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Unraveling the hidden universe of small proteins in
bacterial genomes
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Abstract

Identification of small open reading frames (smORFs) encoding
small proteins (≤ 100 amino acids; SEPs) is a challenge in the fields
of genome annotation and protein discovery. Here, by combining a
novel bioinformatics tool (RanSEPs) with “-omics” approaches, we
were able to describe 109 bacterial small ORFomes. Predictions
were first validated by performing an exhaustive search of SEPs
present in Mycoplasma pneumoniae proteome via mass spectrome-
try, which illustrated the limitations of shotgun approaches. Then,
RanSEPs predictions were validated and compared with other tools
using proteomic datasets from different bacterial species and SEPs
from the literature. We found that up to 16 � 9% of proteins in an
organism could be classified as SEPs. Integration of RanSEPs
predictions with transcriptomics data showed that some anno-
tated non-coding RNAs could in fact encode for SEPs. A functional
study of SEPs highlighted an enrichment in the membrane, transla-
tion, metabolism, and nucleotide-binding categories. Additionally,
9.7% of the SEPs included a N-terminus predicted signal peptide.
We envision RanSEPs as a tool to unmask the hidden universe of
small bacterial proteins.
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Introduction

Development of ultra-sequencing technologies has led to a consider-

able increase in the number of annotated bacterial genomes (Kim

et al, 2015). Classically, general genome annotation protocols only

considered ORFs that encode for proteins larger than 100 amino

acids (Angiuoli et al, 2008; Tatusova et al, 2016). This arbitrary

cutoff was established to distinguish bona fide protein-coding ORFs

from the numerous random in-frame arrangements of start and stop

codons present in genomes (Crappé et al, 2013). However, recent

studies have brought to light the importance of small open reading

frame (smORF)-encoded proteins (SEPs; ≤ 100 amino acids; Ota

et al, 2004; Savard et al, 2006; Makarewich & Olson, 2017), such as

the antimicrobial peptides (AMPs) secreted by insects, animals,

plants, and humans in response to infection (Avila, 2017).

In bacteria, SEPs exhibit a wide range of functions that are essen-

tial for the cell. SEPs can be involved in cell division (Blr, MciZ, and

SidA), transport (AcrZ, KdpF, and SgrT), and signal transduction

(MgrB and Sda) or even act as chaperones (FbpB, FbpC, and MntS;

Storz et al, 2014). They are also involved in protein complexes,

stress responses, virulence, and sporulation (Burkholder et al, 2001;

Rowland et al, 2004; Alix & Blanc-Potard, 2008; Hemm et al, 2010;

Lluch-Senar et al, 2015). Interestingly, these small proteins can also

be used for communication between bacteria and phages, and as

bacteriocins within niches like microbiota, thereby making them an

important molecule to study when searching for new therapeutic

protein candidates (Duval & Cossart, 2017).

Identifying SEPs is both technically and computationally chal-

lenging. At the experimental level, techniques such as ribosome pro-

filing (Ribo-Seq; Mumtaz & Couso, 2015) and mass spectroscopy

(MS; D’Lima et al, 2017) are typically used. However, as it is diffi-

cult to identify the translated frame in Ribo-Seq experiments, the

identification of proteins encoded by overlapping ORFs is not feasi-

ble in most cases. Similarly, the absence of ribosome-binding sites

(RBS, Shine–Dalgarno) in some bacterial genomes (Dandekar et al,

2000; Lluch-Senar et al, 2007), and the existence of mRNA without

UTRs, makes it difficult to discern smORFs (Goyal et al, 2017). The

detection of SEPs with common tryptic-based bottom-up MS proteo-

mics approaches is also difficult due to the mere fact that their small

size correlates with a reduced number of tryptic peptides (TPs; Yang

et al, 2011; Saghatelian & Couso, 2015). Additionally, identification

is further impeded by the fact that SEPs can be secreted, have rela-

tively short half-lives, be present in low abundances, and exhibit

tissue- and time-specific expression patterns (Goldberg, 1972; Wang

et al, 2007).
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Evolutionary pressure on genes leads to sequence conservation.

As such, gene predictions by cross-species comparisons can be

useful for predicting the existence of common proteins (Kimura,

1980; Ina, 1995; Makalowski & Boguski, 1998). However, in such

sequence conservation analyses, the probability of overprediction

becomes higher for shorter sequences (Ochman, 2002). Addition-

ally, species-specific SEPs like the Sda protein of Bacillus subtilis (46

amino acids), which represses aberrant sporulation by inhibiting the

activity of the KinA kinase, cannot be identified through compara-

tive studies (Burkholder et al, 2001; Rowland et al, 2004). Further-

more, although computational methods based on the rate of

synonymous and non-synonymous substitutions can differentiate

between coding and non-coding regions, these alignment-based

methods have two clear limitations. First, a closely related organism

is required as a reference, and second, in order to avoid biases in

the estimation, this type of method can only be applied to non-over-

lapping sequences (Lin et al, 2011). Other approaches are based on

machine learning (ML) algorithms like interpolated Markov models

(Salzberg et al, 1998), support vector machine-based classifiers

(Kong et al, 2007), logistic regression (Kong et al, 2007; Zhao et al,

2016), and decompose–compose methods (Hu et al, 2016). These

methods analyze the coding potential of a genome in an alignment-

free manner without the need for experimental information.

However, as these approaches do not take into account the impor-

tance of species-specific coding features in the classification, they

prove inadequate for analyzing the genomes of organisms that are

not considered in the training process itself. Importantly, none of

these computational methods are free of biases when classifying

overlapping annotations, a situation that is common for SEPs

(Altschul, 1990; Mount, 2007).

Up until now, it has been difficult to determine the best method

for comprehensively analyzing all putative SEPs. Here, by integrating

more than 120 “-omics” datasets from Mycoplasma pneumoniae, we

first assessed the experimental limitations of MS. Then, we developed

RanSEPs, a random forest-based tool for the prediction of SEPs in any

bacterial genome (Fig 1). We also validated the efficiency of RanSEPs

by experimentally identifying SEPs in 12 bacterial species, including a

set of 570 well-reported and experimentally characterized bacterial

SEPs from different species (Hemm et al, 2010; Kodama et al, 2011;

Storz et al, 2014; Baumgartner et al, 2016; Duval & Cossart, 2017;

Impens et al, 2017; VanOrsdel et al, 2018). We also performed the

same efficiency test on other protein discovery software and found

that RanSEPs stands out as the best predictor. The higher prediction

accuracy of our method is explained by the iterative randomization of

the training set, a technique that enables the capturing of additional

protein-related information during training. In addition, as the train-

ing sets are biased to include more SEPs, they place a higher level of

importance on the possible alternative features of these proteins in

the classification (Fig 1).

By applying RanSEPs to 109 bacterial genomes, we showed that

the average number of SEPs per organism could be much higher

than previously thought, with SEPs accounting for up to 16 � 9%

of the total coding ORFs. This result suggests that a remarkable

number of bacterial SEPs remain unexplored, as recently reported

(VanOrsdel et al, 2018). Additionally, even though most of the anti-

sense non-coding RNAs (ncRNAs) are a product of transcriptional

noise and dispensable for cell survival (Lluch-Senar et al, 2015;

Lloréns-Rico et al, 2016), some of them could encode for proteins.

In fact, integration of RanSEPs predictions with transcriptomics data

from 11 bacteria species revealed that a fraction of ncRNAs (1%,

mostly antisense and intergenic) could encode for SEPs. Finally,

functional analysis of SEPs revealed an enrichment in functions

related to the membrane, translation, metabolism, and nucleotide

binding. As previously described (Kemp & Cymer, 2014; Sheng et al,

2017), we observed a significant proportion of SEPs with N-

terminus predicted signal peptide (9.7%) and transmembrane

segments (15%). At a time when deep sequencing of microbiomes

results in the identification of thousands of new bacterial species,

our tool opens up the possibility to predict new SEPs that could

modulate bacterial populations through quorum sensing or anti-

microbial properties (Duval & Cossart, 2017).

