A is the system matrix
of the off-model. The four eigenvalues of matrix A of the off-
model can be characterized as follows: a positive real pole, a
negative real pole, and a pair of complex conjugate poles with
a negative real part, for typical link parameters as those used
by Suzuki et al. (2012). Thus, the upright posture of the off-
model is a saddle-type unstable equilibrium point, accompanied
by a one-dimensional unstable manifold and a three-dimensional
stable manifold. According to Suzuki et al. (2012), the stable
manifold can be decomposed into a one- and two-dimensional
stable manifolds with the latter corresponding to the oscillatory
anti-phase mode in the state space. On the other hand, the
unstable and stable one-dimensional manifolds correspond to
the unstable and stable in-phase modes, respectively. For the
intermittent control hypothesis, the dynamic-UCM is defined
as the three-dimensional stable manifold consisting of both
one- and two-dimensional stable manifolds of the off-model.
In this paper, we refer to the one-dimensional stable manifold
as the D-UCMin and the two-dimensional stable manifold as
the D-UCManti. Moreover, since the two-dimensional stable
manifold has a prominent role in the intermittent feedback
control model (Suzuki et al., 2012), this study focused mainly
on the D-UCManti. Table 2 summarizes the definition of the
dynamic UCM.

TABLE 2 | Definition of the dynamic-UCM.

System

matrix of the

off-model (4-

dimensional)

Positive real pole Unstable in-phase mode

Negative real pole Stable in-phase mode D-UCMin

Pair of complex conj. poles

with negative real part

Stable anti-phase mode D-UCManti

The On-Model of the Intermittent Control
System
The on-model with the active joint torques at the ankle and hip
joints was defined as follows:

d

dt









θa
θh
ωa

ωh









= A









θa
θh
ωa

ωh









+

(

0
M−1Ta

)









θa1
θh1
ωa1

ωh1









≡ A









θa
θh
ωa

ωh









+ Aa









θa1
θh1
ωa1

ωh1









(8)

where θa1 ≡ θ a(t − ∆), θh1 ≡ θh(t − ∆), ωa1 ≡ ωa(t − ∆),
and ωh1 ≡ ωh(t − ∆) are the state variables affected by the
feedback time-delay ∆. The generation of active control torques
is provided by a proportional and derivative (PD) feedback
controller with time-delay: Ta is the feedback gain matrix with
a set of proportional (P) and derivative (D) gains, i.e., Pa and Da

for the ankle joint, and Ph and Dh for the hip joint. See Equation
(A.5) of Appendix A (Supplementary Material) for details. The
equilibrium point of the on-model serves as the origin (θ a, θh,ωa,
ωh) = (0, 0, 0, 0), which is stable only for very narrow parameter
regions due to delay-induced stability: see Suzuki et al. (2012)
for details of how stability of the equilibrium point and stability
regions of the on-model in the Pa-Da-Ph-Dh parameter space are
determined.

Experimental Sway Measurement
Five healthy young men (all 23-years-old, means ± SD: height
1.72 ± 0.05 m, weight 66.6 ± 12.72 kg) participated in this
study. All subjects provided written informed consent for the
study. The experimental procedures were in accordance with
the Declaration of Helsinki, and they were approved by the
ethical committee for human studies at the Graduate School
of Engineering Science, Osaka University. This study did not
employ female and elderly subjects. The investigation of a
possible gender-bias and age-bias is left to a future study.

Subjects were asked to quietly stand barefoot on a platform
with their arms hanging beside their body and their feet along
a V-shaped guide, which was an isosceles triangle with a 20-
degree vertex angle that separated the two malleoli by about 2
cm. Subjects were required to gaze at a fixation point that was
displayed at eye-level height, about 2m away from them. Five
trials of quiet standing were performed—each lasting 70 s—with
a sufficient resting period between the trials.

Seventeen infrared reflective markers were attached to the
characteristic points on the body of each subject (details are
shown in Figure 2B and Table 3). Three-dimensional positions
of these markers were captured using a motion capture system
(SMART-DX, BTC, Milan), which consisted of six infrared
cameras, with a sampling frequency of 300Hz. Captured marker
positions were projected onto the sagittal plane, where the x-
and the y-coordinates represented the anterior-posterior and
superior-inferior directions of a subject’s body, respectively.
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TABLE 3 | List of markers for motion capturing: symbols and positions of

markers that were used for identifying posture.

Body segment Marker symbol Description of marker position

HEAD ARM TRUNK

Head R-Ear Right tragion

L-Ear Left tragion

Trunk 4 and Arms R-Shoulder Right acromion

L-Shoulder Left acromion

Xiphoid Inferior end of the xiphoid

Trunk 3 Xiphoid Inferior end of the xiphoid

R-LowerRib Right inferior thoracic aperture

L-LowerRib Left inferior thoracic aperture

Trunk 2 R-LowerRib Right inferior thoracic aperture

L-LowerRib Left inferior thoracic aperture

R-IliacCrest Right superior end of the Iliac crest

L-IliacCrest Left superior end of the Iliac crest

Trunk 1 R-IliacCrest Right superior end of the Iliac crest

L-IliacCrest Left superior end of the Iliac crest

R-ASIS Right anterior superior iliac spine

L-ASIS Left anterior superior iliac spine

Pelvis R-ASIS Right anterior superior iliac spine

L-ASIS Left anterior superior iliac spine

LOWER LIMB

Thigh R-Hip Right greater trochanter

L-Hip Left greater trochanter

R-Knee Right lateral epicondyle

L-Knee Left lateral epicondyle

Lower Leg R-Knee Right lateral epicondyle

L-Knee Left lateral epicondyle

R-Ankle Right lateral malleolus

L-Ankle Left lateral malleolus

Time series data of the marker positions were digitally
processed offline using a fourth-ordered Butterworth filter with
zero phase lag and a cutoff frequency of 10 Hz. Using the filtered
marker data, we estimated the lengths of lL and lHAT and the
time-series of the tilt angles of the lower link ϕL[n] and the
HAT-link ϕHAT[n] from the vertical direction, where n represents
the discretized (sampling) time. See Appendix B (Supplementary
Material) for details of the estimation method. Then, the ankle
and hip joint angles at time n, θ a[n] and θh[n], and their angular
velocities, ωa[n] and ωh[n], were obtained as follows:

θa[n] = ϕL[n]−
1

N

N
∑

n= 1

ϕL[n] , (9)

θh[n] = ϕHAT[n]−ϕL[n]−
1

N

N
∑

n= 1

(ϕHAT[n]− ϕL[n]), (10)

ωa[n] =
θa[n+ 1]− θa[n− 1]

21t
, (11)

ωh[n] =
θh[n+ 1]− θh[n− 1]

21t
, (12)

where1t is the sampling interval (1/300 s), andN is the total data
number. In Equations (9) and (10), the mean values of ϕL[n] and
ϕHAT[n] − ϕL[n] are subtracted, respectively, in order to set the
mean values of θa[n] and θh[n] as zeros so that the CoM of the
vertically upright posture is zero.

Visualization of the Kinematic- and
Dynamic-UCMs
The double inverted pendulum model with parameter values (lL,
lHAT, hL, hHAT, mL, and mHAT) for analyzing the postural sway
of each subject was prepared, where the lengths (hL and hHAT)
and masses (mL andmHAT) of the two links were estimated using
the weight of each subject and his lower extremity to upper body
ratio (see Winter et al., 1998); Table 1. We then visualized the
kinematic- and dynamic-UCMs (D-UCMin and D-UCManti) of
the double inverted pendulum model for each subject in the θa-
θh and ωa-ωh planes. The kinematic-UCM could be determined
only by the kinematic body parameters of Equations (4) and (5),
and was easily depicted as a straight line in each plane. However,
visualization of the dynamic-UCM required specific values of
passive viscoelasticity for the ankle and hip joints. In this study,
the passive elastic and viscosity coefficients of the ankle joint were
set as (Ka, Ba) = (0.8mgh, 4.0 Nms/rad) as in Table 1 (Loram
and Lakie, 2002; Casadio et al., 2005). Since no experimental
evaluation of the passive viscoelasticity for the hip joint during
quiet stance has been published, we considered a set of small hip
joint values as (Kh, Bh) = (0.4mgh, 10.0 Nms/rad) which were
based on the idea that the passive impedance of the hip joint
would be small, as in the ankle joint (see Table 1). However, since
dynamics of the double inverted pendulum could be affected by
the passive viscoelasticity of the hip joint, in the last half of this
study, we analyzed these dynamics using various values of the
passive viscoelasticity of the hip joint.

