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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The fast-paced evolution of viruses enables them to quickly adapt to the organisms they

infect by constantly exploring the potential functional landscape of the proteins encoded in

their genomes. Geminiviruses, DNA viruses infecting plants and causing devastating crop

diseases worldwide, produce a limited number of multifunctional proteins that mediate the

manipulation of the cellular environment to the virus’ advantage. Among the proteins pro-

duced by the members of this family, C4, the smallest one described to date, is emerging as

a powerful viral effector with unexpected versatility. C4 is the only geminiviral protein consis-

tently subjected to positive selection and displays a number of dynamic subcellular localiza-

tions, interacting partners, and functions, which can vary between viral species. In this

review, we aim to summarize our current knowledge on this remarkable viral protein,

encompassing the different aspects of its multilayered diversity, and discuss what it can

teach us about geminivirus evolution, invasion requirements, and virulence strategies.

Introduction

Viruses are acellular intracellular parasites that invade and subvert host cells in order to multi-

ply their nucleic acid genomes and spread. With the aim to create a cellular environment per-

missive for viral replication, viruses manipulate and usurp the cellular molecular machinery

through the action of proteins they encode, which interact with, modify, redirect, inhibit,

interfere with, utilize, or hijack host proteins. Owing to the fast replication and elevated muta-

tion rate of viruses, viral proteins evolve quickly and are constantly exploring their potential

functional landscape; this, in turn, enables the high-paced adaptation of viruses to their hosts.

Geminiviruses are insect-transmitted plant viruses with circular single-stranded (ss) DNA

genomes, causal agents of devastating crop diseases around the globe. This viral family

(GAU : PleasenotethatasperPLOSstyle; phylum; order; family; etc:; shouldnotbeitalicized:eminiviridae) is divided in 14 genera, based on genome structure, host range, and insect

vector: Becurtovirus, Begomovirus, Capulavirus, Citodlavirus, Curtovirus, Eragrovirus, Grablo-
virus, Maldovirus, Mastrevirus, Mulcrilevirus, Opunvirus, Topilevirus, Topocuvirus, and
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Turncurtovirus ([1]; https://talk.ictvonline.org/ictv-reports/ictv_online_report/ssdna-viruses/

w/geminiviridae). Most geminiviruses described to date are members of the genus Begomo-
virus (currently, 445 out of 520), which encompasses both monopartite and bipartite viruses

(with genomes composed of 1 or 2 circular ssDNA molecules, respectively); viruses in all other

genera are exclusively monopartite. All geminiviral genomic components described to date are

approximately 2.5 to 3.2 kb in size, and complete genomes are described to encode between 4

and 8 proteins through bidirectional and partially overlapping open reading frames (ORFs)

located in both virion and complementary strands (Fig 1A). Geminiviruses can associate with

satellite molecules, which sometimes provide additional proteins acting as virulence factors

(reviewed in [2]).

The invasion of the host plant cell by a geminivirus requires a series of essential steps that

are not yet fully understood; these include intra- and intercellular movement, suppression of

antiviral defenses, DNA replication, viral gene expression, and acquisition and transmission

by the insect vector. To ensure a successful infection, certain essential functions need to be

provided by viral proteins; these can be facilitated by different proteins in different viruses

and/or accomplished through distinct virulence strategies, but they cannot be lost during evo-

lution. Since the geminiviral proteome is limited, the viral proteins are most likely multifunc-

tional, as has been demonstrated in numerous instances.

Fig 1. General features of the C4/AC4 protein encoded by geminiviruses. (A) Genome organization of geminiviruses. (B) Features of selected C4/AC4 proteins.