Results

Key factors and criteria for the experimental identification
of SEPs

To experimentally identify all SEPs encoded by the minimal genome

of M. pneumoniae, we integrated both proteomics (116 MS experi-

ments) and transcriptomics (eight experiments: four samples of

RNA-Seq at 6 h, two at 24 h, and two at 48 h) experiments (Fig 1;

Datasets EV1–EV3). Analysis of RNA-Seq and MS data was

performed to identify possible new proteins having significant RNA

expression and/or detected peptides. For this, we used a database

including all putative proteins (length ≥ 10 amino acids) translated

from the M. pneumoniae genome in all six frames (17,818 smORFs

and 1,292 ORFs; see Materials and Methods; Fig 1). A “decoy”

protein dataset of comparable size (Table 1), base composition and

codon adaptation index (CAI) to that of M. pneumoniae, was used

as a negative control to detect possible MS artifacts (Dataset EV3;

see Materials and Methods).

Using MS, we identified 42 potentially new SEPs in M. pneumo-

niae with ≥ 1 unique tryptic peptide (UTP) and RNA expression

levels ≥ 4.5 log2(counts) (Fig 2A; Datasets EV1 and EV3). However,

19 “decoy” SEPs were also detected (Fig 2B). While we found that

the number of novel SEPs identified with ≥ 1 UTP increased in

proportion to the number of experiments being considered, this

same trend was also observed for the “decoy” SEPs (Dataset EV1

and Fig 2C). This trend suggested the existence of false positives in

MS when considering no threshold for the number of identified

UTPs. When we increased the number of detected UTPs to ≥ 2, we

did not find any “decoy” protein but we did lose one NCBI-anno-

tated SEP (Table 1 and Fig 2B) and the data quickly reached a

plateau after four experiments (Fig 2C). The same happened using a

threshold of one UTP and ≥ 1 non-unique tryptic peptide (NUTP).

The number of putative SEPs was reduced from 42 to 7 using the

first threshold and from 42 to 29 using the more relaxed threshold

(Table 1, Fig 2B). After filtering by ≥ 2 UTPs, 532 proteins

remained: 521 annotated, four novel standard proteins, and seven

novel SEPs (shortest presenting a length of 48 amino acids).

To corroborate our ≥ 2 UTP threshold criteria, we performed

targeted MS with C13C(6)15N(2)-labeled peptides of eight SEPs,

four of which had ≥ 2 UTPs and four with one UTP (Dataset EV4).

All four of the novel SEPs detected with ≥ 2 UTPs were confirmed

with the C13 peptides. In contrast, we only detected a signal for two
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of the SEPs identified with one UTP in targeted proteomics

(Appendix Figs S1 and S2; Accession number of MS results:

PXD008243). These results indicate that ≥ 2 UTPs should be consid-

ered as the threshold for protein discovery without false positives,

but that true SEPs could be lost.

Interestingly, 25% of the annotated proteins of M. pneumoniae

were not identified by MS. By using PeptideSieve (Mallick et al,

2007), we measured the responsiveness of the proteins to MS. We

found that annotated proteins detected by MS had a significantly

higher number of high-responsive UTPs (HR_UTPs) than undetected

proteins (Mann–Whitney one-sided P-value = 0.03; Dataset EV3 and

Appendix Fig S3), revealing that not only the number of UTPs, but

also their properties, could hamper protein detection by MS.
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Figure 1. General workflow.

First, we generated databases of all the putative ORFs encoded by the genomes of 109 different bacteria. The database ofM. pneumoniae was used to perform the shotgun

MS and RNA-Seq studies that were aimed at evaluating the coverage and performance of experimental approaches in the discovery of SEPs. In a parallel, experiment-

independent manner, RanSEPs performed in silico predictions of potential novel proteins in the database. Results coming from both experimental and computational

approaches are integrated in a validation step using a set of 570 SEPs characterized both in this work and in previous studies. Finally, RanSEPs predictions for the 109

bacterial genomes are combined together to assess the functional diversity and importance of predicted SEPs. The second part of the figure highlights how RanSEPs

functions. In step 0 (gray box), RanSEPs detects annotated standard proteins (purple) and SEPs (yellow). By BLASTP, non-conserved standard and SEP proteins are detected

(pink and light pink, respectively). In parallel, protein features are computed and filtered by Recursive Feature Elimination. These features are combined with general

features of biological interest. In step 1 (yellow box), RanSEPs randomly subsets annotated standard and small proteins into a positive (green and yellow), a feature (blue and

yellow), and a negative (pink and light pink) set from the bulk of non-conserved sequences. During step 2 (blue box), specific features that vary with each iteration are

appended. In step 3 (purple box), the labeled positive and negative sets are divided into training and test sets. Step 4 (green box) consists of collecting the classifiers and

classification task results, and computing the final statistics and scores for all the sequences. Step 0 is only run once, and then, it is out of the iteration process. Steps 1–3 are

repeated as many times as iterations selected by the user. Step 4 is computed at the end to integrate the results of each iteration.

Table 1. Detection of SEPs using MS in Mycoplasma pneumoniae.

Type N

Criteria

≥ 1
UTP

≥ 1 UTP;
≥ 1 NUTP

≥ 2
UTP

SEPs Annotated 26 22 22 21

Putative 17,792 42 29 7

Decoy 20,100 19 0 0

The outcome of different results after MS searches using the decoy database
(negative control) and translating all the possible ORFs in M. pneumoniae.
When using the cutoff of at least 2 UTPs, the signal of every decoy protein
was removed but the detection of putative SEPs consequently dropped, with
one annotated SEP not being identified.
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Analysis of the proteome (and its conservation) of five closely

related Mycoplasmas revealed that 159 possible SEPs could be

conserved in more than two species. Of these, we detected 48 by MS

(Datasets EV5–EV10), 30 with 1 UTP, and 18 with at least 2 UTPs.

While these 18 SEPs were identified with ≥ 2 UTPs in some of the

species, in others, they were detected with only 1 UTP. This rein-

forces the idea that some SEPs having only 1 UTP could in fact be

real. Therefore, conservation analysis could be helpful in identifying

new SEPs as long as it is performed in conjunction with MS experi-

ments in multiple organisms. Nonetheless, this approach could be

misleading in the case of overlapping genes (Appendix Fig S4).

To confirm that the ≥ 2 UTPs criteria enable us to identify true

proteins, we studied the correlation between ribosome profiling and

the number of UTPs. For this purpose, we used raw datasets of ribo-

some profiling that were recently published for Escherichia coli

(Hücker et al, 2017). We then analyzed an E. coli extract enriched

in SEPs by MS (see Materials and Methods, Dataset EV11) and stud-

ied the correlation between both techniques. Ribosome profiling

showed that the mRNA of SEPs detected with ≥ 2 UTPs presented

significantly more bound ribosomes than both those detected with

just 1 UTP (Mann–Whitney one-sided test P-value = 0.005) and

those not detected by MS at all (Mann–Whitney one-sided test P-

value = 0.001, Appendix Fig S5). Thus, ribosome profiling supports

using a ≥ 2 UTP cutoff to extract potential positive SEPs by MS.

In conclusion, while true-positive SEPs can be identified by MS

when filtering by ≥ 2 UTPs, SEPs with only 1 UTP or very low

responsiveness cannot be experimentally assessed by label-free

proteomics. Therefore, experimental validation of SEPs still remains

a challenge, and development of computational prediction tools

capable of identifying SEPs without compromising the false discov-

ery rate is paramount.

RanSEPs: a novel random forest approach for the discovery
of SEPs

Computational approaches are required not only to predict SEPs but

also to reduce the required number of targeted validation experi-

ments. For this purpose, we have developed RanSEPs, a variation of

the random forest (RF) algorithm that iterates and randomizes train-

ing sets at the same time that it defines protein features (see
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Figure 2. Assessment of the detection coverage by “-omics” approaches.

A Evaluation of expression by RNA-Seq and number of peptides required to detect an annotated protein by MS in M. pneumoniae. The plot represents the relationship
between expression levels (average expression from RNA-Seq data) and number of possible unique tryptic peptides (UTPs) for two sets of studied proteins: detected
(blue dots) and not detected (orange dots) by MS.