Rigorous visualization of the two-dimensional D-UCManti

in the θ a-θh and ωa-ωh planes is not easy because it is
defined in the four-dimensional state space. Nevertheless, we
tried to perform this visualization [detailed in Appendix C
(Supplementary Material)] using four types of three-dimensional
space: θ a-θh-ωa (Figure 3A), θ a-θh-ωh (Figure 3B), ωa-ωh-θ a
(Figure 3D), and ωa-ωh-θh (Figure 3E). Note that, in each panel
of Figure 3, the D-UCManti is visualized by a two-dimensional
plane for illustrative purposes. The two-dimensional D-UCManti

planes in the θ a-θh-ωa (Figure 3A) and θ a-θh -ωh (Figure 3B)
spaces were projected on the single θ a-θh plane, as shown
in Figure 3C, which could be compared with the kinematic-
UCM in the θ a-θh plane defined by Equation (4). Similarly,
the D-UCManti planes in the ωa-ωh-θ a (Figure 3D) and ωa-
ωh-θh (Figure 3E) spaces were projected on the ωa-ωh plane,
as in Figure 3F, which could be compared with the kinematic-
UCM in the ωa-ωh plane defined by Equation (5). In the result
section, we will show that these two projections are almost
identical with the kinematic-UCMs defined by Equations (4)
and (5).

Since mapping of the whole two-dimensional D-UCManti

space would inevitably cover the entire θ a-θh plane, we
considered a restricted area of the D-UCManti in each of θ a-θh-
ωa and θ a-θh-ωh space such that each area would be comparable
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FIGURE 3 | Illustration of how the two-dimensional dynamic-UCM (D-UCManti) in the four-dimensional state space was visualized in the θa-θh and

ωa-ωh planes. The gray planes in (A,B,D,E) illustrate the D-UCManti qualitatively in the θa-θh-ωa, θa-θh-ωh, ωa-ωh-θa, and ωa-ωh-θh spaces, respectively.

Restricted area of the D-UCManti in each of θa-θh-ωa space [the yellow band of infinite length in (A)] and the θa-θh-ωh space [the blue band of infinite length in (B)]

such that each area comparable with the range of postural sway during quiet stance is projected on the θa-θh plane in the (C). Geometrical configuration of the

D-UCManti in the θa-θh plane, visually characterized by the parallelogram formed by overlapping regions of two slanted bands in the θa-θh plane of the (C). Similarly,

the restricted area of the D-UCManti in the ωa-ωh-θa space [yellow band in (D)] and ωa-ωh-θh space [blue band in (E)] is projected on the ωa-ωh plane in the (F).

Geometrical configuration of the D-UCManti in the ωa-ωh plane, visually characterized by the parallelogram formed by the overlapping regions of the two slanted

bands in the θa-θh plane of (F). See main text for details.

with the range of postural sway during quiet stance: one area
of the D-UCManti (yellow band of infinite length in Figure 3A)
restricted by the upper bound of ωa at ξ a (dashed line in
Figure 3A) and the lower bound of ωa at −ξ a (dot-dashed
line in Figure 3A) in the θ a-θh-ωa space. The other area of
the D-UCManti (blue band of infinite length in Figure 3B) was
restricted by the upper bound of ωh at ξh (double dot-dashed
line in Figure 3B) and the lower bound of ωh at –ξh (dotted
line in Figure 3B) in the θ a-θh-ωh space. Each restricted area
was then mapped onto the θ a-θh plane for visualization of the
D-UCManti in the θ a-θh plane. To be specific, we considered a
mapping of a four-dimensional state point (θ ′a, θ

′

h, ω
′
a, ω

′

h) in the
D-UCManti to the θ a-θh plane. This state point is represented by
a point (θ a, θh, ωa)= (θ ′a, θ

′

h, ω
′
a) in the yellow band, as indicated

by the black point in Figure 3A. Since this point represents a
set of state points (θ a, θh, ωa, ωh) = (θ ′a, θ ′h, ω′

a, ωh) with an
arbitrary value of ωh, it cannot uniquely specify a single state
point. Moreover, it is not necessarily the state point (θ ′a, θ

′

h, ω
′
a,

ω′

h) in the D-UCManti. For specifying the four-dimensional state
point (θ ′a, θ ′h, ω′

a, ω′

h) in the D-UCManti, we need to specify
one more point (θ a, θh, ωh) = (θ ′a, θ ′h, ω′

h) in the blue band,
as indicated by the black point in Figure 3B, which shares the
same coordinate values (i.e., θ a = θ ′a and θh = θ ′h) as the black
point in Figure 3A. However, by itself, this point represented a
set of points (θ a, θh, ωa, ωh) = (θ ′a, θ

′

h, ωa, ω′

h) with an arbitrary
value of ωa. In this way, the state point (θ ′a, θ ′h, ω′

a, ω′

h) in the

D-UCManti is visualized using both Figures 3A,B, and is mapped
(projected) to the black point (θa, θh)= (θ ′a, θ

′

h) in the θ a-θh plane
of Figure 3C. In the same way, the thin-solid line in the yellow
band of the θ a-θh-ωa space and the thick-solid line in the blue
band of the θ a-θh-ωh space are mapped to the corresponding
lines, respectively, in the θ a-θh plane (Figure 3C). Similarly, the
dashed and dot-dashed lines in the upper and lower bounds
(ξ a, –ξ a) = (0.03, –0.03) of the yellow band in Figure 3A are
mapped to the corresponding lines that forms the slanted yellow
band in Figure 3C. Moreover, the dots-dashed and dotted lines
of the upper and lower bounds (ξh, –ξh) = (0.03, –0.03) of the
blue band in Figure 3B are mapped to the corresponding lines
that forma the slanted blue band in Figure 3C. Since the angular
velocities of the ankle and hip joints during quiet stance are
mostly in the range of [−0.03, 0.03] rad/sec, we characterized the
restricted area of the D-UCManti projected to the θ a-θh plane by
a green parallelogram, which is formed by the intersection of the
two slanted bands (Figure 3C). As the ankle and hip joint angles
during quiet stance are mostly in the range of [−0.02, 0.02] rad,
we visualized the geometry of D-UCManti in the ωa-ωh plane in
a similar manner (i.e., by a parallelogram formed by overlapping
regions of the slanted yellow band (mapped from the yellow band
in Figure 3D with upper and lower bounds at (ζ a, –ζ a) = (0.02,
–0.02)) and slanted blue band (mapped from the blue band in
Figure 2E with upper and lower bounds at (ζ h, –ζ h) = (0.02,
–0.02)) as in Figure 3F.
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Comparison among Postural Sway
Dynamics; Kinematic- and Dynamic-UCMs
For sway data from each of the five experimental trials, angles
and angular velocities of the ankle and hip joints were plotted
as trajectories in the θ a-θh and ωa-ωh planes, respectively, to
examine whether they moved dominantly in the kinematic-
and/or dynamic-UCM. In particular, we expected that high-
frequency components of joint motion (i.e., above 1 Hz), which
are known to exhibit anti-phase coordinated patterns between
the ankle and hip joints (Creath et al., 2005; Zhang et al., 2007;
Kato et al., 2014), would be constrained in the kinematic- and/or
dynamic-UCM. To examine this expectation, experimental data
related to the joint angles and angular velocities were low- and
high-pass filtered using a fourth-order Butterworth filter with
zero phase lag and a cut-off frequency of 1 Hz. The low-frequency
(low-pass filtered data) and high-frequency (high-pass filtered
data) components were also plotted separately in the θ a-θh and
ωa-ωh planes, respectively, to examine whether they moved in
the kinematic- and/or dynamic-UCM.

