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Abstract 

Background: Previous experiments in tacit coordination games hinted that some people are more successful in 
achieving coordination than others, although the variability in this ability has not yet been examined before. With that 
in mind, the overarching aim of our study is to model and describe the variability in human decision-making behavior 
in the context of tacit coordination games.

Methods: In this study, we conducted a large-scale experiment to collect behavioral data, characterized the distri-
bution of tacit coordination ability, and modeled the decision-making behavior of players. First, we measured the 
multimodality in the data and described it by using a Gaussian mixture model. Then, using multivariate linear regres-
sion and dimensionality reduction (PCA), we have constructed a model linking between individual strategic profiles of 
players and their coordination ability. Finally, we validated the predictive performance of the model by using external 
validation.

Results: We demonstrated that coordination ability is best described by a multimodal distribution corresponding to 
the levels of coordination ability and that there is a significant relationship between the player’s strategic profile and 
their coordination ability. External validation determined that our predictive model is robust.

Conclusions: The study provides insight into the amount of variability that exists in individual tacit coordination 
ability as well as in individual strategic profiles and shows that both are quite diverse. Our findings may facilitate the 
construction of improved algorithms for human–machine interaction in diverse contexts. Additional avenues for 
future research are discussed.
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1  Background
A tacit coordination game is one in which two individu-
als are rewarded for making the same choice from the 
same set of alternatives, and any form of communication 
between the players is not allowed or not possible (e.g., 
[1–4]). Such problems have been formally modeled in 
game theory as games with multiple Nash equilibria solu-
tions with equal values [5]. Tacit coordination problems 
can be found in real-life situations such as tacit collusion 
among retail chains [6], social coordination, allowing, for 

example, the convergence on a new technological plat-
form [7], and auction-based collaboration scenarios [8].

Since Schelling’s seminal work in 1960 [4] many 
experiments have shown that people somehow manage 
to converge on a solution more effectively than what 
was predicted by the game-theoretical analysis. Appar-
ently, for different reasons, some equilibria solutions 
appear more prominent than others for the players in 
the game. These solutions are denoted as focal points. 
In contrast, the game-theoretical framework fails to 
explain people’s decisions in such games [1], mostly 
because the problem of deciding between multiple 
Nash equilibria, which is one of the major challenges 
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of game theory [4, 9].1 However, as Schelling showed 
in his experiments players do manage to converge on 
a same solution by relying on salient labels that help 
distinguish a set of more prominent solutions, which 
are the focal points [10, 11]. Thus, game theory lacks 
the ability to capture cognitive heuristics that people 
apply when solving coordination problem, such as 
symmetry, proximity, or extremeness [12, 13]. There-
fore, experiments in behavioral game theory try to fill 
this gap by constructing cognitive models describing 
decision-making heuristics (e.g., [14–18]).

Another question that has been left unanswered is 
the degree of heterogeneity in peoples’ ability to suc-
cessfully coordinate in tacit coordination games. In 
other words, given a set of tacit coordination prob-
lems, it seems that some people manage to suc-
cessfully coordinate most of their answers with the 
unknown partner, while others experience difficulties 
in doing so. This ability to succeed in tacit coordina-
tion tasks was hinted at by Bacharach in [1] and was 
named “Schelling’s competence”. In other words, peo-
ple who manage to coordinate most of their answers 
are regarded as having high Schelling’s competence. 
The variation in the level of Schelling’s competence 
might be explained by the propensity of applying mul-
tiple salient selection rules. The weighted combination 
of the selection rules was denoted as a strategic profile 
[15, 16, 19]. Each strategic profile reflects the subjec-
tive preferences of individual players regarding a set 
of heuristics or prominent and salient selection rules 
[15, 16, 19]. Thus, a strategic profile may be regarded 
as a weighted combination of the different selection 
rules utilized by a specific player across different game 
instances to achieve a successful coordination.

The overarching aim of our study was to model the 
relationship between individual coordination ability 
and decision-making within the framework of a tacit 
coordination game. To that end, we have conducted 
a large-scale tacit coordination experiment to collect 
behavioral data. We have first described the variability 
in individual coordination ability (iCA) [16, 17] among 
the players, detected the predominant selection rules 
(e.g., spatial proximity) that players have utilized, and 
finally modeled the relationship between iCA and the 
individual strategic profiles [16].

Next, we have validated the proposed model by pre-
dicting the individual coordination ability of a player 
based on their constructed strategic profile. Under-
standing the differences in individual’s tacit coor-
dination abilities as well as their unique strategic 

profiles will allow a better prediction of human behav-
ior in tacit coordination scenarios and consequently 
the improvement of algorithms for human–machine 
interactions.

2  Methods
2.1  Experimental design
To test the coordination ability of players we used the 
“Assign Circles” [12, 13, 15, 20] tacit coordination game. 
The players were presented with 14 different “Assign 
Circles” decision problems, each associated with a dif-
ferent board layout: 10 predefined problems were taken 
from [12] and additional 4 were randomly generated 
layouts. To avoid consistent bias that may have been 
caused by the order of the games, the games were pre-
sented randomly for each of the players. In each of the 
decision problems the players were asked to assign cir-
cles to squares with the aim of coordinating their assign-
ment with an unknown player, who was presented with 
the same board layout (see Fig.  1 for a game example). 
That is, a successful coordination was achieved when both 
players attached all the circles to the same squares. In 
case of a successful coordination both players gained a 
point and each player could accumulate additional points 
as the game progressed. Both players had no communica-
tion capability at all, and their results were only revealed 
after all the games had been completed.