B Evaluation of thresholds and artefactual signals in MS data. The histogram represents the total number of SEP proteins detected in 116 shotgun MS experiments with
1 UTP, 1 UTP and 1 NUTP, or ≥ 2 UTPs for three categories. Color code: annotated (blue bars), putative new (orange bars), and decoy set (gray bars).

C Number of SEPs detected by increasing the number of experiments. Color code is the same as in panel (B). Each line represents the accumulated number of different
SEPs detected (y-axis) when combining 1–116 MS datasets (x-axis) from M. pneumoniae. Each line has an associated error that is shaded and represents the standard
deviation within combinations of datasets (e.g., x = 80 will present the average number of proteins detected taking every combination of datasets in groups of 80
samples).
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Materials and Methods). These features are selected in a blind

manner by their importance in test classifications (Fig 1). With this

approach, positive and negative set selections are fully randomized

in each iteration, thereby generating an individual classifier each

time. The positive sets comprise subsets of annotated proteins from

NCBI that are forced to include a minimum percentage of SEPs

belonging to the target organism. For the negative set, RanSEPs

creates random sets of smORFs that are located within intergenic

regions (relative to annotated genes) and have no identified homo-

logs in a database including the six translated reading frames of 109

different organisms. Conceptually, this set could include actual

SEPs; however, the probability of maintaining a true SEP and bias-

ing the prediction is virtually null (see Materials and Methods).

The output is a probability score for a specific protein belong-

ing to the coding class. When assigning the coding class to SEPs

of M. pneumoniae, we set the threshold to a score ≥ 0.5, while for

standard proteins, it was set to a score ≥ 0.85 (95th percentile for

both distributions, Appendix Fig S6A). With the results of the

previous prediction and using cross-validation, we obtained an

average true-positive rate (TPR) of 96.3 and 90.3% for annotated

SEPs and standard proteins, respectively, with a total area under

the ROC curve (AUC) of 0.92 when considering both types of

proteins (Appendix Fig S6B and C). Using these settings, RanSEPs

predicted 756 ORFs for M. pneumoniae: 612 standard proteins

(598 annotated and 14 new) and 144 SEPs (26 annotated and 118

new). All of the new SEPs detected by MS with ≥ 2 UTPs were

classified by RanSEPs as coding (see Appendix Supplementary

Methods and Figs S12–S14). Among the 23 SEPs detected with 1

UTP, RanSEPs predicted only five to be true, of which one was

previously annotated with function while the other four were

annotated by inference in closely related organisms. Interestingly,

the other 18 putative smORFs with one UTP that were classified as

non-coding by RanSEPs did not present homologous annotated

candidates in closely related Mycoplasma species and their RNA

levels were significantly lower compared with the five SEPs that

had 1 UTP predicted as positive by RanSEPs (expression levels

> 90th percentile, Dataset EV3). This agrees with what we found in

the previous section and supports the application of RanSEPs as

tool for predicting those potential SEPs identified with 1 UTP by

MS.

Next, we determined the proportion of predicted SEPs that could

be considered false positives: pseudogenes and highly repeated

sequences. Within the complete smORFome of M. pneumoniae, we

detected 44 smORFs that could be derived from the fragmentation of

a larger protein found in M. genitalium and 242 with at least two

homologous matches in the M. pneumoniae genome. RanSEPs clas-

sified eight of the 242 “repeated” annotations as coding and

predicted the 44 fragments to be non-coding (Dataset EV3). This

homology information is integrated into every RanSEPs prediction

to enable prioritization of results and provide more meaningful

predictions.

RanSEPs validation and method comparative

To validate RanSEPs predictions and test its potential applicability

in other bacterial genomes, we generated a positive small protein

set (n = 570) including multiple sources. First, MS was used to iden-

tify SEPs from enriched protein extracts of Escherichia coli,

Pseudomonas aeruginosa, and Staphylococcus aureus (see Materials

and Methods, Datasets EV11–EV13), as well as from total protein

extracts of six Mycoplasma species (Datasets EV6–EV10). Second,

we re-analyzed publicly available MS datasets generated to detect

SEPs and reported in the literature: Lactococcus lactis

(PRD000266), Synechocystis sp. PCC6803 (PXD001246), and Heli-

cobacter pylori (PXD000054; Datasets EV14-EV16; see Materials

and Methods). In total, 473 SEPs (25 potentially new SEPs; 11

corroborated also by targeted proteomics) were found with ≥ 2

UTPs in MS searches of these 12 bacterial species. Finally, 97 SEPs

reported and validated in the literature were also added to this

positive protein set (Dataset EV18). We also defined a balanced

negative protein set (n = 570), which included 13 smORFs tested

by targeted proteomics with negative results and 536 putative

smORFs expected to be true negatives. This 536 smORFs subset

was extracted from a collection of 14,746 putative smORFs from

the 12 bacterial species studied by MS (Dataset EV18; see details

in Materials and Methods). The criteria for selecting them were as

follows: (i) They are not conserved in closely related species, and

(ii) they have more than two high-responsive UTPs by Peptide-

Sieve and are not detected by MS (Dataset EV18).

For validation, we performed specific RanSEPs predictions for

each species, ensuring that the SEPs included in the validation set

were never used in any training step (details about species-specific

parameters can be found in Appendix Supplementary Methods).

The same test was replicated with commonly used annotation

prediction tools: CPC2, GeneMarkS, BASys, Glimmer, and Prodigal

(Besemer et al, 2001; Van Domselaar et al, 2005; Delcher et al,

2007; Hyatt et al, 2010; Kang et al, 2017). One factor that makes

RanSEPs different from other predictors is that it is able to compute

and use species-specific feature weights to determine coding poten-

tial (see Materials and Methods). As specific features do not neces-

sarily share the same general importance across different

organisms, this functionality allows unbiased searches to be carried

out for any organism. For example, the Shine–Dalgarno sequence,

which acts as an RBS and has an important role in translation, is

not always present in bacterial species, including Mycoplasmas

(Fusaro et al, 2009; Omotajo et al, 2015). This can be observed

when measuring the feature weights by RanSEPs, as RBSs, which

are rarely found in M. pneumoniae genes (Weiner, 2000), have a

very low weight in this organism (Fig 3A).

We assessed and compared the quality of the predictions in

terms of accuracy and AUC (see Materials and Methods), and also

in terms of computational cost (Appendix Fig S8, see Appendix Sup-

plementary Methods). RanSEPs was the best tool for predicting SEPs

(AUC = 0.95; accuracy = 0.89) as none of the other tools had an

AUC > 0.85 (Dataset EV19, Fig 3B, and Appendix Fig S7). Remark-

ably, RanSEPs provided the best TPR (SEPs properly predicted as

SEPs over total positives) for annotated proteins (86.8%), SEPs with

≥ 2 UTPs in MS (86.7%), and potential new SEPs (76%). It was also

the only tool that predicted all the SEPs validated by targeted C13

proteomics without false positives (Dataset EV19, Appendix Fig

S15). In terms of false-positive rates (smORFs wrongly predicted as

SEPs over total negatives, FPR), RanSEPs returned the third lowest

value, coming after BASys and CPC. However, these two tools did

not reach TPRs higher than 65%.

Finally, we further validated our prediction tool at the

genome-wide level by studying the correlation between
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gene-expression-corrected Ribo-Seq coverage (RCV) and RanSEPs

prediction in E. coli (Hücker et al, 2017). We found that SEPs

predicted as positive showed significantly higher RCV levels

compared with candidates predicted as negatives (Mann–Whitney

one-sided test P-value = 1 × 10�7) and ncRNAs (Mann–Whitney

one-sided test P-value = 1 × 10�4, Fig 3C). Additionally, while

RanSEPs-positive predictions presented RCV values closer to the

scores of annotated proteins, although still significantly lower

(Mann–Whitney two-sided test, P-value = 1 × 10�10), negative

predictions were more similar to annotated ncRNAs (no significant

differences by Mann–Whitney two-sided test, P-value = 0.13).