The geometry of the kinematic-UCM in the θ a-θh and ωa-
ωh planes was characterized by the slope of the lines defined
by Equations (4) and (5). The geometries of the D-UCManti

and experimental sway trajectories in the θ a-θh and ωa-ωh

planes were characterized using the principal component analysis
(PCA). For characterizing the D-UCManti, PCA was applied to
the coordinates of the four parallelogram vertices defined above.
For each of the D-UCManti and sway trajectories, we calculated
eigenvectors of the principal components in the θ a-θh and ωa-
ωh planes, denoted by (θ

p
a , θ

p
h)

T and (ω
p
a , ω

p
h)

T, respectively, as
well as the contribution rates of the first principal components.
Geometries of the D-UCManti and experimental sway trajectories
were characterized by the slopes of the first principal eigenvectors
(γ θ and γ ω), which are defined as follows:

γθ =
θ
p
h

θ
p
a
, γω =

ω
p
h

ω
p
a
. (13)

Spectral Characterization of Anti-Phase
Coordinated Sway
The high-frequency component (>1 Hz) of joint motion during
quiet stance, which was expected to move along the kinematic-
UCM (and the D-UCManti, as revealed in this study), was
quantitatively analyzed in order to examine whether the postural
sway near the kinematic-UCM (and the dynamic-UCM) was
generated by purely mechanical, passive dynamics of the human
body. In other words, having no active neural feedback control
(the off-model). To this end, we performed a spectral analysis
by estimating power spectral density (PSD) functions of the
experimental joint angles and angular velocities of each joint.
Specifically, the time-series data were divided into segments of
10 s with 50% overlap, and the linear trend in each segment was
removed. Then, a fast Fourier transform with Blackman-Harris
window was applied to each segment, and an ensemble average
of the spectra for all segments of the five trials was performed to
estimate the PSD for each subject.

Parameter-Dependence of the
Dynamic-UCM Eigenfrequency
Characteristic peak frequencies of the PSD were then compared
with the eigenfrequency of the anti-phase mode (D-UCManti)
of the off-model in the double inverted pendulum model.
The eigenfrequency of the D-UCManti was calculated from
an imaginary part of the complex eigenvalue associated
with the eigenvector that spanned the D-UCManti. Since the
eigenfrequency depends on the passive viscoelasticity of each
joint, we calculated the eigenfrequency of the anti-phase mode
of the off-model by varying the elastic and viscosity coefficients
of the hip joint over a wide range, as follows:

Kh ∈
[

0.2mgh 1.0mgh
]

,Bh ∈
[

0 50
]

(14)

where m and h are the total body mass and the distance
between ankle and the total CoM, respectively. g represents the
gravitational constant. According to most previous studies, and
based on experimental measurements, the passive elastic and
viscosity coefficients of the ankle joint were fixed as (Ka, Ba) =
(0.8mgh, 4.0) (Table 1, Maurer and Peterka, 2005; Bottaro et al.,
2008; Asai et al., 2009; Suzuki et al., 2012).

Although it has been shown that the ankle and hip joints
move around the kinematic-UCM in a coordinated manner, no
quantitative examinations have evaluated whether coordinated
joint motion is really a consequence of “uncontrolled” body
dynamics (i.e., the off-model) without active neural feedback
control. If this were the case, then the PSD of the high-
frequency component of joint motion (expected to move along
the kinematic-UCM) would exhibit characteristic peaks that are
coincident with the eigenfrequency of the anti-phase mode of the
off-model. On the other hand, if the characteristic frequencies of
the PSD were to coincide with the eigenfrequency of the anti-
phase mode of the on-model (i.e., if the postural sway near the
kinematic-UCM could be better explained by dynamics with
active neural feedback control), then the UCM hypotheses (both
the CoM-control hypothesis and intermittent feedback control
hypothesis) might not be good candidate control strategies
exploited by the CNS during quiet stance. In order to explore
these possibilities, we analyzed eigenfrequency of the anti-phase
mode and upright equilibrium stability of the on-model by
systematically varying elastic and viscosity coefficients of the hip
joint, as well as the proportional and derivative gains of the active
feedback controller of the ankle and hip joints, over a wide range
as follows [see Appendix D (SupplementaryMaterial) for details]:

Kh ∈
[

0.2mgh 1.0mgh
]

, Bh ∈
[

0 50
]

,
Pa ∈

[

0.2mgh 1.0mgh
]

, Da ∈
[

0 200
]

,

Ph ∈
[

0.2mgh 1.0mgh
]

, Dh ∈
[

0 50
]

.

(15)

RESULTS

Figure 4 shows the kinematic-UCM, dynamic-UCM (D-UCMin

and D-UCManti), and experimental sway trajectories for the
angles and angular velocities of the ankle and hip joints in
the θ a-θh plane (Figures 4A1–A5) and in the ωa-ωh plane
(Figures 4B1–B5) for each of the five subjects. In each panel, the
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red straight line represents the kinematic-UCM and the green
band (thin parallelogram) and blue dashed-line represent the D-
UCManti andD-UCMin, respectively. The black curve exemplifies
a sway trajectory for a single trial.

In each panel, the D-UCManti of the dynamic-UCM (depicted
by the green parallelogram) appears as a nearly straight line.
Additionally, the contribution rate of the principal component of
the D-UCManti, which corresponded to the direction of the line,
was almost 1 (larger than 0.999) in both θ a-θh and ωa-ωh planes
for all subjects, meaning that the green parallelogram collapsed
and was actually shaped as a straight line.

Comparisons between the Kinematic- and
Dynamic-UCMs
Remarkably, the D-UCManti of the dynamic-UCM (green
parallelogram) was almost identical to the kinematic-UCM (red
line) of every subject. Specifically, the kinematic-UCM was very
similar to the D-UCManti in the θ a-θh plane for all subjects
(Figures 4A1–A5). As quantified in Table 4, the kinematic-
UCM slope and direction of the first principal component
of the D-UCManti in the θ a-θh plane was about −3 for all
subjects. Likewise, the kinematic-UCM was also very similar
to the D-UCManti in the ωa-ωh plane for all subjects, as
shown in Figures 4B1–B5 (with a kinematic-UCM slope and D-
UCManti principal component direction around −3). Together,
these results revealed a nearly identical geometric arrangement
between the kinematic-UCM and D-UCManti. Further, our
findings demonstrated that, at least with the resolution provided
by the experimental measurement of postural sway, these two
UCMs could not be distinguished from each other in either the
θ a-θh or the ωa-ωh plane.

Comparisons between Kinematic- and
Dynamic-UCMs and Postural Sway
Trajectories
For the θ a-θh plane (Figures 4A1–A5), no clear relationship
could be found between the original, non-filtered sway trajectory
and the kinematic/dynamic-UCMs. This was also the case
for the PCA (summarized in Table 4) that compared the
directions of the kinematic/dynamic-UCMs with the first
principal components for the original, non-filtered sway data in
the θ a-θh plane, where the standard deviations of the eigenvector
directions were large for most of the subjects. These results
indicated that the joint angle trajectories in the θ a-θh plane did
not exhibit any major orientation.

On the one hand, it is clear that angular velocity trajectories
in the ωa-ωh plane (Figures 4B1–B5) were located along the
kinematic-UCM and D-UCManti; however, the sway trajectory
was not necessarily constrained by those manifolds, but rather
spread widely around them. The PCA for the sway trajectory
in the ωa-ωh plane (Table 4) revealed that the direction
of the first principal component was about −3, with small
standard deviations for all subjects except Subject 3. Further,
the contribution rate of the first principal component was very
high, suggesting that the trajectory in the ωa-ωh plane exhibited
a specific orientation.