Based on [12, 13, 15, 16] it was assumed that par-
ticipants would utilize three main selection rules when 
playing the “Assign Circles” games, as follows: (1) close-
ness—assigning each circle to the closest available square; 
(2) accession—assigning circles which are close to one 
another to the same square; and (3) equality—assigning 
the same number of circles to each of the two available 
squares. We examined the variability in how these three 
rules were weighted and aggregated as part of the deci-
sion-making process of each individual participant, for 
the “Assign Circles” game. Importantly, we do not claim 
that these three, domain dependent rules, represent an 
exhaustive listing of all the rules that are available for this 
game (see [12, 16, 18, 21–23]). Rather, we merely suggest 
that these three prominent selection rules should provide 
enough variability in the individual strategic profiles.

As the first ten decision problems of the game have a 
fixed layout, we can analyze each one of them using the 
above mentioned selection rules and detect the expected 
solution by implementing each of the rules in each game. 
In this way, we may potentially predict the solutions by 
which the players will choose to establish a focal point 
had we known the strategic profile of each participant 
and assuming consistency between games. For exam-
ple, let us examine the game presented in Fig. 1. First, it 
is evident that the equality rule is not applicable as there 

1 Quoting Binmore ([61], p. 262), "The equilibrium selection problem is per-
haps the greatest challenge facing modern game theory".
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are 5 circles and any division of either 2–3 or 3–2 will 
not enable the utilization of this rule. Second, the acces-
sion rule solves the coordination problem as illustrated 
in Fig.  1, which displays two distinct groups of circles. 
Lastly, using the closeness rule we expect the middle cir-
cle to be connected to the right-hand square rather than 
to the left one as displayed in Fig. 1. In a similar manner 
we can describe the resultant solution attained by using 
each of the selection rules for each game instance.

2.2  Participants
The participants were 93 students that were enrolled in 
one of the courses on campus [49 of whom were female, 
mean age  = 22.93 (years), SD  = 1.97]. The 93 partici-
pants were randomly assigned to two consecutive ses-
sions, with 48, and 45 participants in each of the sessions, 
respectively. All students were seated in one class and 
each student sat in front of a desktop monitor. Before the 
onset of the experiment, participants received an expla-
nation regarding the overarching aim of the study, the 
experimental procedure, and the graphics of the applica-
tion window. As participants were rewarded according 
to their performance on the “Assign Circles” task, they 
have also received an explanation regarding the criteria 
for allocation of rewards (in the form of course credit) 

according to how many points they gained. To verify that 
participants understood the concept of coordination, 
they were given several training examples by presenting 
screenshots of different layouts of discs for each of the 
players. Moreover, prior to the start of the session, sev-
eral questions were asked by the experimenter regarding 
the usage of the application to ensure that participants 
know how to operate it.

The study was approved by the IRB committee of Ariel 
University. All participants provided verbal informed 
consent for the experiment.

2.3  Measures
2.3.1  Coordination index (CI)
The CI measure proposed by Mehta et  al. [12] is a sta-
tistical measure that allows determining the difficulty of 
coordination in a specific game. Specifically, the higher 
the CI, the easier it is to coordinate between two random 
players. Consider a coordination game with the set of 
possible solutions L =

{

l1, . . . , ln
}

 , where a solution is an 
implementation of specific strategies, and N  is the num-
ber players, when each of them plays the game only once 
with an unknown anonymous partner. For each solution 
lj let mj be the number of individuals who choose it, then 
the coordination index c is given by:

Fig. 1 “Assign Circles” application window
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This index measures the probability that two distinct 
individuals, chosen at random without replacement from 
the set of N individuals, choose the same solution. It 
takes the value 1 if all individuals selected the same single 
solution and 0 if everyone selected a different solution. If 
solutions are chosen at random, the expected value of the 
index is 1n.

2.3.2  Individual coordination ability (iCA)
To measure the coordination ability of each player, we 
assessed their ability to coordinate with all 92 other 
participants in the experiment rather than with a single 
random participant. For this purpose, we calculated the 
total number of games in which each player was able to 
coordinate their responses against the entire experimen-
tal population and normalized it by the total number of 
games. It should be noted that the calculation was only 
carried out on the ten predefined games, but not on the 
four randomized games, since only the predefined games 
were kept constant across participants. iCA [16, 17, 24] is 
formally defined as follows:

where i denotes the ith participant, j denotes the index 
of the jth co-player, N denotes the total number of par-
ticipants, and t denotes the number of games in the 
experiments. The CF (coordination function) is defined 
as follows:

The iCA measure is not intended to be an absolute 
score, but rather it allows ranking the participants that 
completed the same set of tasks based on their iCA val-
ues as was the case in our study.

2.3.3  Strategy rate (SR)
The strategy profile is described by the weighted combi-
nation of the selection rules. To measure the frequency 

(1)c =

∑

j mj

(

mj − 1
)

N (N − 1)
.

(2)iCA(i) =

N
∑

j=1|(j �=i)

t
∑

k=1

CF
(

i, j, k
)

(N − 1)∗t
,

(3)CF
(

i, j, k
)

=

{

1; if players i and j chose the same label in game k

0; otherwise.

of choosing each of the abovementioned strategies by a 
single player, we first defined the strategy rate (SR). SR 
is defined as the probability that a specific player will 
choose using one of the three selection rules in one of the 
decision problems included in the Assign Circles game. 
The SR was calculated based on the behavioral perfor-
mance data of each player in each decision problem. To 
compute the SR measure, we first defined a Game Tag 
(GT) variable for each strategy, which can have one of 
three different values as follows:

The SR for each of the three game strategies can then 
be calculated as follows:

Together, the strategic profile of each individual player 
is a vector composed of three elements, one for each 
of the selection rules [(Acc, Equ, Clo)] using Eq.  5. For 
player #7, for example, the number of games in which 
each of the strategies (Closeness, Accession, and Equal-
ity) was applicable was 8, 10, 7, respectively, and the 
number of games in which each of the strategies was 
implemented was 5, 4, and 4, respectively. Hence, the 
corresponding obtained SR values were as follows: 
5/8 = 0.63; 4/10 = 0.40; 4/7 = 0.57.