We next confirmed that the high success rate of RanSEPs was

not due to an excess of positively scored annotations. In this anal-

ysis, we used the previously defined collection of 14,746 smORFs

with low coding potential to search for false positives. Glimmer

and CPC yielded the lowest FPRs but also had significantly limited

TPRs. The rest of the tools presented comparable FPRs, with

values of 5.1, 4.3, 3.6, and 3.9% for Prodigal, RanSEPs, BASys,

and GeneMarkS, respectively. None of the false positives returned

by RanSEPs presented a score higher than 0.65, indicating that a

stricter score threshold would prevent the detection of false posi-

tives. However, this threshold lead the average AUC falling to

0.88, indicating that we would miss valid SEPs. Additionally,

RanSEPs provides extra information associated with the scores for

further prioritization of the predictions. This information includes

aspects like the presence of an RBS and a preliminary classification

of the predicted SEPs into one of the following groups: (i)

conserved in closely related species but not annotated in the

organism of interest or any other; (ii) conserved and annotated in

other species with a known function; (iii) conserved and annotated

in other species without a known function; (iv) highly repeated in

the annotated reference genome; or (v) potential pseudogene (see

Materials and Methods).

RanSEPs in a species-specific context and ncRNAs

To study the smORFomes in different bacterial genomes and to

address the outstanding question regarding the percentage of coding
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Figure 3. RanSEPs predictions.

A Feature weight prediction in M. pneumoniae. Weights of the different features considered in the classification by RanSEPs. Bars indicate the global averaged variance
that each feature explains by itself along with its associated standard deviation (black line) (25 iterations to estimate the error).

B Method accuracy comparative. Receiver operating characteristic curve for RanSEPs (orange) and five additional tools (blue gradient). The closer a curve to the left-
hand border, the more accurate the tool. The area under the curve (AUC) associated with each method is presented, with values closer to 1 indicating a more
accurate method. The dashed gray line represents a classifier that assigns the coding class randomly.

C Boxplot representing the relationship between RanSEPs-positive (“RanSEPs+”, score ≥ 0.5) and RanSEPs-negative (“RanSEPs�”, score < 0.5) SEPs predictions and
associated RCV (ribosome profiling ratio coverage, in log2) in Escherichia coli. Only annotations ≤ 300 nucleotides in length were included. As positive and negative
controls, we considered annotated SEPs (“Annotated”) and non-coding RNAs (“ncRNAs”), respectively. Annotations within RanSEPs+, RanSEPs�, and ncRNAs
overlapping with known annotated genes were excluded. Annotations with RCV = 0.0 are filtered out, and the number within the box represents the percentage of
values in that class that are kept in the comparative. Along the top, P-values computed by Mann–Whitney rank test are indicated.
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annotations represented by SEPs, we applied RanSEPs to 109 bacte-

rial genomes. RanSEPs was parameterized and ran independently

for each genome (see details in Materials and Methods and

Appendix Supplementary Methods), and we considered the two

thresholds defined above: the one that maximizes true positives

(RanSEPs score ≥ 0.5) and the one that minimizes false positives in

M. pneumoniae (score ≥ 0.65; Dataset EV20). This resulted in an

average TPR of 86 � 7% for annotated SEPs (iteratively excluding

them from the training sets) with the 0.5 score, and 67 � 12% with

the 0.65 score. On average, the number of annotated SEPs over the

total number of annotated coding ORFs was 10 � 5%, a value that

reaches 16 � 9.5% when adding SEPs predicted by RanSEPs with a

score of ≥ 0.5 and 14 � 7% when raising it to ≥ 0.65 (Dataset

EV20). On average, we determined that 1 � 0.7% of the SEPs

predicted by RanSEPs with a score ≥ 0.5 could be considered pseu-

dogenes or “repeated” sequences when the SEP was a fragment of a

larger protein in another organism or found several times in the

reference genome. These values were reduced to 0.75 � 0.1% when

using the ≥ 0.65 threshold. Ultimately, this implies that between a

minimum of 13 � 7% and a maximum of 16 � 9.5% of the

proteins in each genome could be SEPs (Dataset EV20). The predic-

tion results for the 109 bacteria can be downloaded at www.

ranseps.crg.es.

As in M. pneumoniae, secondary structure and hydrophobicity

were the most important features for polypeptide classification in all

bacteria (Fig 4). However, some features like the SW9 and the four

dicodon frequencies (see Materials and Methods) showed weight

differences that resulted in two clusters of bacterial species. The first

cluster (higher weight for SW9 and lower values for dicodon

frequencies) presented higher rates of encoded SEPs than the second

cluster (low weight for SW9 and high weight for dicodon frequen-

cies, unpaired t-test P-value = 0.04). In addition, we observed that

organisms with higher percentages of SEPs (> 13.16%, N = 55)

were associated with bacteria having low GC contents (38 � 12%).

In contrast, lower rates of SEPs (≤ 13.16%, N = 54) were predicted

for bacterial species with higher GC contents (47 � 10%, unpaired

t-test P-value = 0.005, Dataset EV20). These results agreed with

previous studies, suggesting that a low GC content increases the

number of stop codons and consequently results in an increased

percentage of SEPs (Oliver & Marı́n, 1996; Mir et al, 2012) (see

Appendix Supplementary Methods).

Over the past few years, it has been shown that sequences

formerly described as ncRNAs could, in some cases, actually encode

for proteins, with some of them being SEPs (Friedman et al, 2017;

Hücker et al, 2017). Thus, we combined RanSEPs predictions with

the annotated ncRNAs of 11 bacterial transcriptomes (Lloréns-Rico

et al, 2016) and found that 273 out of 8,056 ncRNAs could in fact

encode for 289 proteins: 184 SEPs and 105 standard proteins

(Dataset EV21). Out of these 273 ncRNAs that could encode for

proteins, 11 (4%) were overlapping in sense with genes, 185

(67.8%) in antisense, and 77 were located in intergenic regions

(28.2%; Appendix Fig S9). The average length of the 184 SEPs

encoded by these re-annotated RNAs is 96 amino acids. In contrast,

standard proteins encoded by former ncRNAs had an average length

of 132 amino acids.

Functional assessment of novel SEPs

In total, 36,311 SEPs were collected, including annotated and

predicted SEPs from the 109 genomes considered. Out of this group,

while 25,229 SEPs were found annotated in their original genomes

(231 � 186 annotated SEPs per genome), the majority of them were

annotated as hypothetical proteins or with unknown function. In

fact, only 5,175 SEPs (20%) were associated with a function. The

majority of the SEPs with assigned functions were involved in trans-

lation (mainly ribosomal proteins), metabolism, and DNA/RNA

binding (Fig 5A; Dataset EV22).

The total number of predicted SEPs not previously considered in

their respective original reference genome was 14,773 using the

≥ 0.5 score criteria. To explore the possible functions of the proteins

belonging to this group, we ran a BLAST search using the first group

of SEPs with annotated functions as a database. Results indicated

that, on average, a specific SEP with an undescribed function could

be conserved in at least 15 different organisms (Appendix Fig S10).

In addition, this analysis revealed that while 3,535 SEPs (24%) did

not have annotated homologs, 11,238 (76%) were found annotated

in other species: 5,038 (34%) with unknown function and 6,341

(42%) with different functions (Fig 5B). We repeated this search

with the “decoy” protein dataset used for MS as the target, and

found that no sequence passed the thresholds required to be consid-

ered homologous. As such, we would not expect to have false posi-

tives by chance. Although we have assigned functionality to most of

the predicted SEPs in the 109 genomes, one needs to be cautious as

sequence homology and functional annotation of small proteins is

not always reliable.

Finally, in some bacteria, SEPs are known to be secreted and can

play a role in communication or even act as toxins (Duval &

Cossart, 2017). To determine whether some of the new SEPs we

discovered could be secreted or be integrated into the membrane,

we searched for signal peptide sequences as well as for transmem-

brane regions using Phobius (Käll et al, 2004). We focused on the

set of SEPs with unassigned function and found that 9.7% had a N-

terminus predicted signal peptide sequence and 15% a transmem-

brane membrane region (Dataset EV22). The percentage of SEPs

with a signal peptide was higher than expected by chance when

compared with the same “decoy” set of SEPs used in MS (9.7% for

predicted SEPs, 1.2% for “decoy” SEPs, unpaired two-tailed t-test P-

value = 0.018). Moreover, to confirm that the results obtained with

▸Figure 4. A comparison of the feature weights used for the prediction of SEPs in 109 bacterial genomes.