Figure 5 separates the roles of the low (Figures 5A2,B2)
and high (Figures 5A3,B3) frequency sway trajectory
components in the θ a-θh and ωa-ωh planes, specifically for
subject 1 (note that Figures 5A1,B1 are exactly the same as
Figures 4A4, B4) but similar patterns characterize also the
other subjects. Low-frequency components of the trajectory
in the θ a-θh plane (Figure 5A2) were very similar to the
original, non-filtered trajectory (Figure 5A1), implying
that variations in the joint angles were dominated by low-
frequency components below 1 Hz. On the other hand,
low-frequency trajectory components in the ωa-ωh plane
(Figure 5B2) were distributed in a roughly circular shape
and were much smaller in amplitude than the original, non-
filtered trajectory (Figure 5B1). In both Figures 5A2,B2, no
clear relationship could be found between low-frequency
components of the trajectories and the kinematic/dynamic-
UCMs. Contrastingly, in Figures 5A3,B3, high-frequency
trajectory components were strictly located on the kinematic-
UCM and D-UCManti in both the θ a-θh and ωa-ωh planes. A
comparison between high-frequency components in the θa-θh
plane (Figure 5A3) and the original trajectory (Figure 5A1)
revealed that the amplitudes of the former were much smaller
than the latter, but were characterized by a consistent linear
relationship. Although the small amplitudes of the high
frequency components suggest that they might be “negligible,”
the strict relationship between these components and the
kinematic-UCM and D-UCManti in both the θ a-θh and ωa-ωh

planes supports instead the hypothesis that components above
1Hz play an important role in postural control during quiet
stance.

Principal component analysis of the low-pass filtered
trajectories in the θ a-θh and ωa-ωh planes showed that the
standard deviation of the eigenvector-direction was large for
every subject, and that the mean slope values substantially
varied, depending on the subject (Table 4: low-pass filtered
data). These results quantitatively indicated that low-frequency
components of the trajectories in the θ a-θh and ωa-ωh

planes were not aligned in a specific direction. On the other
hand, high-pass filtered trajectories in both θa-θh and ωa-
ωh planes exhibited specific orientations in the first principle
component, with high contribution rates and very small standard
deviations for all subjects (Table 4: high-pass filtered data).
First eigenvector directions in the θ a-θh and ωa-ωh planes
were similar to each other, where mean ± SD values across
subjects were −3.41 ± 0.29 for the θa-θh plane and −3.86 ±

0.43 for the ωa-ωh plane. These eigenvector directions were
quite similar to the slope of the kinematic-UCM, as well
as the direction of the first principal component of the D-
UCManti.

In summary, we found that there was no clear relationship
between the non-filtered, original (also the low-pass filtered)
trajectories and the kinematic/dynamic-UCMs in the θa-θh
plane, but that high-frequency components above 1Hz (i.e., high-
passed filtered trajectories) were aligned along the kinematic-
UCM as well as the D-UCManti. Moreover, angular velocity
trajectories in the ωa-ωh plane were also aligned along the
kinematic-UCM and D-UCManti.
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FIGURE 4 | The kinematic- and dynamic-UCMs (i.e., D-UCMin and D-UCManti, respectively) of the double inverted pendulum model, and sample

trajectories of ankle and hip joint movement during quiet stance for five subjects. In each panel, the red line represents the kinematic-UCM and the green

band (which is a parallelogram defined in Figure 3) represents the D-UCManti. The blue-dashed line represents the D-UCMin. The black curve is a sample trajectory of

experimental postural sway. (A1–A5) are for the θa-θh plane and (B1–B5) are for the ωa-ωh plane.

TABLE 4 | Slope of the kinematic-UCM, directions of the first principal component for the dynamic-UCM, and postural sway trajectories in the θa-θh and

ωa-ωh planes for each subject.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

SLOPE OF THE KINEMATIC-UCM IN THE θa-θh AND ωa-ωh PLANES

−3.0820 −3.4645 −3.0395 −3.2534 −3.4039

DIRECTION OF THE FIRST PRINCIPAL COMPONENT (γθ AND γ ω) AND THE CONTRIBUTION RATE

Dynamic UCM (D-UCManti)

γ θ −2.60 −2.90 −2.53 −2.70 −2.86

(Contribution) (>0.999) (>0.999) (>0.999) (>0.999) (>0.999)

γ ω −2.53 −2.86 −2.49 −2.68 −2.81

(Contribution) (>0.999) (>0.999) (>0.999) (>0.999) (>0.999)

POSTURAL SWAY TRAJECTORY

Original Data

γ θ −4.91± 8.82 1.47± 1.47 0.50±5.77 5.77±14.78 0.20±0.8

(Contribution) (0.81± 0.097) (0.77± 0.111) (0.79±0.066) (0.72±0.119) (0.76±0.067)

γ ω −3.30± 0.75 −3.24± 0.27 −8.07±3.72 −3.15±0.41 −3.56±0.45

(Contribution) (0.79± 0.009) (0.87± 0.013) (0.86±0.042) (0.83±0.025) (0.89±0.026)

LOW-PASS FILTERED DATA (1-Hz CUT OFF FREQUENCY)

γ θ −5.07± 9.18 1.45± 1.46 0.40±5.67 5.36±13.82 0.20±0.87

(Contribution) (0.82± 0.095) (0.77± 0.109) (0.79±0.067) (0.72±0.122) (0.76±0.067)

γ ω 0.32± 5.89 −1.95± 0.54 5.46±14.77 −3.49±3.97 −2.38±0.72

(Contribution) (0.60± 0.071) (0.69± 0.052) (0.77±0.100) (0.62±0.053) (0.75±0.044)

HIGH-PASS FILTERED DATA (1-Hz CUT OFF FREQUENCY)

γ θ −3.10± 0.05 −3.44± 0.11 −3.67±0.25 −3.12±0.14 −3.72±0.10

(Contribution) (0.99± 0.002) (0.98± 0.003) (0.99±0.002) (0.97±0.002) (0.99±0.002)

γ ω −3.53± 0.07 −3.99± 0.10 −3.72±0.13 −3.52±0.06 −4.54±0.12

(Contribution) (0.99± 0.000) (0.99± 0.001) (0.99±0.001) (0.99±0.001) (0.99±0.001)

PSD Analysis
Figure 6 shows PSDs for the experimental sway data; PSDs of θ a
and θh (Figures 6A1–A5) and those of ωa and ωh (Figures 6B1–
B5). In each panel, the thin green curves represent PSDs for ankle

motion (θ a in Figures 6A1–A5 and ωa in Figures 6B1–B5) in
the five trials, while the thick blue curve represents the ensemble
average of those five ankle PSDs. The thin red curves represent
the five sampled PSDs for hipmotion (θh in Figures 6A1–A5 and
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FIGURE 5 | Low- and high-pass filtered sway trajectories of ankle and hip joint dynamics during quiet stance (Subject 4). (A1–A3) are for the θa-θh plane

and (B1–B3) are for the ωa-ωh plane. See legend of Figure 4 for details of lines in each panel. (A1,B1) exhibit the non-filtered, original sway trajectories, which are

exactly the same as (A4,B4) in Figure 4. Black curves in (A2,B2) are low-pass filtered (1-Hz cut off frequency) trajectories for the data in (A1,B1). Gray thick curves

represent the non-filtered, original trajectories, which are the same as the trajectories in (A1,B1). Curves in (A3,B3) are the high-pass filtered trajectories for the data in

(A1,B1) (1-Hz cut off frequency).

FIGURE 6 | Power spectrum density (PSD) functions of joint angular displacement and angular velocity for five subjects. (A1–A5) Depict PSDs of joint

angular displacement, while (B1–B5) exhibit those of angular velocity. In each panel, green and red curves represent PSDs of the ankle and hip joints for individual

trials, respectively. Blue and black curves are the ensemble averages over trials of the green and red curves, respectively. Gray-shaded bars indicate the locations of

peak frequencies between 1 and 6 Hz to characterize PSDs in the lower panels, which are extended into the upper panels to show the coincidence of peaks.
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ωh in Figures 6B1–B5) and the thick black curve represents the
ensemble average of those five hip PSDs.