3  Results
Before examination of the results pertaining to the iCA 
scores and the strategic profiles, it is important to dem-
onstrate that the players were motivated to coordinate 
with the other unknown partner, that is, that a solution 
in each of the games was not randomly selected. Table 1 

compares the observed CI scores with the hypothetical 
CI scores that would have been obtained had all the play-
ers randomly picked their solution, as expected by game 
theory. We can see that all decision problems were asso-
ciated with a significantly higher CI values than random 
picking (a higher score denotes a better ability to coor-
dinate). We can also notice that the difficulty of coordi-
nation varies across the different decision problems, as 

(4)
GT(i, k)strategy =







1, if the strategy was available in the kth game and the ith player used it

0, if the strategy was not available in the kth game

−1, if the strategy was available in the kth game and the ith player did not use it

.

(5)

SR(i){Acc, Equ, Clo} =

∑14
k=1

[

GT(i, k){Acc, Equ, Clo} = 1
]

∑14
k=1

∣

∣

∣
GT(i, k){Acc, Equ, Clo}

∣

∣

∣

.
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reflected by the fluctuations in the CI score. There are 
few easy coordination problems (e.g., #1, #2), few hard 
problems (e.g., #3, #8) and few problems with a medium 
difficulty level (e.g., #4, #5). Recall that the ICA is a rela-
tive measure and is calculated by pairing each player with 
each of the other players in each coordination problem. 
Therefore, all players have encountered the exact same 
set of predefined problems (1–10).

Figure 2 shows a regression analysis of the data shown 
in Table 1. Figure 2 shows that there is a positive relation-
ship (p  < 0.05) between the three main selection rules 
and the level of difficulty of the game, which is measured 
by the CI value. The higher the CI the easier is the game 
and the percentage of selection rule implementation.

3.1  Characterizing the variability in iCA scores
To characterize the variability in the coordination ability 
among different players, we have plotted the distribution 
of the data using a violin plot combined with boxplot, 
a histogram and a Gaussian mixture model (GMM) 
(Fig.  3A–C, respectively). It can be observed that the 
range of the iCA score is very diverse: the lowest score 
was 0.023 (average of 2% successful coordination) and the 
highest score 0.666 (average of 66% successful coordina-
tion). Also, we can see that the range of the iCA score was 
smaller in the case of the top players (0.55, 0.7) and there-
fore this group was more homogeneous compared to the 

lower quartile. It is also evident that the distribution is 
negatively skewed and that the lower 25% iCA scores are 
more spread out than the higher scores (Fig. 3A). In addi-
tion, the Dip test of unimodality [25] indicated that the 
distribution is multimodal (p  > 0.1, Dip  = 0.025) while 
by estimating the distribution by a GMM with K Gauss-
ians it was demonstrated that the entire distribution can 
be described by three Gaussians (k  = 3 was determined 
by using Residual sum of squares). The mathematical for-
mulation of the iCA mixture model, which is presented 
graphically in Fig. 3C, can be described using the follow-
ing formula:

It is noteworthy that this division into k  = 3 was also 
corroborated using the silhouette index [26] for K values 
at the range [1, 10]. The three Gaussians composing the 
distribution (Fig.  3C) comprise the third Gaussian with 
the lowest iCA scores, which corresponds with the lower 
25%, the second Gaussian which surrounds the median, 
and the first Gaussian which corresponds with the upper 
portion of the IQR as well as with the upper quartile 
(Fig. 3A, B).

(6)

iCA(x) = 8.903*e
−

(

(x−0.659)
0.019

)2

+ 5.572*e
−

(

(x−0.595)
0.023

)2

+ 1.635*e
−

(

(x−0.510)
0.224

)2

.

Fig. 2 The relationship between CI and the frequency of implementation of the selection rules
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3.2  Detection of dominant SR values in the strategic 
profile

Before analyzing the relationship between iCA and the 
strategic profile, it is first necessary to identify the pre-
dominant selection rules utilized by each of the players. 
Table  2 displays the distribution parameters of each of 
the three SR indices:

It is clear from Table  2 that there were two leading 
selection rules: closeness, and equality. The median prob-
ability of using each of the two selection rules by a ran-
dom player was over 70%, if they were applicable in the 
game. In contrast, the accession rule had a much lower 
probability of selection on average by a random player.

A one-way analysis of variance showed that the main 
effect of strategy rate was significant [F(2, 90)  =  63.67, 
p  < 0.001]. Post hoc testing (Tukey HSD) [27] indicated 
that the average mean value of the accession SR value was 
significantly lower than each of the other two SR values, 
closeness, and equality (p  < 0.001).

3.3  Modeling the relationship between strategic profile 
and iCA

The previous section showed that the strategic profile 
contains two leading strategies (closeness and equality) 
and another secondary strategy (accession). This phe-
nomenon may affect the performance of the predictive 
model due to unwanted dependencies between the inde-
pendent variables  (SRCloseness,  SREquality,  SRAccession). On 
the other hand, the omission of one of these variables 
results in discarded data that may consequently lead to 
impaired performance of the predictive model. To deal 
with this problem we will use a dimensionality reduc-
tion technique [28–30] to maximize the variance of the 
data in a smaller number of features, thereby reducing 
the dependencies among the variables. To do so we used 
the principal component analysis (PCA) algorithm [29]. 
We have first conducted feature selection and then per-
formed feature extraction, i.e., we have constructed a new 
feature space by data compression [29, 31].