Clustered heat map using nearest point algorithm and representing the weights of different features in 109 bacterial genomes, and the clustering relations between features

(top dendrogram) and species (side dendrogram). Rightmost light-orange and light-blue bars are included to differentiate the twomain clusters. Numbers in the right vertical

axis are short references representing the names of the bacterial genomes (Dataset EV15). The right three columns represent biological features not used in the classification.

The ratio of the percentage of SEPs compared to themedian value is colored as blue andorange for≤ 13.16%of SEPs and> 13.16%, respectively. Blue andorange colors in the%

GC column represent genomes with ≤ 38 and > 38% GC content (median value = 38), respectively. Genome size column separates species into small-genome bacteria

(≤ 1.5 Mb, blue) and large-genome bacteria (> 1.5 Mb, orange).
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Phobius were meaningful with regard to SEPs, and that protein size

did not bias the analysis, we ran a test on a set of annotated stan-

dard proteins in which we sequentially shortened their C-terminus.

The sensitivity of Phobius is higher than 80% for sequences over 30

amino acids. For sequences under 30 amino acids, however, we see

values lower than 50%; this is expected when considering that

Phobius specifically searches for a motif presented by the first 16–30

amino acids of the N-terminus of a protein. If the motif is located

within these first amino acids and is short, Phobius will still detect

the protein as positive (see Appendix Supplementary Methods and

Fig S11).

Discussion

Genome annotations, which traditionally considered only standard

proteins, ignored the existence of a layer of complexity represented

by SEPs (i.e., the smORFome). After assessing the experimental

limitations, we showed that the experimental detection and charac-

terization of SEPs are challenging. On the one hand, as “decoy”

proteins sequences are detected by MS, proteins that do not exist

can actually have spectra assigned (1 UTP or 1 UTP;1 NUTP). On

the other hand, as these “decoy” proteins appeared across multiple

experiments, discrimination criteria based on reproducibility are not
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Figure 5. Functional assessment of RanSEPs results.

A Landscape of the SEPs with functional annotations in NCBI considering 109 bacterial genomes (Number of SEPs = 25,229 SEPs).
B Functional inference of the predicted SEPs (N = 11,238) as determined using BLASTP against NCBI-annotated SEPs having an associated function (N = 5,175). The

color code associated with each category is the same as in panel (A).
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feasible. This problem is solved by only accepting proteins detected

with ≥ 2 UTPs. These criteria were corroborated by re-analyzing

Ribo-Seq data from E. coli. The main drawback is that many SEPs

have very few responsive UTPs and consequently they are

discarded. Despite these constraints, however, we were still able to

detect novel SEPs in M. pneumoniae by integrating 116 shotgun MS

datasets. Thus, this represents the first comprehensive study of a

bacterial proteome using MS without protein size thresholds. Label-

free MS experiments on cell extracts and SDS gel extraction derived

from 12 bacterial species identified 25 new SEPs not annotated in

the reference genomes. Of course, the problem associated with only

1 UTP could be partly alleviated by doing targeted proteomics with

labeled C13 peptides. However, taking into account the required

number of experiments and the fact that many SEPs do not have

high-responsive peptides, the extensive analysis of SEPs encoded by

a bacterial genome would be precluded. In addition, other factors

could contribute to this problem like short protein half-lives, condi-

tional gene expression, or special features in sequence associated

with concrete functions (e.g., hydrophobicity).

Here, we developed RanSEPs to address the aforementioned limi-

tations. Using M. pneumoniae as a reference, we developed

RanSEPs as a predictor to define candidates given a specific genome

and to score them by assigning a probability of being coding

smORFs. Also, the assigned score provides meaningful information

about features that can be important for the functional characteriza-

tion of SEPs. Furthermore, we validated this application in other

bacteria with SEPs that had been experimentally identified or

described in the literature. Comparison of RanSEPs with five other

tools showed that RanSEPs maximizes the correct prediction of true

positives without increasing the false-positive rate. This could be

attributed to its iterative method in which multiple classifications

are averaged using different sets of annotated proteins in each itera-

tion. This property permits the capture of a wide diversity of

features presented by annotated genes, thereby resulting in more

accurate predictions. Derived from this and considering that closely

related species share sequence features, our scoring algorithm could

also be modified to de novo annotate a genome of interest. In addi-

tion, the relationship between gene-expression-corrected ribosome

profiling in E. coli and RanSEPs predictions showed that predicted

SEPs generally have higher ratios than those predicted to be nega-

tive and resembling annotated ncRNAs.

Analysis of features that discriminate coding sequences in 109

bacterial genomes revealed that hydrophobicity and secondary

structure are key factors. Also, we observed that the number of

predicted SEPs encoded by a genome depends on the GC content.

On the other hand, importance of features governing coding poten-

tial is conserved across species. Strikingly, between a 13 � 7 and

16 � 9.5% of the genes (depending on the cutoff score used) in

these 109 species encoded for SEPs, highlighting that the coding

capacity of bacterial genomes has likely been underestimated. Note-

worthy, genome annotations are critical for classifying a SEP as a

new protein. In fact, for 76% of the SEPs predicted by RanSEPs,

orthologous SEPs were identified by BLAST in closely related

strains. This result indicates that reference genomes are still incom-

plete and not properly curated.

Possibly, some of the predicted SEPs could be pseudogenes or

false positives. Identification via homology of mutations resulting in

a premature stop codon can provide an estimation of the number of

pseudogenes present in a genome of interest. With this approach,

we estimated that 1 � 0.7% of predicted SEPs could be pseudo-

genes. These genes can be excluded, however, by increasing the

RanSEPs threshold, albeit at the cost of missing some true SEPs.

Thus, our 13–16% lower and upper estimates could still contain

false positives but still represent a significant percentage.

Interestingly, some ncRNAs of multiple bacterial species could

actually encode for proteins. While 63% of the proteins potentially

encoded by ncRNAs were SEPs, 37% were standard proteins with

an average amino acid length of 132 amino acids. This suggested

that some ncRNAs could in fact be coding and that bacterial annota-

tions could be missing not only SEPs but also longer proteins.

Functional analysis of the predicted and previously identified

SEPs indicated that these proteins participate in basic processes of

living systems such as transcription, translation, metabolism, signal-

ing, quorum sensing, virulence, and pathogenicity. However, this

analysis should be taken with caution as sequence homology and

functional annotation of SEPs is challenging (VanOrsdel et al,

2018). Interestingly, similar to what has been previously reported

(Kemp & Cymer, 2014; Sheng et al, 2017), we found a significant

enrichment in SEPs presenting features indicative of being secreted

(10%) or membrane localized (15%). This observation could have

an impact not only on translational research but also on the study of

the modulation of bacterial populations in microbiomes, thereby

opening up a new line of research in the Systems Biology discipline

(Duval & Cossart, 2017).

With all our results in mind, we envision RanSEPs as a tool to

help predict new SEPs, support detections, and discard artifactual

proteins detected by MS that have low signals such as those

detected with only one UTP and/or one NUTP. When no experimen-

tal information is available, RanSEPs can help guide the selection of

potential new SEPs for validation and further characterization with

the overall aim of uncovering their functions.

Materials and Methods

ORFome database generation

We generated in silico proteomes by translating all putative ORFs

with sizes ≥ 10 amino acids from the six possible open reading

frames of 109 bacteria. These bacteria included representative

species of both gram types, and covered a wide spectrum of genome

sizes (0.5–9 Mb), GC contents (20–70%), and generation times

(0.48–12 h). Putative ORF databases were computed considering

the codon translation table 11 (start codons: ATG, GTG, and TTG;

stop codons: TAG, TAA, and TGA) for all cases except Mollicutes,

which were based on translation table 4 (start codons: ATG, GTG,

and TTG; stop codons: TAG and TAA). In all cases, only ORFs

encoding theoretical proteins of at least 10 amino acids were

accepted in the databases (www.ranseps.crg.es).