Both ankle (blue) and hip (black) velocity PSDs exhibited
several characteristic peaks in the high frequency regime above
1 Hz (Figures 6B1–B5). Peaks in each hip angular velocity PSD
were determined and are indicated in the figure by gray-shaded
bands. We found that the blue PSD (i.e., ankle angular velocity)
exhibited characteristic peaks at the gray-shaded frequencies
determined for the hip angular velocity. That is, PSDs for
hip and ankle velocities exhibited characteristic peaks at the
same frequencies. We extended the gray bands determined for
Figures 6B1–B5 into Figures 6A1–A5 for the joint angles, and
found that the PSDs for the ankle and hip joint angles also tended
to exhibit characteristic peaks at the gray-shaded frequencies
determined for the angular velocities. Table 5 summarizes those
gray-shaded frequencies, where most of the characteristic peaks
in the PSDs were integral multiples of the lowest characteristic
frequency located at 1–1.5 Hz. Together, these findings reveal
that peaks at higher frequencies were the harmonics of the
fundamental frequency located at 1–1.5Hz, suggesting that the
ankle and hip joints oscillate at a characteristic frequency of
1–1.5Hz.

Eigenfrequency Analysis
Figure 7 shows how the eigenfrequency of the antiphase mode
of the off-model, corresponding to the D-UCManti, varies as
a function of the passive elasticity Kh and viscosity Bh at the
hip joint, where the eigenfrequency of the anti-phase mode is
color-coded on the Kh-Bh plane. Based on our finding that
the fundamental frequency of anti-phase joint motion during
quiet standing was 1–1.5Hz (Table 5), we focused on the
eigenfrequency of the anti-phase mode between 1 and 1.5Hz
by coloring the parameter regions for the eigenfrequency below
1.0Hz in gray and that above 2.0Hz in white. We found
that the larger the passive hip elasticity, Kh, the higher the
eigenfrequency of the anti-phase mode of the off-model. On the
other hand, the larger the passive hip viscosity, Bh, the lower
the eigenfrequency. The parameter region corresponding to the
eigenfrequency of the anti-phase mode of the off-model (i.e.,
close to the experimental fundamental frequency) is represented
by the color-band between blue to blue-green, showing the
relatively wide distribution range of this eigenfrequency in the
parameter space. In other words, if the passive viscoelasticity of
the hip joint were to be located within this parameter region,

the off-model—in the absence of active feedback control—
would be able to exhibit anti-phase, ankle-hip coordination with
frequencies consistent to those of our experimental observation.

Eigenfrequency and Stability of the
Anti-Phase Mode of the On-Model
Although the off-model without active feedback control can
exhibit anti-phase, ankle-hip coordination with frequencies
consistent to those of our experimental observation, there
remains a possibility that the on-model with time-delayed,
active feedback control can also exhibit anti-phase, ankle-hip
coordination of similar frequencies. If this is the case, then anti-
phase coordination near the D-UCManti may not necessarily be
associated with the off-model. In the paragraph that follows, we
discuss how the on-model can just barely exhibit anti-phase,
ankle-hip coordination with frequencies from our experimental
observation. Further, such coordination in the on-model can only
occur when the combination of passive and active feedback gain
values are tuned to within a very narrow parameter region.

Figure 8 explores how the eigenfrequency of the anti-phase
mode in the on-model changes depending on the values
of passive viscoelasticity (Kh and Bh) and proportional and
derivative gains at the ankle joint (Pa and Da), as well as
proportional and derivative gains of the active, delayed feedback
controller (Ph and Dh) at the hip joint. In Figure 8, in addition
to the eigenfrequency of the anti-phase mode, stability regions
of the on-model are also clarified (the region surrounded by
the black line in each Ph-Dh plane). For example, Figure 8A
depicts the exploration of the Ph-Dh parameter plane when the
passive elastic and viscosity coefficients of the hip joint are fixed
at (Kh, Bh) = (0.2mgh, 50) and the proportional and derivative
gains of the active feedback controller at the ankle joint are fixed
at (Pa, Da) = (1.0mgh, 0), where, as in Figure 7, the Ph-Dh

parameter plane is colored by the eigenfrequency of the anti-
phase mode. The region with the color band between blue and
red represents the eigenfrequency between 1.0 and 2.0 Hz, while
the gray and white regions indicate the eigenfrequency below
1.0 Hz and above 2.0 Hz, respectively. However, Figure 8A is
a singular case, where passive elasticity at the hip is very small
(Kh = 0.2mgh) and passive viscosity at the hip is relatively
large (Bh = 50 Nms/rad). In this case, the on-model can exhibit
the anti-phase mode with a frequency between 1.0 and 1.5 Hz
for Dh, below about 15 Nms/rad (the region colored by blue
or blue-green), which spans a relatively wide region. However,

TABLE 5 | Peak frequencies charactering power spectrum density (PSD); see Figure 6.

Subject no. Fundamental frequency (: FF) Frequency band

1–2 [Hz] 2–3 [Hz] 3–4 [Hz] 4–5 [Hz] 5–6 [Hz]

1 1.1 1.1 (FF × 1) 2.3 (FF × 2) 3.3 (FF × 3) — 5.6 (FF × 5)

2 1.1 1.1 (FF × 1) 2.2 (FF × 2) 3.2 (FF × 3) 4.4 (FF × 4) 5.4 (FF × 5)

3 1.1 1.1 (FF × 1) 2.4 (FF × 2) 3.3 (FF × 3) 4.4 (FF × 4) —

4 1.4 1.4 (FF × 1) 2.8 (FF × 2) — 4.2 (FF × 3) —

5 1.3 1.3 (FF × 1) 2.6 (FF × 2) 3.9 (FF × 3) — 5.3 (FF × 4)
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FIGURE 7 | Eigenfrequency of the anti-phase mode of the double

inverted pendulum model without active feedback control (off-model)

as a function of the passive elasticity Kh and viscosity Bh. The

eigenfrequency at each set of (Kh, Bh) is color-coded based on colored bars

on the right-side of the panel. The Kh-Bh parameter regions are colored gray

and white for eigenfrequencies lower than 1.0 Hz and higher than 2.0 Hz,

respectively. In this figure (and throughout this study), the passive

viscoelasticity at the ankle joint is fixed at (Ka, Ba) = (0.8mgh, 4.0).

even in the above-described case, we postulate that the D-
UCManti of the off-model is responsible for the experimentally
observed anti-phase coordination for the following reasons.
In our framework (Figure 8A), we contrasted two control
mechanisms that could stabilize upright posture with anti-phase,
ankle-hip coordination with a frequency between 1.0 and 1.5 Hz.
The first mechanism (continuous control) was characterized by
the on-model being persistently utilized, whereby upright posture
was solely stabilized by the active feedback controller (i.e., the
on-model without switching between on- and off-models). In
this case, Ph-Dh parameter values should be located within the
stability region, and the Ph-Dh region should be blue-green in
color such that it exhibits anti-phase, ankle-hip coordination with
a frequency between 1.0 and 1.5 Hz. As can be seen, overlap
between these two regions was very small (Ph was close to 0.2mgh
and Dh between 10 and 15 Nms/rad); thus, it is physiologically
implausible and less likely that Ph-Dh parameter values are
finely tuned to such small region. The other mechanism that we
utilized in our framework was the intermittent feedback control
strategy, where the feedback controller switched between the off-
and on-model. Note that each off- and on-model is typically
unstable in the intermittent control model (Suzuki et al., 2012).
In our sample case, use of the off-model was inevitable for the
stability of upright posture (i.e., upright posture could not be
stabilized without the off-model), implying that the D-UCManti

of the off-model was responsible for the experimentally observed
anti-phase coordination.