For feature selection we have first extracted the new 
base vectors, namely, the principal components. The 
components were extracted by calculating the eigenvec-
tors of the covariance matrix of the data after conduct-
ing mean and variance normalization. Then, the principal 
components were sorted according to the magnitude 
of their coefficients (i.e., eigenvectors) from largest to 

Fig. 3 The distribution of the iCA scores. A Violin plot with boxplot. B Histogram. C Gaussian mixture model estimation. The abscissa is the ICA 
score. Note that the third Gaussian (green line) is obscured by the general model because of its high variability

Table 2 Strategy rate statistics

SRCloseness SREquality SRAccession

Mean 0.6919 0.6685 0.3439

Standard deviation 0.2690 0.2624 0.1569

Median 0.7500 0.7143 0.3636
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smallest (in absolute values). Figure 4 presents the three 
principal components (each denoted by U) overlaid on 
the original data (based on the three SR values). Next, we 
performed feature extraction and selected the two com-
ponents, U1 and U2 with the highest explained variance 
(i.e., with the two largest eigenvalues) to create a new 
dimensional feature space. Consequently, we have pro-
jected the original data onto a new feature space while 
retaining the maximum variance in the original dataset 
(Table 3). Thus, we have compressed the original 3D data 
into a new 2D space. Specifically, two new data features 
have been produced: S1—the projection of the vector x 
on U1, and S2—the projection of the vector x on U2.

To ensure that no critical data were lost during the 
process of dimensionality reduction, we performed 
a reconstruction of the reduced data into the original 
dimension while comparing the reconstructed data to 
the original data vector before compression. The stra-
tegic profile of the ith player is denoted by x(i) vector, 
which contains the three SR values. The retained vari-
ance calculation was performed as follows:

The calculation for each number of selected principal 
components produced the following results, described 
in Table 3.

As can be seen in Table 3, for two principal compo-
nents new data vectors can be produced that contain 
about 90% of the variance of the original data, where 
the correlation between the two variables is negligible 
(due to the dimensionality reduction process).

Following data compression, we performed a regres-
sion with the single dependent variable being the coor-
dination ability of the ith player, described by the iCA 
score, while the predictors were the newly found S1 and 
S2 features. In order to find the model coefficients, we 
used multiple linear regressions:

where

(7)

Retained variance = 1−

1
m

∑m
i=1

∣

∣

∣

∣

∣

∣
x(i) − x

(i)
approx

∣

∣

∣

∣

∣

∣

2

1
m

∑m
i=1

∣

∣

∣

∣x(i)
∣

∣

∣

∣

2
.

(8.1)
ICA(i) = 0.52118+ 0.090788∗S1 + 0.054041∗S2,

(8.2)
R2 = 0.8733; F = 310.0768; p < 0.001; VARerror = 0.0029,

(8.3)

S1 = 0.610 ∗ SRCloseness

+ 0.518 ∗ SREquality

+ 0.599 ∗ SRAccession,

Fig. 4 Applying dimensionality reduction to the SR values by PCA. All three SR points of each player (closeness, equality, and accession) are 
displayed within a 3D plane, together with the principal components obtained following dimension reduction

Table 3 Retained variance in dimension reduction process

Number of principal components 1 2 3

Retained variance (%) 70.74 90.43 100
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Fig. 5 The regression model in a 3D space. A multi-variable regression model that describes the relationship between the three SR variables and 
iCA. Each dot represents the iCA value of each player as a function of their strategic profile after data compression (3D to 2D). The new model is 
presented as a 2D plane in a 3D space

Fig. 6 ICA score distribution of the validation group. A Violin plot with boxplot. B Histogram with Gaussian mixture model estimation
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We can see from Eq. 8.2 the strong correlation between 
iCA and the strategic profile, while our correlation is 
based only on two variables, S1 and S2 . This allows us to 
draw a 2D plane, which represents the model, in a three-
dimensional space overlaid on the corresponding iCA 
values, as can be seen in Fig. 5.

3.4  Model validation
In the previous section, we presented a model (Eqs. 8.1, 
8.2, 8.3, 8.4) that links between the iCA scores and the 
individual strategic profiles of the players. In this section, 
we present validation results to assure that the model can 
be applied on a new dataset that was not used for model 
construction. Here, we demonstrate the robustness of the 
model by predicting the iCA values of players based on 
their individual strategic profile.

3.4.1  Participants
The participants in the validation group were 33 stu-
dents that were enrolled in one of the courses on 
campus [12 of whom were female, mean age  = 24.23 
(years), SD  = 2.21]. The validation group participated 
in the same experimental design as the original group 
(see Sects. 2.1 and 2.2).

3.4.2  iCA distribution
Figure  6 displays the iCA score distribution of the vali-
dation group. It can be seen that the iCA distribution 
of the two groups (original group and validation group) 
is very similar (compare Fig.  6 with Fig.  3). To validate 
this apparent similarity, the iCA distribution of the vali-
dation group was estimated by a GMM. It was demon-
strated that the validation group was characterized with 
the same iCA distribution as the original study group. 
That is, the entire distribution of iCA scores could also be 
described by three Gaussians (k  = 3) and a similar parti-
tioning into sub-groups according to the level of coordi-
nation ability was observed (Fig. 6A, B). That is, there is 
a group of players with a high coordination ability (blue 
Gaussian, coinciding with the upper quartile), a group 
of players with an intermediate coordination ability (red 
Gaussian, surrounding the median) and a group of play-
ers with a low coordination ability that manifests a wide 

(8.4)

S2 = − 0.312 ∗ SRCloseness + 0.853 ∗ SREquality

+ − 0.418 ∗ SRAccession.

dispersion (green Gaussian, coinciding with the lower 
portion of the IQR and the lower 25%).

3.4.3  Prediction of the iCA score and model evaluation
To assess the accuracy of the proposed prediction model 
(Eq. 8.1) we have examined the statistical indices of the 
relative error between the predicted value estimated by 
the model and the real value calculated using the iCA 
formula (Eq. 2). The relative absolute error is defined as 
follows:

Table  4 presents the percentiles of the distribution of 
the ICA relative absolute error. It can be observed that 
the median relative absolute error was only 7.811% while 
75% of the total population does not exceed an error of 
13.314%. In addition, out of 33 predictions, there were 
only 3 values for which the relative absolute error was 
greater than 30%.