Protein size in aa is indicated on the right. The cTP was predicted by ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) [72]. The N-terminal myr site and the pal site

were predicted by GPS-Lipid (http://lipid.biocuckoo.org/webserver.php) [73]. For further information, see S1 and S2 Tables. cTP, predicted chloroplast transit peptide;

myr, predicted myristoylation site; pal, predicted palmitoylation site.

https://doi.org/10.1371/journal.ppat.1009915.g001
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Monopartite begomoviruses encode 6 proteins, namely Rep/C1, TrAP/C2, REn/C3, C4,

V2, and CP/V1 (Fig 1A). In bipartite begomoviruses, positional homologues of these proteins

(named Rep/AC1, TrAP/AC2, REn/AC3, AC4, AV2, and CP/AV1) are found in one of the

genomic components, DNA-A, while the other component, DNA-B, encodes a nuclear shuttle

protein (NSP) and a movement protein (MP). Functional information of geminivirus-encoded

proteins is rather fragmentary; nevertheless, the function of the viral proteins encoded by cer-

tain positional homologues seems to be frequently conserved across geminiviruses in different

genera. That is the case for the replication-associated protein (Rep/C1/AC1), which repro-

grams the cell cycle and enables replication of the viral DNA, or of REn/C3, which is described

to act as a replication enhancer (reviewed in [3,4]). Along the same lines, V2 acts as a silencing

suppressor in all geminiviruses tested to date (reviewed in [5]), and CP forms the viral capsid

and acts as the NSP in monopartite geminiviruses (reviewed in [3]). TrAP/C2, on the other

hand, seems to have broader functional diversity among geminiviruses (including transcrip-

tional activation, suppression of posttranscriptional gene silencing (PTGS)/transcriptional

gene silencing (TGS), or manipulation of hormone signaling, among other activities), despite

displaying a conserved nuclear or nuclear/cytoplasmic localization (reviewed in [5]). An

unparalleled case of functional diversity, nevertheless, is provided by the geminiviral C4/AC4

protein. C4 is the smallest geminiviral protein described to date (approximately 10 KDa), has

been proven essential for full infectivity in all geminiviruses tested, and is described as a symp-

tom determinant (e.g., [6–17]). C4 is encoded in the complementary strand of the viral

genome, and, in begomoviruses, its ORF is completely embedded in that of the viral Rep (Fig

1A). Strikingly, and despite the obvious evolutionary constraints that this overlap entails, C4 is

the most diverse protein in this viral family (Fig 1B), and, in stark contrast to all other gemini-

virus-encoded proteins, is consistently subjected to positive selection instead of purifying

selection [18–22]. Interestingly, acquisition of alternative C4 sequences by recombination has

been proven to give rise to new and more virulent geminiviruses [16,23] and correlates with

epidemiologically relevant properties like ability to break resistance [24,25] or independence

from a satellite molecule [16].

C4 displays a broad diversity of functions during the viral infection, both within and

between geminiviruses, which is perhaps just beginning to emerge. In this review, we intend to

summarize our current understanding of the C4 protein encoded by geminiviruses, consider-

ing its main features, its evolutionary properties, and the functions ascribed to it to date, and

to discuss what it can teach us about the geminivirus infection cycle and its interaction with

the host plant.

Main features of the geminivirus-encoded C4 protein

Members of the genera Begomovirus, Curtovirus, Maldovirus, Opunvirus, Topocuvirus, and

Turncurtovirus are described to encode a C4 protein (referred to AC4 in bipartite begomo-

viruses; previously also known as L4/AL4) (Table 1). The C3 protein encoded by Capulavirus,
Grablovirus, and Topilevirus members is a C4 homologue; in members of other genera, namely

Becurtovirus, Mastrevirus, and Mulcrilevirus, C4 positional homologues with similar features

to those previously described can also be predicted (Table 1), suggesting that the prevalence of

C4 among geminiviruses might be higher than initially thought.

The geminiviral C4 proteins described so far, all encoded in the complementary strand,

fully or partially overlapping with the Rep/C1 ORF but in a different frame, range from

approximately 7 to approximately 11 KDa in size and share an identity that can be as low as

<20%, being the least conserved geminiviral protein (see examples in Fig 1B; Table 1). The

diversity of the geminiviral C4 proteins is reflected in the varied, not fully overlapping
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subcellular localization of the proteins encoded by different geminiviruses, as well as in the

multiple functions and differential interactors (Table 2) that have been assigned to the posi-

tional homologues in different geminiviruses.