Figure 8B includes six panels with different combinations of
passive viscoelasticity (Kh, Bh; fixed in each panel); each panel
consists of 25 Ph-Dh planes for varying arrangements of active
feedback gains at the ankle (Pa, Da; fixed in each plane). For
most combinations of active feedback gain at the hip (Ph, Dh)
and ankle (Pa, Da), the blue or blue-green regions appear quite
limited (Figure 8B), revealing that the on-model hardly exhibits
the experimentally observed anti-phase, ankle-hip coordination

of 1.0–1.5-Hz frequencies. Keeping this observation in mind, and
exploring Figure 8B in more detail, it can be seen that the 25
Ph-Dh planes in the panels for Kh = 0.6mgh (corresponding to
large, passive stiffness at the hip), with a Bh of either 30 or 50
Nms/rad and in the panel for (Kh, Bh) = (0.4mgh, 30), exhibit
wide red (and white) regions. This observation suggests that the
eigenfrequency of the anti-phase mode was higher than 1.5 Hz,
and that it could therefore not be tuned to frequencies between 1
and 1.5 Hz. Thus, we concluded that the on-model would never
be responsible for the experimentally observed anti-phase, ankle-
hip coordination occurring between frequencies of 1.0 and 1.5
Hz, regardless of active feedback gain values at the hip (Ph, Dh)
for sets of (Kh, Bh). In other words, if the physiological values of
(Kh, Bh) fall within the above-indicated ranges, anti-phase, ankle-
hip coordination of frequencies between 1.0 and 1.5 Hz should be
generated by the off-model.

The panels for (Kh, Bh) = (0.2mgh, 30), (Kh, Bh) = (0.2mgh,
50), and (Kh, Bh) = (0.4mgh, 50) comprise of some Ph-Dh

planes that involve blue or blue-green regions, meaning that,
as in Figure 8A, the on-model can exhibit anti-phase, ankle-hip
coordination with a frequency between 1.0 and 1.5 Hz, but only if
Ph andDh are set to small values. However, stability regions of the
on-model, which span relatively wide areas around the middle of
the Ph-Dh planes in the three panels, do not overlap with either
the blue or the blue-green regions. Thus, the eigenfrequency of
the anti-phase mode in the stable on-model is much higher than
the 1−1.5 Hz band. Since small Ph and Dh values in the unstable
on-model require switching to the off-model for upright posture
stabilization, once again, we concluded that the D-UCManti of
the off-model was responsible for the experimentally observed
anti-phase coordination.

Together, these results suggest that the experimentally
observed anti-phase coordination between the hip and ankle
joints was generated by the dynamics along the off-model D-
UCManti (without active feedback control), and that this was the
case regardless of the passive viscoelasticity values (Kh and Bh).

DISCUSSION

Summary
In this study, we considered two types of uncontrolled manifolds
(kinematic- and dynamic-UCMs) during human quiet stance
based on a double inverted pendulum model of the human body.
The kinematic-UCM is defined by a kinematic constraint such
that the CoM of the whole body is constant in the anterior-
posterior direction (Creath et al., 2005; Hsu et al., 2007; Pinter
et al., 2008). On the other hand, the dynamic-UCM is defined by
the stable manifold of a saddle-type unstable upright equilibrium
of the double inverted pendulum with no active feedback
control (the off-model), in association with an intermittent
feedback control hypothesis postulating that the CNS stabilizes
upright posture by intermittent and appropriate inactivation of
a feedback controller (Bottaro et al., 2008; Asai et al., 2009;
Suzuki et al., 2012). Here, we showed that the kinematic-
and dynamic-UCMs (particularly, the two-dimensional stable
manifold denoted by D-UCManti associated with the oscillatory
stable mode of the unstable dynamics exhibiting anti-phase

Frontiers in Human Neuroscience | www.frontiersin.org 14 December 2016 | Volume 10 | Article 618

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Suzuki et al. Dynamic UCM during Quiet Stance

FIGURE 8 | Eigenfrequency and stability of the anti-phase mode for the double inverted pendulum model with continuous active feedback control

(on-model) on the Dh-Ph parameter plane for varied parameter values of Kh, Bh, Da, and Pa, where Dh and Ph are the derivative and proportional

gains of the active feedback controller at the hip joint, respectively, and Da and Pa are the derivative and proportional gains of the active feedback

controller at the ankle joint, respectively. See legend of Figure 7 for color identification details. In each panel, the area surrounded by the black curves represents

the stability region. (A) Example case (Kh, Bh, Pa, Da) = (0.2mgh, 50, 1.0mgh, 0). (B) Systematic exploration for various values of Kh, Bh, Da, and Pa. In this study,

the passive viscoelasticity at the ankle joint was fixed at (Ka, Ba) = (0.8mgh, 4.0).

coordination between the ankle and hip joints) were almost
identical, meaning that the geometrical configuration of these
two types of UCM in the ankle-hip joint angle space (θ a-θh plane)
and in the ankle-hip angular velocity space (ωa-ωh plane) were
quite similar to each other.

We plotted experimentally observed postural sway on the
θ a-θh and ωa-ωh planes, and showed that the high-frequency
component (>1 Hz) varied along either kinematic- or dynamic-
UCMs (because of their similarity), but that the low-frequency
component (<1 Hz) spanned the subspace complemental to the
UCM. A spectral analysis using PSDs of the postural sway data
showed that the PSD of every subject exhibited a characteristic
peak, which represented the fundamental frequency in the
1.0−1.5-Hz band and its harmonics. Moreover, this fundamental
frequency coincided with the eigenfrequency of the anti-phase

mode, which corresponded to the dynamics on the D-UCManti

of the off-model. In order to confirm that the oscillation with
the anti-phase coordination at 1.0−1.5 Hz was generated by the
anti-phase mode of the off-model, we examined whether the
on-model could also generate an anti-phase oscillation (either
stable or unstable) with a fundamental frequency of 1.0−1.5
Hz. Our analysis of the on-model employed a wide range
of passive viscoelasticity values and active delayed feedback
controller gains, and revealed that the parameter regions for
the on-model that could exhibit the experimentally observed
anti-phase coordination (within a range of 1.0−1.5 Hz) were
extremely limited (Figure 8). Thus, the experimentally observed,
anti-phase coordination was most likely generated by dynamics
of the off-model along the dynamic-UCM. Moreover, these
findings support the intermittent feedback control hypothesis,
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which postulates that coordinated motion between the ankle and
hip joints is caused by purely mechanical, passive dynamics of
the human body with smart and intermittent use of off-model
dynamics by the CNS to stabilize upright posture during quiet
stance.

Passive Dynamics of the Human Body Are
Responsible for Ankle-Hip Coordination
The results summarized above are consistent with a study
by Saffer et al. (2008) that reported a correlation between
ankle muscle activation patterns and leg posture during quiet
stance (reflecting counteractivity to gravity), but no clear
correlation between trunk segment posture and relevant muscle
activation. Based on these results, they concluded that anti-
phase coordination between the trunk and lower extremities at
high frequency bands had arisen from indirect (i.e., passive),
biomechanical control of the posterior leg muscles.

In our previous study, we reported that angular accelerations
of the ankle and hip joints (denoted by αa and αh) exhibit a strong
correlation with a negative correlation coefficient (referred to
as the reciprocal relationship), and that trajectories representing
postural sway dynamics in the αa-αh plane are located along
a specific subspace of the αa-αh plane (referred to here as the
UCMa) such that acceleration in the anterior-posterior direction
of CoM is zero. Although such a simple reciprocal relationship
seemingly reflects underlying active control, we revealed that
the reciprocal relationship is always held by Newton’s second
law for the double inverted pendulum, and that this is true
regardless of the passive (as well as the active) joint torque
patterns acting on the ankle and hip joints (Suzuki et al., 2015).
In this study, we showed that joint angles and angular velocities
at the ankle and hip joints exhibited anti-phase, coordinated
oscillations at a fundamental frequency of 1−1.5 Hz. This anti-
phase coordination corresponded to the characteristic frequency
of the power spectra for angular accelerations at the ankle and hip
joints shown in our previous study, implying that the anti-phase
coordination examined in this study resembled the reciprocal
relationship.

Zhang et al. (2007) analyzed coordinated motion between
lower extremities and the upper body during quiet stance
under several instances of varying visual (eyes-open/eyes-closed)
and tactile (with/without light-touch) information. Using this
approach, they observed a reduction in in-phase coordination
between the ankle and hip joints (with frequencies below 1 Hz)
for the eyes-open and light-touch conditions, while anti-phase
coordination above 1 Hz did not change for any condition. Their
results suggest that sensory information does not exert great
influence over anti-phase coordination between the ankle and hip
joints, and this finding is consistent with our current study, which
showed that passive dynamics of the body without active control
were responsible for anti-phase coordination.