These results demonstrate that the predictive model is 
robust and can be generalized to an independent dataset. 
That is, the estimated iCA values of a player can be pre-
dicted based on their strategic profile with high accuracy.

4  Discussion
This research contributes to key issues pertaining to the 
process of decision-making in tacit coordination. First, 
although in previous studies the variability among play-
ers has been examined in different domains (e.g., [18, 
32]), in our study the variability was explored at the indi-
vidual level of analysis in the domain of tacit coordina-
tion games. Second, to find the predominant selection 
rules that were applied during task performance, we 
devised the SR index that was computed for each indi-
vidual player. This analysis hinted to the existence of two 
predominant selection rules: closeness and equality. This 
indicates that certain selection rules are preferred by 
players and are more useful for coordination than others 
in the context of a specific task. Third, we devised a novel 
method for constructing a strategic profile for each indi-
vidual player. The method relies on the projection of the 
individual SR indices onto a 3D strategy space. Finally, we 
have used multiple regression analysis and showed that 
there is a strong correlation between the player’s strategic 
profile and their coordination ability.

Previous research dealing with focal points examined 
a wide range of selection rules in different games (e.g., 
[12, 13, 18, 33]). In these previous studies, the data were 
processed and analyzed at the group (aggregate) level 
only, and so no relationship was demonstrated between 

(9)

iCA relative absolute error(%)

=

∣

∣iCAreal − iCApredicted

∣

∣

iCAreal
∗ 100.

Table 4 Percentiles of the iCA relative absolute error distribution

25th percentile 50th percentile (median) 75th percentile

3.915 7.811 13.314
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individual coordination ability and the set of strategies 
implemented during the game as was done here. Yet in 
several other studies [15, 16, 20] an individual level of 
analysis has been implemented. However, in these studies 
the emphasis was on examining the effect of social fac-
tors (e.g., culture [15], social value orientation [20, 34] 
and loss aversion [35]) on strategic behavior whereas the 
current study is more generic as it does not utilize any 
prior knowledge about the players.

Importantly, while our work shows the ability to model 
individual coordination ability and use it to predict 
behavior, our framework is demonstrated by using only 
one domain and its generalizability is yet to be explored. 
For example, given a new coordination domain, the 
selection rules have to be defined first and only then our 
model could be applied. The preprocessing step of find-
ing the selection rules in a given domain is still lacking 
in the absence of a formal procedure for extracting the 
selection rules.

Thus, the main contribution of this study is the con-
struction of a model predicting individual coordination 
ability although this dependent variable was character-
ized by a multimodal distribution (see Figs.  3, 5). This 
multimodal distribution might corroborate cognitive 
hierarchy theory [36–38], which postulates that individu-
als differ in their depth of reasoning. By this account, 
an agent is bounded by the k steps of reasoning they 
can perform [39, 40]. Thus, each of the three Gaussians 
found in the current study may correspond to a different 
level k that bounds the best response given by the play-
ers. Hence, the second and third Gaussians found in our 
study may each correspond to a level k  ≥ 1, while the first 
Gaussian probably includes a substantial number of play-
ers with a level k  = 0 (see Figs. 3C, 6B). Noteworthily, the 
suggested connection between our findings and level k 
theory should be further explored especially in view of 
findings indicating inconsistencies in the level k of play-
ers, even in the same game, which imply that the depth of 
reasoning is stochastic in nature [41, 42].

Nevertheless, our results can also be compatible with 
a team reasoning approach [18, 43–46]. However, it was 
previously shown that coordination rate on a focal point 
depends on whether the game is symmetric or not as well 
as on stake size [47]. Therefore, the mode of reasoning of 
the player may be explained by either cognitive hierarchy 
or team reasoning, depending on specific game features 
[47].

The focal points that were modeled in our study are 
based on spatial properties (e.g., closeness, equality, and 
accession). Consequently, we expect the model we have 

constructed to be applicable to other contexts where 
focal points are based on spatial cues, e.g., “Bargaining 
Table” [14, 35, 40, 48] and “Moving Discs” [18]. How-
ever, in other cases, where focal points are based on non-
spatial features (e.g., the “word Selection” task based on 
semantic meaning [18, 24, 42, 49]) our model should be 
modified accordingly. For example, by updating the num-
ber of Gaussians which correspond to different strategic 
profiles extracted from the game.

5  Conclusions
In summary, in this study we investigated the distribu-
tion of individual coordination ability in tacit coordina-
tion games and constructed a predictive model based on 
the individual strategic profiles of the players. The strong 
relationship found in our study between the strategic 
profile and coordination ability suggests that players dif-
fer in the strength by which they prefer salient choices 
[50] and this in turn might affect their coordination abil-
ity. Our findings could be explained by either cognitive 
hierarchy or team reasoning. Nevertheless, they indi-
cate that individual-level analysis is essential for gaining 
insight into the diversity among decision-makers regard-
ing their strategic performance.

The results of the current study open several avenues 
for future research. First, it will be interesting to consider 
tacit coordination games of divergent interests (e.g., [33, 
48]). That is, games in which the parties are required to 
coordinate their answers, while different outcomes of the 
game may yield different utilities for each of the players. 
Second, it is worthwhile examining the effect of person-
ality traits and attitudes that correlate with coordina-
tion ability, such as introversion–extroversion [51], or 
social value orientation (e.g., [20, 52, 53]), on the stra-
tegic profiles of the players. Third, improved models 
in the framework of human–machine coordination [3, 
54] can optimize performance in diverse contexts such 
as intension prediction [55] and safety [56] in industry, 
fraud detections (e.g., [57–59]), as well as in other com-
plex tasks (e.g., [60]). Fourth, it might also be worthwhile 
exploring whether the differences in individual coordina-
tion ability are accompanied by parallel changes in brain 
activation reflected by electrophysiological markers asso-
ciated, for example, with cognitive load [24] or with time 
pressure [50]. These electrophysiological markers could 
then be added to our model as additional features that 
may improve its predictive ability. Finally, it is possible 
that strategic profiles are better described by the com-
plexity level of the game (i.e., number of possible solu-
tions—2#number of discs) rather than by the selection rules 
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themselves. Therefore, it is worthwhile to repeat the cur-
rent study while the set of games is divided into distinct 
levels of coordination difficulty.