Decoy database generation

A “decoy” dataset to assess the presence of possible artifacts when

searching SEPs in a specific organism was generated based on

certain factors. First, we used a comparable number of SEPs and

standard proteins to the number in the target organism as it is
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known that the database size can bias MS searches. Second, we

forced the sequences to present a GC content and codon usage simi-

lar to those of the target organism. Lastly, we permitted only

sequences that were not found in other organisms (BLASTP

e-value > 0.1). In the end, the “decoy” dataset was composed of: (i)

2,433 translated stop-to-stop non-coding regions of M. pneumoniae

without any start codon, (“in” prefix); (ii) 1,425 translated inter-

genic regions from the M. pneumoniae genome (without start

codon, no overlap with any putative ORFs, “or” prefix); (iii) 8,740

pseudo-randomly generated peptides with a codon usage and GC

content comparable to that of the M. pneumoniae genome, lengths

between 20 and 100 amino acids, forced to have an average of three

detectable UTPs, and comparable start and stop frequencies for start

(ATG = 0.86, GTG = 0.073, TTG = 0.067) and stop: (TAA = 0.71,

TAG = 0.28) codons (prefix “gc”); and (iv) 9,110 amino acid

sequences obtained by translating the in silico random genome,

preserving the GC content and codon usage of the M. pneumoniae

genome (prefix “rd”). This genome is generated using frequencies

and sizes of intergenic and coding regions similar to those of the

annotated genome in NCBI. As GC content varies between coding

and intergenic regions, we adjusted the “decoy” gene regions by

codon adaptation index (CAI) and the intergenic ones by GC.

Bacterial strains and growth conditions

Mycoplasma pneumoniae M129 was grown in 75-cm2 tissue culture

flasks with 50 ml of modified Hayflick medium at 37°C as previ-

ously described (Yus et al, 2012). M. genitalium G-37 (wild-type)

strain was grown in SP-4 medium (Tully et al, 1979) at 37°C under

5% CO2 in tissue culture flasks (TPP). M. gallisepticum str. R (high),

M. hyopneumoniae 232, M. capricolum subsp. capricolum ATCC

27343, and M. mycoides subsp. capri str. GM12 were all grown as

suspension cultures in SP-4 medium at 37°C and 200 rpm. E. coli,

S. aureus, and P. aeruginosa (strain PAO1) were grown overnight in

22 ml TSB medium, at 37°C, shaking at 180 rpm.

RNA extraction and library preparation for RNA-Seq

After growing M. pneumoniae for 6 h at 37°C, cells were washed

twice with PBS and lysed with 700 ll of QIAzol buffer. RNA

extractions were performed using the miRNeasy Mini Kit (Qiagen)

following the instructions of the manufacturer. Libraries for RNA-

Seq were prepared following directional RNA-Seq library prepara-

tion and sequencing. Briefly, 1 lg of total RNA was fragmented

into ~100–150 nt using NEB Next Magnesium RNA Fragmentation

Module (ref. E6150S, NEB). Treatments with Antarctic phosphatase

(ref. M0289S, NEB) and PNK (ref. M0201S, NEB) were performed

in order to make the 50 and 30 ends of the RNA available for

adapter ligation. Samples were further processed using the TruSeq

Small RNA Sample Prep Kit (ref. RS-200-0012, Illumina) according

to the manufacturer’s protocol. In summary, 30 adapters and

subsequently 50 adapters were ligated to the RNA. cDNA was

synthesized using reverse transcriptase (SuperScript II, ref. 18064-

014, Invitrogen) and a specific primer (RNA RT Primer) comple-

mentary to the 30 RNA adapter. cDNA was further amplified by

PCR using indexed adapters supplied in the kit. Finally, size selec-

tion of the libraries was performed using 6% Novex� TBE Gels

(ref. EC6265BOX, Life Technologies). Fragments with insert sizes

of 100–130 bp were cut from the gel, and cDNA was precipitated

and eluted in 10 ll of elution buffer. Double-stranded templates

were cluster-amplified and sequenced on an Illumina HiSeq 2000.

The raw data of RNA-Seq were submitted to the ArrayExpress

database (http://www.ebi.ac.uk/arrayexpress) and assigned the

identifier: E-MTAB-6203.

For each experiment, both ends were treated as independent

single-end reads in order to avoid the wrong assignment of read-

pairs. Filtered reads were mapped to each reference genome using

Maq mapping software. We mapped the reads containing 50 bp,

allowing for one mismatch. The expression per ORF was computed

based on:

Expression ¼ log 2ðcounts per gene=gene lengthÞ:

To define an ORF as “transcriptionally active”, its expression

value had to pass a threshold established by the minimum expres-

sion value for all previously annotated genes of the organism of

interest.

Prediction of possible and high-responsive UTPs

To determine the number of expected high-responsive UTPs, we

used PeptideSieve (Mallick et al, 2007) with the default properties

file and selecting results for “Page Electrospray: PAGE_ESI” with a

probability score > 0.65. This threshold was selected as it provided

the best correlation between predicted UTPs and those observed

experimentally (0.61 correlation coefficient). A peptide was consid-

ered to be a UTP only when it was found to be associated with one

protein and have a minimum length of 5 amino acids (Dataset EV3).

Mass spectrometric analyses

Sample preparation

To generate new samples for MS analysis, 5 ml of the P. aerugi-

nosa, E. coli, and S. aureus overnight cultures was centrifuged

and resuspended in 500 ll lysis buffer (20 mM sodium phosphate,

pH 7.4, 500 mM NaCl, 1% Triton, 2 mM DTT + protease

inhibitors + lysozyme 50 lg/ml). Then, the lysates were incubated

20 min at RT, disrupted by sonication (15 min × hi 30’’ on/off on

ice), and centrifuged for 30 min at 21,130 g. Twenty microliters

of both the supernatant and the pellet was loaded on Novex 10–

20% Tricine gels (Thermo Fisher # EC6625BOX) and run at 120 V

for 30 min. Afterward, different portions of the gel were cut with

a scalpel: one portion below the loading buffer line, and the other

portion between the loading buffer line and the 10 kDa marker.

Data from 116 shotgun MS experiments corresponding to dif-

ferent mutants and conditions of M. pneumoniae, as shown in

Datasets EV1–EV3, were re-analyzed with the new database (see

above) to re-annotate the M. pneumoniae genome (ID PRIDE:

PXD008243).

Samples extracted with SDS were reduced with dithiothreitol

(90 nmols, 30 min, 56°C), alkylated in the dark with iodoacetamide

(180 nmols, 30 min, 25°C), and digested first with 3 lg LysC

(Wako, cat # 129-02541) overnight at 37°C and then with 3 lg of

trypsin (Promega, cat # V5113) for 8 h at 37°C following the fasp

produce of Wi�sniewski (2016). Samples extracted with urea were

reduced with dithiothreitol (90 nmols, 1 h, 37°C) and alkylated in
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the dark with iodoacetamide (180 nmol, 30 min, 25°C). The result-

ing protein extract was first diluted 1/3 with 200 mM NH4HCO3 and

digested with 3 lg LysC (Wako, cat # 129-02541) overnight at 37°C,

and then diluted 1/2 and digested with 3 lg of trypsin (Promega,

cat # V5113) for 8 h at 37°C.

After digestion, the peptide mix was acidified with formic acid

and then desalted with a MicroSpin C18 column (The Nest Group,

Inc) prior to LC-MS/MS analysis.

Sample acquisition

The peptide mixes were analyzed using a LTQ-Orbitrap Velos Pro

mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA)

coupled to an EasyLC [Thermo Fisher Scientific (Proxeon), Odense,

Denmark]. Peptides were loaded onto the 2-cm Nano Trap column,

which had an inner diameter of 100 lm and was packed with C18

particles of 5 lm (Thermo Fisher Scientific), and were separated by

reversed-phase chromatography using a 25-cm column that had an

inner diameter of 75 lm and was packed with 1.9-lm C18 particles

(Nikkyo Technos Co., Ltd. Japan). Chromatographic gradients were

started at 93% buffer A and 7% buffer B with a flow rate of 250 nl/

min for 5 min and were then gradually increased to 65% buffer A

and 35% buffer B over 60 or 120 min depending on the complexity

of the sample. After each analysis, the column was washed for

15 min with 10% buffer A and 90% buffer B (buffer A: 0.1% formic

acid in water; buffer B: 0.1% formic acid in acetonitrile).