Thus, passive dynamics of the human body without
active feedback control seem to be responsible for ankle-hip
coordination, which appear be negatively correlated with angular
accelerations between the ankle and hip joints. Together with
the intermittent feedback control scenario, postural sway during

quiet stance can be formulated as follows: When the postural
state point is located on/near the dynamic-UCM during which
the active feedback control is inactivated (off-model), purely
mechanical, passive dynamics are responsible for sway, and
the state point oscillates on/along the dynamic-UCM (transient
convergence toward the upright position). Since the dynamic-
UCM is equivalent to the stable anti-phase mode of the off-
model, resulting angular accelerations at the ankle and hip joints
exhibit a reciprocal relationship, as shown in our previous study.
Further, due to the unstable nature of the upright position of the
off-model, as the state point transiently approaches the upright
position, it eventually begins to move away from the dynamic-
UCM, at which point the active feedback controller is switched on
(on-model). As shown in Suzuki et al. (2012), the on-model in the
intermittent feedback control model is also unstable due to delay-
induced instability, where the unstable, in-phase mode (rather
than the unstable, anti-phase mode) plays a significant role in
kicking the falling pendulum upward. This in turn provides an
opportunity for the state point to be close to the dynamic-UCM,
which triggers a subsequent switch to the off-model. Indeed, the
unstable, in-phase mode of the on-model exhibits slow dynamics,
which correspond to the low frequency component (<1 Hz)
in experimental postural sway; however, it should be noted
that a quantitative analysis of the low frequency component
of in-phase coordination is beyond the scope of the current
study.

Taking the above conclusion into consideration, it is worth
mentioning the different dynamics of postural sway between
healthy young and elderly subjects, particularly in relation to
ankle-hip coordination. Kato et al. (2014) reported that CoM
variation in the elderly is significantly larger than in young
subjects. Interestingly, they revealed that elderly individuals
exhibit a reduction in anti-phase coordination amplitude
when compared to that of young subjects. These results can
be interpreted as follows. First, a reduction of anti-phase
coordination in the elderly might be caused by an increase in
passive viscoelasticity at the hip joint, since a larger passive
viscoelasticity induces small-amplitude anti-phase oscillations at
frequencies much higher than those observed experimentally
(Figures 6–8). Moreover, an increase in the range of CoM
variation in the elderly results in an increase in the in-
phase (as opposed to anti-phase) coordination, since in-phase
coordination between the trunk and lower extremities is always
accompanied by a CoM-shift. The logical consequence is that
aging may worsen the ability of elderly individuals to adjust
their posture close to the kinematic- and dynamic-UCMs, namely
a problem of deteriorated control efficiency. A number of
different explanations of such deterioration may be formulated:
(1) increased delay of the sensorimotor feedback loop; (2)
increased noise of the sensory information used by the brain
for detecting the location of one’s own body dynamics in the
phase space and/or the distance of the postural state from the
kinematic- and dynamic-UCMs; (3) increased uncertainty of
the switching mechanism implied by the intermittent controller.
Such explanations are not necessarily alternative and they mix
their effects in a variety of manners, specifically for each
individual.
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The Kinematic- vs. Dynamic-UCM;
Cooperative Roles Played by Two Different
Control Strategies
The geometrical similarity between the kinematic- and dynamic-
UCMs implies that it is difficult to determine which strategy,
namely the CoM-control hypothesis based on the kinematic-
UCM or the intermittent feedback control hypothesis based on
the dynamic-UCM, is more physiologically plausible in its use
by the CNS for upright stance stabilization. Nevertheless, the
current study support the hypothesis that the CNS stabilizes
upright posture by using the intermittent feedback control
strategy, in which the CNS exploits the transiently converging
dynamics onto the dynamic-UCM and thus toward the unstable
upright position.

The following discussion is centered on possible mechanisms
of how the postural state point can move near the kinematic-
and dynamic-UCMs, at least for some periods of time. First,
it is important to point out that the CoM-control strategy is
necessarily forced to utilize an active feedback controller that
operates continuously, rather than intermittently, in order to
reduce the sway component complemental to the kinematic-
UCM. As a reminder, the kinematic-UCM is defined based on
the gravitational balance among human body segments, and thus
this UCM depends on body parameters and the geometrical
relationship among CoM positions of the segments. Because of
this, the kinematic-UCM cannot determine dynamics on the
UCM nor the stability of upright posture, even if dynamics
of the system are only considered for the state point on or
close to the kinematic-UCM. Hence, without some mechanism
to push the postural state point closer to the kinematic-UCM
(i.e., a continuously active feedback controller), the postural state
point would easily deviate from the kinematic-UCM. In fact,
this deviation would even occur if the postural state point were
located exactly on the kinematic-UCM.

For the CoM-control hypothesis, there are several possible
strategies that can fulfill the requirement of a continuous, active
feedback controller to facilitate the state point to move along the
kinematic-UCM. One such strategy is the sliding mode control
(SMC) (Utkin, 1977; Young et al., 1999; Zhang et al., 2016).
A model with the SMC requires a low-dimensional hyperplane
that includes a desired state point (upright posture in the case
of postural control), referred to as the sliding surface. The
sliding surface is designed so that the desired state point is
asymptotically stable. If we consider the kinematic-UCM as the
sliding surface, upright posture would not be a stable equilibrium
point of the subsystem governing dynamics along the kinematic-
UCM. This is because the kinematic-UCM is defined based on
the geometry of the CoM, without taking the stability of the
equilibrium point into account. In this way, the kinematic-UCM
could not be the sliding surface (in terms of the SMC) without
introducing a control mechanism for stabilizing upright posture.
Contrastingly, the dynamic-UCMby itself could serve as a sliding
surface because it is a stable manifold of a saddle-type, unstable
equilibrium point; thus, the state point on the dynamic-UCM
would approach the upright posture without any help of active
control mechanisms.

One may argue that the intermittent feedback control
hypothesis (Asai et al., 2009; Suzuki et al., 2012) is the CoM-
control hypothesis with additional controllers for stabilizing
upright posture, as it also utilizes an active feedback controller to
ensure the state point to be close to the dynamic-UCM. However,
the action of the active feedback controller used for the on-
model in the intermittent control hypothesis is quite different
from feedback controllers used in the typical SMC, although it
aims at directing the UCM as the sliding surface. The difference is
apparent in the on-off switching frequency of the active feedback
controller. If the SMC is used for the CoM-control hypothesis,
the feedback controller might be designed so that it forcefully
directs the kinematic-UCM as the sliding surface, which typically
causes high-frequency chattering. This is because the kinematic-
UCM does not possess by itself any specific dynamic mechanism
to keep the state point close to the kinematic-UCM, as discussed
above, and thus the state point would rapidly deviate from the
sliding surface without forceful feedback actions. Together with
the fact that the kinematic-UCM cannot induce by itself any
dynamics that can be associated with anti-phase coordination,
this suggests that the CoM-control hypothesis implemented with
the SMC is not capable of exhibiting the experimentally observed
postural sway along the kinematic-UCM (Figure 6, Table 5).

Contrastingly, the active feedback controller in the
intermittent control strategy typically utilizes delay-induced,
unstable, oscillatory dynamics which does not aim at forcing
the state point to approach the dynamic-UCM. Instead, such
unstable, oscillatory dynamics around the upright equilibrium
naturally provides an opportunity for the state point to approach
the dynamic-UCM within a period of time after the active
controller is switched on. Moreover, the dynamic-UCM itself
does involve dynamics to move the state point along the
dynamic-UCM, as discussed above; thus, once the active control
is switched off, the state point of the off-model can move on the
sliding surface without feedback. For these reasons, the on-off
frequency in the intermittent control strategy is typically far
less than that in the SMC, providing opportunities for the state
point to exhibit anti-phase oscillations in the dynamic-UCM for
certain periods of time.