6  Appendices
6.1  Appendix A: “Assign Circles” predefined game boards
The 10 predefined games are presented in Fig. 7. The board’s 
structure is based on the design of questions 11–20 in [12]. 
The order of appearance of the various games in the applica-
tion was completely random. Next to each game board, the 
availability of the three main selection rules, which is used to 
construct the strategic profile, is presented.

6.2  Appendix B: Selection rules implementation 
in the predefined games (#1–10)

In this section, we present the complete definition of 
the three selection rules. The following definitions are 
directly quoted from [12], pp. 173–175.

6.2.1  Closeness
For the rule of closeness to be applicable in a game, there 
has to be some commonly recognized concept of close-
ness of association between the two classes of objects 
(circles and squares). In the case of our grid, the most 
obvious and unambiguous measure of closeness of 

Fig. 7 Diagrams presenting predefined games
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association between a circle and a square is the distance 
between them. Thus, we interpret the rule of closeness 
as: assign each circle to the nearer square.

6.2.2  Accession
The rule of accession implies that if a set of circles form 
a coherent group, all the circles in the group should be 
assigned to the same square. We shall say that two circles 
are connected if they are located at adjacent points in the 
grid, linked by a horizontal or vertical line, and we shall 
interpret a ‘coherent group’ as a set of connected circles. 
We define the distance between a square and a set of con-
nected circles as the distance between the square and the 
nearest circles in the set. Then we interpret the rule of 
accessions the following formula: assign each set of con-
nected circles to the nearer square.

6.2.3  Equality
The rule of equality suggests the general formula: if 
there is an even number of circles, assign half of them 
to the one square and half of them to the other square. 
As stated, this rule never implies a unique assignment 
of circles to squares; we posit the median line rule as a 
subrule of refinement of the rule of equality, which uses 
the metric of closeness to discriminate among equal 
assignments. This rule is: if there is a vertical line such 
that an equal number of circles lie on each side, then 
assign circles left of the line to the left-hand square, and 
circles right of the line to the right-hand square.

Table  5 in Appendix (taken from [12]) presents the 
specific solutions obtained by implementing each one 
of the three selection rules in games 1–10. Each one of 
the selection rules can only be implemented in a game 
board only if it defines a unique choice (there is only a 
single interpretation of the solution). In Table 5 “L” rep-
resents a connection of a circle to the left square and 

“R” to the right square. The circles are ordered from 
left to right and from top to bottom. For example, in 
game #3 the assignment implied by the rule of acces-
sion denoted by “LLR”, means that the two bottom cir-
cles are connected to the left square and that the upper 
circle is connected to the right square.

Acknowledgements
Not applicable.

Authors’ contributions
All authors (DM, IL and IZ) carried out the stages of conceptualization, 
design of methodology, data curation, formal analysis, data modeling, model 
validation, writing and editing. DM was also responsible for visualization and 
implementation of supporting algorithms. IL and IZ supervised the research 
activity. All authors discussed the results. All authors read and approved the 
final manuscript.

Funding
The authors received no specific funding for this work.

Availability of data and materials
The datasets generated and/or analyzed during the current study, together 
with the corresponding analysis codes (which fits MATLAB R2016a) are avail-
able on the website of the “NeuroIS Lab” at Ariel University, (https:// www. ariel. 
ac. il/ wp/ neuro is/).

Declarations

Ethics approval and consent to participate
The study was approved by the IRB committee of Ariel University. All partici-
pants provided written informed consent.

Consent for publication
All authors (DM, IL and IZ) consent to the publication of the manuscript, if edi-
torially accepted for publication, in Brain Informatics, published by Springer.

Competing interests
The authors declare that they have no competing interests.

Received: 7 May 2020   Accepted: 13 January 2022

References
 1. Bacharach M (2006) Beyond individual choice: teams and frames in game 

theory. Wiley, Hoboken
 2. Mehta J (1997) Telling tales: actors’ accounts of their behavior in coordina-

tion games. The 17th Arne Ryde Symposium, “Focal Points—Coordina-
tion, Complexity, and Communication in Strategic Contexts,” Lund

 3. Fenster M, Kraus S, Rosenschein JS (1995) Coordination without commu-
nication: experimental validation of focal point techniques. Proceedings 
of the First International Conference on Multi-Agent Systems. AAAI Press, 
California, pp 102–108

 4. Schelling TC (1960) The strategy of conflict. Harvard University, 
Cambridge

 5. Binmore K (2007) Game theory: a very short introduction. Oxford Univer-
sity Press, Oxford

 6. Ezeala-Harrison F, Baffoe-Bonnie J (2016) Market concentration in the 
grocery retail industry: application of the basic prisoners’ dilemma model. 
Appl Econ 6:47

 7. Fang TP, Wu A, Clough DR (2021) Platform diffusion at temporary gatherings: 
social coordination and ecosystem emergence. Strateg Manag J 42:233–272

 8. Gansterer M, Hartl RF (2021) The prisoners’ dilemma in collaborative carriers’ 
request selection. Cent Eur J Oper Res 29:73–87

 9. Larrouy L (2015) Revisiting methodological individualism in game theory: the 
contributions of Schelling and Bacharach. Université Côte d’Azur, France