The mass spectrometer was operated in DDA mode, and full

MS scans with 1 micro scans at a resolution of 60,000 were used

over a mass range of m/z 350–2,000 with detection in the Orbi-

trap. Auto gain control (AGC) was set to 1E6, dynamic exclusion

to 60 s, and charge state filtering disqualifying singly charged

peptides was activated. Following each survey scan of each cycle

of the DDA analysis, the top twenty most intense ions with multi-

ple charged ions above a threshold ion count of 5,000 were

selected for fragmentation at a normalized collision energy of

35%. Fragment ion spectra produced via collision-induced dissoci-

ation (CID) were acquired in the Ion Trap, with an AGC of 5e4, an

isolation window of 2.0 m/z, an activation time of 0.1 ms, and a

maximum injection time of 100 ms. All data were acquired using

Xcalibur software v2.2.

Database search

Proteome Discoverer software suite (v2.0, Thermo Fisher Scientific)

and the Mascot search engine (v2.5, Matrix Science) were used for

peptide identification and quantification (Perkins et al, 1999).

Samples were searched against a customized database for each

species as described in the corresponding section. Trypsin was

chosen as the enzyme, and a maximum of three miscleavages were

allowed. Carbamidomethylation (C) was set as a fixed modification,

whereas oxidation (M) and acetylation (N-terminal) were used as

variable modifications. Searches were performed using a mass accu-

racy enforcement of 7 ppm, which goes accordingly with the accu-

racy of the Orbitrap mass analyzer, and a product ion tolerance of

0.5 Da. Resulting data files were filtered for FDR < 1.

Targeted MS

MS1 Targeted Area Extraction was performed with Skyline

v3.7.011317 and using RAW files acquired in the Orbitrap Velos Pro

that contained heavy-labeled internal standards (Dataset EV4).

Conservation analyses: detecting homology and
potential pseudogenes

An ORF was considered as conserved when it was found in three or

more species. Three different thresholds were taken into account to

assess the presence of the annotation in different bacteria. These

thresholds were applied to the results by running a BLASTP of the

amino acid sequence of the ORF of interest against a protein data-

base comprised of a complete six-frame genome translation of 109

different bacterial species. Filter parameters included the e-value, the

percentage of target sequence aligned, and the difference in length

between the target and the hit. Thresholds for the three parameters

were computed using the annotated proteins of the organism of

interest as a reference. In the case of M. pneumoniae, 95% of the

annotated proteins (with no size discrimination) have e-values

smaller than 3 × 10�8, more than 75% of their lengths aligned, and

differ with the matched hit in < 20% of their length. We considered

closely related species those sharing > 75% of their annotated

proteins when applying the previously explained parameters.

Taking advantage of the conservation study, we implemented in

RanSEPs an additional classification task to detect potential pseudo-

genes or highly repeated annotations that could be artifactually

considered as coding. With this in mind, we classified every ORF into

seven groups: 0—no hits passed the thresholds defined; 1—conserved

with an annotated function; 2—conserved as an annotated SEP in

NCBI but no associated function; 3—conserved in a different species

but target and homologous sequence not found in NCBI; 4—sequence

is completely or partially (> 75%) repeated ≥ 3 times in the reference

genome; 5—potential pseudogene; and 6—to depict those annota-

tions that are found in the reference NCBI annotation file. Pseudoge-

nes (type 5) are generally derived from a non-synonymous mutation

that partially or totally truncates a protein. In these cases, the pres-

ence of an in-frame start codon downstream of the mutation can give

rise to a fragment of the original gene sharing its properties. To detect

such cases, RanSEPs searches for cases where a SEP in the reference

genome (gene A’) was near a downstream or upstream gene (gene A)

and these two together (gene A-A’) were homologous to a single gene

in any of the closely related species. In this case, gene A’ would be

labeled as a potential pseudogene.

RanSEPs methods

RanSEPs implementation is fully based on Python (version >2.7.x),

using functions included in and tested in the scikit-learn package

(Pedregosa et al, 2013). A fully functional version of RanSEPs is

documented in and downloadable from GitHub and http://ranseps.

crg.es/.

Set definition

In this step, it is important to define closely related organisms in the

database to avoid an overestimation of conserved smORFs. This

process is automatically performed by RanSEPs after evaluating the

complete conservation database. The non-conserved smORFs are

randomly and iteratively sampled with the selected set size. For the

positive set, a minimum size of 100 true proteins is required.

Although it is preferred that this set includes all the annotated SEPs

of the organism, the user can define the specific percentage of SEPs

that are included.

12 of 17 Molecular Systems Biology 15: e8290 | 2019 ª 2019 The Authors

Molecular Systems Biology Predicting small proteins in bacteria Samuel Miravet-Verde et al

http://ranseps.crg.es/
http://ranseps.crg.es/


Protein feature computation

Complex featurization of sequences was performed using the

Python package propy (Cao et al, 2013). This package computes

more than 1,500 features for each single sequence, covering

protein attributes like amino acid composition, dipeptide and

tripeptide composition, Moreau–Broto, Moran, and Geary autocor-

relations, sequence-order-coupling number, and physicochemical

properties. Importantly, as many of these features present a high

correlation, including all of them could strongly over fit our train-

ing and test sets. To avoid this problem, we ran a Recursive

Feature Elimination (RFE) to prune the least important features

from the trees (i.e., features that do not efficiently separate posi-

tive and negative sequences). We applied this approach over the

109 organisms and selected the three best features by average:

quasi-sequence-order-coupling numbers based on the Schneider–

Wrede physicochemical distance matrix, hydrophobicity, and

secondary structure.

RF classification enables features to be sorted by their impor-

tance and then compares these weights in a quantitative manner.

Taking this into account, we added several sequence attributes of

specific biological interest to the comparison of coding features

between microorganisms. These are as follows:

Start codon: The ATG start codon is prevalent over alternative start

codons like GTG and TTG. To consider this effect in the classifi-

cation, we assigned a binary classification where 0 represents anno-

tations that do not have an ATG codon in their first 5 codons, and 1

represents otherwise.

GC content: GC content is computed as the count of G+C divided by

the length of the annotation. As described, GC content has a direct

effect on the probability of finding start and stop codons.

Ribosome-binding site (RBS) stacking energy: RBSs are important

elements in translation regulation in some bacterial species. As

motifs associated with this element can vary between organisms,

we represented the stacking energy of the �15 to the start codon

window. This value is close to �1.26 of free energy in the presence

of the AGGAGG motif.

Ribosome presence: Ribosome presence is included as a binary value

where 1 indicates the presence of any of the possible Shine–

Dalgarno sequences known to act as an RBS (Mir et al, 2012).

�10 + 20 stacking energy: Multiple studies suggest that specific

sequence requirements at the 50 end of an mRNA impact translation

efficiency. In the same way as for RBS, we computed the stacking

energies for the 30 bases spanning the �10 to +20 region (with

respect to the start codon).

Special features are measured in a relative manner using a

“feature” set that is sampled from the positive set (same properties)

but not used in the training process. Features extracted from this set

are as follows:

�10 score and +20 score: scores computed for the separate elements

based on a position weight matrix (PWM) of those regions

computed from annotated genes of the feature set.

Hexameric measures: calculated by sliding a 6-base window along

the sequence, starting in frame with the annotation (dicodon

frequency), +1, +2, and the combination of all the possible hexam-

ers (n hexamer measure). For each sequence, a single value per

frame and in combination is extracted. This value is computed as

the logarithmic odds ratio between the observed hexamer frequen-

cies and the expected one computed from the feature set. Both sets

of frequencies were normalized by the background frequencies

based on the GC content.