Taken together, and in terms of the major mechanism of
anti-phase coordination between the hip and ankle joints along
the UCM during quiet standing, it is natural to conclude
that the CNS utilizes transiently converging dynamics on the
dynamic-UCM (via the intermittent feedback control strategy)
rather than the kinematic-UCM (via the CoM-control strategy).
Nevertheless, the results of this study also suggest that the
CoM-control hypothesis and the intermittent feedback control
hypothesis are closely related to each other, and that the strong
similarities between the kinematic- and dynamic-UCMs provide
an opportunity for the CNS to simultaneously establish a small
range of CoM variations and robust bounded stability. In
summary, the goal of the active controller in the CoM-control
strategy is to drive the postural vector close to the kinematic-
UCM, whereas that in the intermittent control strategy is
to drive the postural state close to the dynamic-UCM. Both
hypothetical strategies assume that the CNS suspends the active
control when the postural vector or the state is near the UCM.
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Because of the geometric similarity between the kinematic- and
dynamic-UCMs, inactivations of the active control turn out
to be occurring at similar timings in both hypotheses. These
aspects are the similarity between the CoM-control hypothesis
and the intermittent control hypothesis. The difference between
two hypotheses is that the CoM-hypothesis alone cannot explain
how the upright posture (even if the postural vector is on the
kinematic-UCM) is stabilized, but it can explain, by definition
of the kinematic-UCM, how the CoM variations are reduced,
whereas the intermittent control hypothesis can explain how
stability of the upright posture is achieved using transiently
converging dynamics on the dynamic-UCM. Although the
dynamic-UCM is not defined in relation to constancy of the
CoM, the dynamic characteristics of the dynamic-UCM, i.e.,
the oscillatory anti-phase mode associated with the dynamic-
UCM, can make CoM variations small, implying that the CoM-
control hypothesis can be considered as part of the more general
intermittent control hypothesis.

Relations to Other Studies
Gawthrop et al. proposed an intermittent control model, which
includes a different type of intermittency (Gawthrop et al.,
2011; Loram et al., 2011) from the intermittent feedback control
hypothesis (Bottaro et al., 2008; Asai et al., 2009; Suzuki et al.,
2012). They also investigated similarities and differences between
the intermittent feedback control model referred to as Zero
Control (ZC) and their intermittent control model (Gawthrop
et al., 2014), referred to as the Open-Loop Trajectory (OLT).
In the OLT model, a “predictor” is placed in the feedback
loop for compensating the feedback time delay, where the
predictor intermittently samples the postural state. According
to the intermittently sampled state, an internal model performs
estimations of the current and predicted states until the next
sampling time, and these estimations are used for calculating the
active control torque. Note that, in the OLT model, the postural
state is observed intermittently, while the active control torque
is provided continuously. On the other hand, in the ZC model,
the active “feedback” control is provided intermittently, while
the (delayed) postural state is observed continuously. Although
simulated postural sway in a single inverted pendulum model of
the OLT is similar to that of the ZC in state space, we expect that
intermittent control with the OLTmodel (if applied to the double
inverted pendulum model) might not be able to explain postural
sway dynamics along the UCM with an anti-phase coordination
between 1 and 1.5 Hz as continuous control is not appropriate for
producing such dynamics.

Insperger et al. have considered the continuous proportional-
derivative-acceleration (PDA) controller to include a predictor-
like mechanism by introducing acceleration feedback (Insperger
et al., 2013; Insperger and Milton, 2014), and have shown
expansion of the stability region in comparison with the PD-
feedback controller without acceleration-feedback controller.
However, as in the case of the OLT, the continuous PDA control
model (if applied to the double inverted pendulummodel) might
not be able to explain postural sway dynamics along the UCM
with anti-phase coordination between 1 and 1.5 Hz because of a
lack of intermittency in the feedback action. Moreover, in both

cases the crucial role attributed to the prediction mechanism
is by itself a cause of reduced robustness if we consider the
physiological level of noise of proprioceptive signals. In contrast,
the intrinsic robustness of the intermittent control strategy is
based on the simplicity of the switching mechanism and its
capability to tolerate the large delay of sensory feedback.

Generally speaking, achieving stability via prediction for a
system that is strongly affected by noise and intrinsic instability is
a biologically implausible strategy, or is at least less plausible than
a strategy that exploits self-stabilization features of whole-body
biomechanics.

Limitations of the Current Study
Validation of the Similarity between the Kinematic-

and Dynamic-UCMs
One may argue whether the similarity between kinematic-
and dynamic-UCMs can be validated or quantified statistically.
Unfortunately, however, these two spaces are defined based on
the mathematical models, not based on statistical properties
that are derived from experimental sway data. Since they
are mathematically different spaces, having even different
dimensionalities, rigorously speaking, they cannot be even
compared whether they are the same or not, and thus they can
never be identical. In this sense, we have just stated that these
two spaces are similar with each other qualitatively. This is also
the case for comparison between theoretical values of UCM
slope and the slopes of the principal axis that were obtained
from the experimental sway data. The values of UCM slope
calculated from the models are not distributed statistically, but
they are given as single values deterministically by the equations
of motion, although they are parameterized by individual body-
mass parameters. If the double-inverted-pendulum model were
not an approximation but were a true description of the
body dynamics, the experimentally obtained principal axis may
distribute around the theoretical value. However, it is not the case
in this study unfortunately.

Generalizability of the Results
In this study, a comparison was made between kinematic- and
dynamic-UCMs based on the double-inverted-pendulum model,
and we showed similarity between them. However, it is of critical
importance to made a further comparison using multi-link-
inverted-pendulum models that include more joints, such as
knee and neck joints, with three or more links, and examine
whether similarity could also be observed in multi-link-inverted-
pendulum models, because it is reported that dominant postural
sway can be better explained by the kinematic-UCM of a six-link-
inverted-pendulum than that of a double-inverted-pendulum
(Hsu et al., 2007). Although such comparison is outside the scope
of this study, the analytical technique that maps two or three
dimensional plane representing the stablemanifold of the upright
saddle-point in the four-dimensional dynamic state space for
the double-inverted-pendulum model into the two-dimensional
kinematic joint angle space can always be applicable to multi-
link-pendulum models, and it should be considered as a future
issue. In case of six-link-inverted-pendulummodel in the sagittal
plane, the dimension of the state space becomes twelve, for
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which a certain amount of calculations to find eigenvalues of
a twelve-dimensional differential equation is required to obtain
the dimension of its stable mode. Interestingly, Tanabe et al.
(2016) showed that the intermittent feedback control can stabilize
a quadruple inverted pendulum model, which implies a stable
manifold of the quadruple inverted pendulum model without
active control occupies a high-dimensional subspace of the eight-
dimensional state space of the model. If the results of this study
can be generalized for multi-link pendulum models, such a high-
dimensional stable manifold, or its subspace dominating the
stability, it is expected that the stable manifold will be similar to
the high-dimensional kinematic-UCM.

Gender and age dependency of postural swayIt could be
problematic that the subjects participated in this study were all
young male adults, since postural sway and thus postural control
strategy can be age-dependent (see Demura et al., 2008; Oba et al.,
2015, for example). However, there is also a report showing that
no gender effect and interaction exist in anterior-posterior sway
(Kim et al., 2010). In any case, it should be discussed as a future
issue of how gender and age could alter the results shown in this
study.

Remarks
In this paper and in our previous related studies, we assume the
“off” parameters (“passive” joint stiffness and viscosity during
off-phases) are constant over time. However, in fact, they are
somewhat controlled by the CNS, i.e., co-activation levels of
agonistic-antagonistic and stabilization muscles will alter the

apparent “passive” stiffness and viscosity of the joints. Therefore,
in reality, even in the off-phases of the control, “passive”
joint viscoelasticity (i.e., joint viscoelasticity that do not alter
directly depending on the on-off switching of the active feedback
controller) is actually modulated by the CNS, but at a different
time scale (slower time scale). Such a slow modification may
also be affected by a feedforward controller, and altered by
environmental conditions as well as motor learning.
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