Table 5 Implication of the main selection rules

Game Unique assignment implied by rule 
of

Predicted responses

Closeness Accession Equality

1 LR LR LR LR

2 LLRR LLRR LLRR LLRR

3 None LLR None LLR

4 None None LLRR LLRR

5 LLR LLR None None

6 None LRRR LLRR LRRR or LLRR

7 None None None None

8 None None None None

9 LRRR LRRR LLRR LRRR or LLRR

10 LLRRR LLLRR None LLRRR or LLLRR

https://www.ariel.ac.il/wp/neurois/
https://www.ariel.ac.il/wp/neurois/


Page 14 of 14Mizrahi et al. Brain Informatics             (2022) 9:4 

 10. Gilbert M (1989) Rationality and salience. Philos Stud 57:61–77
 11. Colman AM (1997) Salience and focusing in pure coordination games. J Econ 

Methodol 4:61–81
 12. Mehta J, Starmer C, Sugden R (1994) Focal points in pure coordination games: 

an experimental investigation. Theory Decis 36:163–185
 13. Mehta J, Starmer C, Sugden R (1994) The nature of salience: an experimental 

investigation of pure coordination games. Am Econ Rev 84:658–673
 14. Mizrahi D, Laufer I, Zuckerman I (2021) Predicting focal point solution in 

divergent interest tacit coordination games. J Exp Theor Artif Intell. https:// doi. 
org/ 10. 1080/ 09528 13X. 2021. 19749 53

 15. Mizrahi D, Laufer I, Zuckerman I (2020) Collectivism-individualism: strategic 
behavior in tacit coordination games. PLoS ONE. https:// doi. org/ 10. 1371/ journ 
al. pone. 02269 29

 16. Mizrahi D, Laufer I, Zuckerman I (2020) Individual strategic profiles in tacit 
coordination games. J Exp Theor Artif Intell 33:1–16

 17. Mizrahi D, Laufer I, Zuckerman I (2019) Modeling individual tacit coordination 
abilities. International conference on brain informatics. Springer, Cham, pp 
29–38

 18. Bardsley N, Mehta J, Starmer C, Sugden R (2009) Explaining focal points: cogni-
tive hierarchy theory versus team reasoning. Econ J 120:40–79

 19. Crawford VP (1985) Learning behavior and mixed-strategy Nash equilibria. J 
Econ Behav Organ 6:69–78. https:// doi. org/ 10. 1016/ 0167- 2681(85) 90025-3

 20. Mizrahi D, Laufer I, Zuckerman I, Zhang T (2018) The effect of culture and social 
orientation on player’s performances in tacit coordination games. Interna-
tional Conference on Brain Informatics. Springer, Cham, pp 437–447

 21. Colman AM, Pulford BD, Lawrence CL (2014) Explaining strategic coordination: 
cognitive hierarchy theory, strong Stackelberg reasoning, and team reasoning. 
Decision 1:35–58

 22. Misyak JB, Chater N (2014) Virtual bargaining: a theory of social decision-
making. Philos Trans R Soc B Biol Sci. https:// doi. org/ 10. 1098/ rstb. 2013. 0487

 23. Pulford BD, Colman AM, Buabang EK, Krockow EM (2018) The persuasive 
power of knowledge: testing the confidence heuristic. J Exp Psychol Gen 
147:1431–1444

 24. Mizrahi D, Laufer I, Zuckerman I (2020) The effect of individual coordination 
ability on cognitive-load in tacit coordination games. In: Davis F, Riedl R, vom 
Brocke J et al (eds) NeuroIS Retreat 2020. Springer, Vienna

 25. Hartigan JA, Hartigan PM (1985) The dip test of unimodality. Ann Stat 
13:70–84

 26. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and 
validation of cluster analysis. J Comput Appl Math 20:53–65

 27. Tukey JW (1949) Comparing individual means in the analysis of variance. 
Biometrics 5:99–114

 28. Yan S, Xu D, Zhang B et al (2007) Graph embedding and extensions: a general 
framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell. 
https:// doi. org/ 10. 1109/ TPAMI. 2007. 250598

 29. van der Maaten L, Postma E, van den Herik J (2009) Dimensionality reduction: 
a comparative review. J Mach Learn Res 10:66–71

 30. Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Springer Sci-
ence & Business Media, Berlin

 31. Hoffmann H (2007) Kernel PCA for novelty detection. Pattern Recognit 
40:863–874. https:// doi. org/ 10. 1016/j. patcog. 2006. 07. 009

 32. Hargreaves Heap SP, Rojo Arjona D, Sugden R (2017) Coordination when there 
are restricted and unrestricted options. Theory Decis 83:107–129

 33. Isoni A, Poulsen A, Sugden R, Tsutsui K (2013) Focal points in tacit bargaining 
problems: experimental evidence. Eur Econ Rev 59:167–188

 34. Mizrahi D, Laufer I, Zuckerman I (2021) The effect of expected revenue propor-
tion and social value orientation index on players’ behavior in divergent inter-
est tacit coordination games. International Conference on Brain Informatics. 
Springer, Cham, pp 25–34

 35. Mizrahi D, Laufer I, Zuckerman I (2020) The effect of loss-aversion on stra-
tegic behaviour of players in divergent interest tacit coordination games. 
International Conference on Brain Informatics. Springer, Cham, pp 41–49

 36. Bacharach M, Stahl DO (2000) Variable-frame level-n theory. Games Econ 
Behav 32:220–246

 37. Camerer C, Ho T-H, Chong K (2004) A cognitive hierarchy model of 
games. Q J Econ 119:861–898

 38. Stahl DO, Wilson PW (1995) On players’ models of other players: theory 
and experimental evidence. Games Econ Behav 10:218–254