Codon adaptation index (CAI): a measure of the deviation of codon

presence in a sequence from a background model that is extracted

from the feature set of proteins. By implementing this measure in

addition to the hexameric measures, we take into account synony-

mous codons (Sharp & Li, 1987).

2 amino acids, N and C terminal: two features representing the

importance of specific amino acids at the initiation and termination

sites. The importance of these features depends on the species.

RF tuning calibration

After defining the types of sequences to include in each set, we

exhaustively explored the parameter space to properly calibrate the

single classifiers. RanSEPs presents two levels of complexity in its

tuning, single classifiers and a global classifier, where the latter is

the combination of single RFs. Tuning of single classifiers was

performed in an exhaustive manner, iterating and testing every

combination between: (i) 2, 4, 8, 16, 32, 64, 128, 256, 512, and

1,024 trees; (ii) 10- and 25-fold cross-validation; (iii) test sizes of 1,

5, 10, and 20%; (iv) positive, negative, and feature set sizes

between 100, 200, and 300 sequences; (v) percentage of SEPs in

each set between 0, 5, 10, 25, and 50%; (vi) maximum depth of the

forest between 0, 10, and 20; and (vii) minimum samples per leaf

from 1 to 20. For each combination in that parameter space, we

combined 5, 10, 20, 30, and 50 single classifiers into the global clas-

sifier. We then tested their accuracies based on the AUC of their

ROC curves to find the best parameters using the same test size

combinations of single RF in a global manner.

In the end, we ended up with the default configuration shown

in Table 2 for M. pneumoniae. This set of parameters worked

properly in organisms with < 100 annotated SEPs and genome

sizes < 1 kilobase. In the case of organisms with multiple SEPs

(> 100) already annotated in NCBI and a bigger sized genome (> 1

kilobase), we observed more adjusted predictions (an equal TPR

but a lower FPR) when increasing the negative set size to 2,000,

and 85% of SEPs in the positive/feature set with size equal to 200.

These rules are implemented in RanSEPs as automatic considera-

tions. RanSEPs can run as a general random forest algorithm (1

classifier) with regular k-fold cross-validation procedures or gener-

ating multiple classifiers with randomized training sets to provide

an averaged probability.

Table 2. RanSEPs default settings.

Positive set size 100

Negative set size 500

Feature set size 100

Percentage of SEPs in positive and
feature set

25

Number of single classifiers per
general classification

5

Number of trees 100

Maximum depth 0

Minimum samples per leaf 5

Parameter configuration used for the detection of proteins in Mycoplasma
pneumoniae.
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Feature weight estimation

An out-of-bag (OOB) approach was implemented to compute the

importance of each feature in the classification task. This algo-

rithm works by leaving a group of labeled points that will be clas-

sified out of the training set. For each classification, the algorithm

permutes a feature while leaving the rest unchanged, and

measures the error increase comparing the labels with the classes

assigned.

RanSEPs output

RanSEPs output includes several files related to coding-potential

features and classification stats, in addition to the classification task

results (Dataset EV23). An additional “parameters.txt” file is gener-

ated in order to keep track of the parameters used in each specific

execution.

Validation set definition

The positive set (n = 570) comprises 307 SEPs detected by MS with

≥ 2 UTPs from the six Mycoplasma species considered, Escherichia

coli, Pseudomonas aeruginosa, and Staphylococcus aureus (Datasets

EV2, EV3, EV6–EV13). Second, we performed searches in six addi-

tional public datasets for Lactococcus lactis, Helicobacter pylori, and

Synechocystis, extracting a total of 166 SEPs (Datasets EV14–EV16;

Lahtvee et al, 2011; Müller et al, 2013; Gao et al, 2015). These two

sets together (n = 473) not only included multiple annotated

proteins from the organism used as a reference (n = 335) or in a

closely related one (n = 87), but also 25 potentially new SEPs that

were not previously annotated in the corresponding reference

genomes or other organisms of the RanSEPs database (Dataset

EV17). Third, six SEPs detected by targeted MS (MS1 Targeted

Area Extraction) using C13C(6)15N(2)-labeled peptides from the

M. pneumoniae proteome (Dataset EV4). Fourth, 97 previously

reported SEPs from six different bacteria, well-characterized in the

literature and experimentally detected (Hemm et al, 2010; Kodama

et al, 2011; Storz et al, 2014; Baumgartner et al, 2016; Duval &

Cossart, 2017; Impens et al, 2017; VanOrsdel et al, 2018; Dataset

EV18).

The negative set (n = 570) was extracted from two different

sources. First, we randomly selected 556 SEPs from a collection of

putative SEPs satisfying the following criteria: (i) ≥ 2 HR_UTPs by

PeptideSieve; (ii) no NUTP/UTP signal by MS; and (iii) not

conserved in any closely related bacteria (highest e-value > 0.01 by

BLASTP). This set was balanced to be comparable with the positive

set (the same average amino acid length (35 aa)) and to be represen-

tative of the 12 bacterial species considered (Dataset EV18). Addi-

tionally, we included 14 SEPs detected with 1 UTP but not detected

by C13 proteomics: 2 found in M. pneumoniae and 12 in Helicobac-

ter pylori (Friedman et al, 2017).

Annotation tool comparative

As quality metrics for the prediction, we used the accuracy (rate

between true positives and true negatives over the total number of

tested SEPs) and the AUC between true-positive and true-negative

rates (the closer to 1 the better). AUC was measured by ROC curves,

and accuracy was supported by precision–recall curves. All searches

for validated SEPs using RanSEPs were performed excluding the

target proteins of the training process. To run BASys predictions,

we used their web service (basys.ca) and selected the arguments: gram-

positive/negative and providing specific CDS nucleotide sequences

of each target organism to perform a customized search. A CPC

search was performed at their website (cpc2.cbi.pku.edu.cn) using

the default general search, providing each target genome putative

ORFs. GeneMarkS (exon.gatech.edu/Genemark/genemarks.cgi) was

run using the default search and selecting the TGA option as a Tryp-

tophan codon for Mycoplasma species. To predict genes with Glim-

mer, we used the desktop version 3.0 downloaded at ccb.jhu.ed

u/software/glimmer/. In order to adjust the search for predicting

small proteins in each organism, we specifically defined the use of

start codons with custom probabilities based on their recurrence in

annotated genes (e.g., M. pneumoniae: ATG = 0.86, GTG = 0.073,

and TTG = 0.067). Additionally, we set a minimum size of 10, and

trained the search with the annotated genes of each specific organ-

ism excluding the target proteins. To make the comparative mean-

ingful, we standardized the metric provided by Glimmer to a

probability scale of 0–1. The last software, Prodigal (github.com/

hyattpd/Prodigal), was used as a desktop application forcing a full

motif scan of Shine–Dalgarno subsequences, and using the anno-

tated genes of each specific organism excluding the target proteins

as a reference.

Functionality studies

Based on their described function in NCBI, the annotated SEPs from

the 109 bacterial species were assigned to nine functional categories

(Dataset EV18). Functions assigned by homology inference were not

taken into consideration. Annotated SEPs with known functions

were used as the query database to assign functions by homology to

the remaining putative SEPs with undefined functions. Homologous

gene pairs were defined using the same e-value, aligned length, and

shared size thresholds as in the other analyses.

The desktop version of Phobius (http://phobius.sbc.su.se/) was

used to predict any signal peptides and transmembrane segments in

our predicted SEPs using default settings and only differentiating

between gram positives and negatives.

Data and software availability

• An index of the datasets presented has been included in the

Appendix.

• RNA-Seq datasets: ArrayExpress E-MTAB-6203 (https://www.ebi.

ac.uk/arrayexpress/experiments/E-MTAB-6203)

• Proteomics datasets: PRIDE PXD008243, PRIDE PXD010490,

PXD011038 (https://www.ebi.ac.uk/pride/archive/projects/

PXD000208; https://www.ebi.ac.uk/pride/archive/projects/

PXD010490; https://www.ebi.ac.uk/pride/archive/projects/

PXD011038)

• RanSEPs (http://ranseps.crg.es/)

Expanded View for this article is available online.
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