 39. Strzalecki T (2014) Depth of reasoning and higher order beliefs. J Econ 
Behav Organ 108:108–122

 40. Mizrahi D, Zuckerman I, Laufer I (2020) Using a stochastic agent model 
to optimize performance in divergent interest tacit coordination games. 
Sensors 20:7026

 41. Cooper DJ, Fatas E, Morales AJ, Qi S (2016) Consistent depth of reasoning 
in level-k models. Universidad de Málaga, Málaga

 42. Mizrahi D, Laufer I, Zuckerman I (2021) Level-k classification from EEG 
signals using transfer learning. Sensors 21:7908

 43. Colman AM, Gold N (2018) Team reasoning: solving the puzzle of coordi-
nation. Psychon Bull Rev 25:1770–1783

 44. Faillo M, Smerilli A, Sugden R (2013) The roles of level-k and team reason-
ing in solving coordination games. Cognitive and Experimental Econom-
ics Laboratory, Trento

 45. Gold N, Colman AM (2018) Team reasoning and the rational choice of 
payoff-dominant outcomes in games. Topoi. https:// doi. org/ 10. 1007/ 
s11245- 018- 9575-z

 46. Bacharach M (1999) Interactive team reasoning: a contribution to the 
theory of cooperation. Res Econ 53:117–147

 47. Parravano M, Poulsen O (2015) Stake size and the power of focal points 
in coordination games: experimental evidence. Games Econ Behav 
94:191–199

 48. Isoni A, Poulsen A, Sugden R, Tsutsui K (2019) Focal points and payoff 
information in tacit bargaining. Games Econ Behav 114:193–214

 49. Mizrahi D, Laufer I, Zuckerman I (2021) Topographic analysis of cognitive 
load in tacit coordination games based on electrophysiological measure-
ments. NeuroIS retreat 2021. Springer, Vienna

 50. Li X, Camerer C (2019) Using visual salience in empirical game theory. 
SSRN. https:// doi. org/ 10. 2139/ ssrn. 33088 86

 51. Eysenck H (2017) The biological basis of personality. Routledge, New York
 52. Murphy RO, Ackermann KA, Handgraaf MJJ (2011) Measuring social value 

orientation. Judgm Decis Mak 6:771–781
 53. Zuckerman I, Cheng KL, Nau DS (2018) Modeling agent’s preferences by 

its designer’s social value orientation. J Exp Theor Artif Intell 30:257–277. 
https:// doi. org/ 10. 1080/ 09528 13X. 2018. 14308 56

 54. Zuckerman I, Kraus S, Rosenschein JS (2011) Using focal point learning to 
improve human-machine tacit coordination. Auton Agent Multi Agent 
Syst 22:289–316

 55. Wang W, Li R, Chen Y, Jia Y (2018) Human intention prediction in human-
robot collaborative tasks. ACM/IEEE International Conference on Human-
Robot Interaction, Japan, pp 279–280

 56. Bausys R, Cavallaro F, Semenas R (2019) Application of sustainability 
principles for harsh environment exploration by autonomous robot. 
Sustainability 11:1–18

 57. Srivastava A, Kundu A, Sural S, Majumdar AK (2008) Credit card fraud 
detection using Hidden Markov Model. IEEE Trans Dependable Secur 
Comput 5:37–48

 58. Bolton RJ, Hand DJ (2002) Statistical fraud detection: a review. Stat Sci. 
https:// doi. org/ 10. 1214/ ss/ 10427 27940

 59. Johnson PE, Grazioli S, Jamal K (1993) Fraud detection: intentionality and 
deception in cognition. Account Organ Soc 18:467–488. https:// doi. org/ 
10. 1016/ 0361- 3682(93) 90042-5

 60. Semenas R, Bausys R (2020) Modelling of autonomous search and rescue 
missions by interval-valued neutrosophic WASPAS framework. Symmetry 
12:162. https:// doi. org/ 10. 3390/ sym12 010162

 61. Binmore K (2007) Playing for real: a text on game theory. Oxford Univer-
sity Press, Oxford

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1080/0952813X.2021.1974953
https://doi.org/10.1080/0952813X.2021.1974953
https://doi.org/10.1371/journal.pone.0226929
https://doi.org/10.1371/journal.pone.0226929
https://doi.org/10.1016/0167-2681(85)90025-3
https://doi.org/10.1098/rstb.2013.0487
https://doi.org/10.1109/TPAMI.2007.250598
https://doi.org/10.1016/j.patcog.2006.07.009
https://doi.org/10.1007/s11245-018-9575-z
https://doi.org/10.1007/s11245-018-9575-z
https://doi.org/10.2139/ssrn.3308886
https://doi.org/10.1080/0952813X.2018.1430856
https://doi.org/10.1214/ss/1042727940
https://doi.org/10.1016/0361-3682(93)90042-5
https://doi.org/10.1016/0361-3682(93)90042-5
https://doi.org/10.3390/sym12010162

	Modeling and predicting individual tacit coordination ability
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	1 Background
	2 Methods
	2.1 Experimental design
	2.2 Participants
	2.3 Measures
	2.3.1 Coordination index (CI)
	2.3.2 Individual coordination ability (iCA)
	2.3.3 Strategy rate (SR)


	3 Results
	3.1 Characterizing the variability in iCA scores
	3.2 Detection of dominant SR values in the strategic profile
	3.3 Modeling the relationship between strategic profile and iCA
	3.4 Model validation
	3.4.1 Participants
	3.4.2 iCA distribution
	3.4.3 Prediction of the iCA score and model evaluation


	4 Discussion
	5 Conclusions
	6 Appendices
	6.1 Appendix A: “Assign Circles” predefined game boards
	6.2 Appendix B: Selection rules implementation in the predefined games (#1–10)
	6.2.1 Closeness
	6.2.2 Accession
	6.2.3 Equality


	Acknowledgements
	References