Several motifs potentially determining protein localization can be identified in C4 proteins,

namely a myristoylation (myr) site, a palmitoylation (pal) site, and a chloroplast transit peptide

(cTP) (see examples in Fig 1B). N-myristoylation is an irreversible protein lipidation, consist-

ing in the covalent attachment of a myristoyl group, derived from myristic acid, to an N-termi-

nal glycine residue. Pal, on the other hand, is a reversible protein lipidation that frequently

occurs on cysteine residues. Myr and pal, which often coexist in the same protein, increase

Table 1. Features of the C4 proteins encoded by the type species of the different Geminivirus genera.

Genus Species Isolate Accession

number

RefSeq number Virus

abbreviation

Gene name /

protein ID

cTP myr pal kDa aa

Becurtovirus Beet curly top
Iran virus

Iran/Kerman/2005/A EU273818 NC_010417 BCTIV NA / NA G2 C4 14,9 134

Begomovirus Bean golden
yellow mosaic
virus

Dominican Republic/

1987

DNA-A:

L01635;

DNA-B: L01636

DNA-A:

NC_038791;

DNA-B:

NC_038790

BGYMV NA / NA 52 C23 9,8 85

Tomato yellow
leaf curl virus (�)

Spain/Almeria/

Pepper/1999

AJ489258 NC_004005 TYLCV C4 / NP_658996.1 43 G2 C8 11,2 97

Capulavirus Euphorbia caput-
medusae latent
virus

South Africa/Dar10/

2010

HF921459 - EcmLV C3 / CCV02661.1 13,6 121

Citlodavirus Passion fruit
chlorotic mottle
virus (�)

Brazil/CDS_MS_BR/

2014

MG696802 NC_040706 PCMoV -

Curtovirus Beet curly top
virus

United States/CA/

Logan /1985/

California Logan

M24597 NC_001412 BCTV C4 69 G2 9,7 85

Eragrovirus Eragrostis
curvula streak
virus

South Africa/Gre1/

g261/2007/A

FJ665631 NC_012664 ECSV -

Grablovirus Grapevine red
blotch virus

456]17NOV2010/

2010

JQ901105 - GRBV NA / NA 8 C9,

C46

17,9 160

Maldovirus Apple
geminivirus 1

- KM386645 - AGV1 C4 / AJZ68901.1 G2 C8 8,7 77

Mastrevirus Maize streak
virus

South Africa/A Y00514 NC_001346 MSV NA / NA 3 G7 C21 5,3 47

Mulcrilevirus Mulberry crinkle
leaf virus

JS/2015 KR131749 - MCLV NA / NA G8 C12 12,9 113

Opunvirus Opuntia virus 1
(�)

DBG_14_1 MN100000 - OpV1 C4 / QHU79453.1 47 G2 C8 7,3 65

Topilevirus Tomato apical
leaf curl virus (�)

AR:Yuto:Tom419:08/

2017

MG491195 - ToALCV C3 / AUF71984.1 23 G9 C20 18,1 159

Topocuvirus Tomato pseudo-
curly top virus

US/Florida/1994 X84735 NC_003825 TPCTV C4 / NP_620736.1 54 G2 C8 9,5 85

Turncurtovirus Turnip curly top
virus

Iran/ Zafarabad/B11/

2006/A

GU456685 NC_014324 TCTV C4 /

YP_003778179.1

G2 C8 9,7 85

Unclassified Polygala garcinii
geminivirus 1

South Africa/1-1/

2012

MG001959 NC_037068 PgGV1 NA / NA 44 G2 10,7 97

Asteriks indicate non-type species. Protein size in kDa and in aa is indicated. cTP, predicted chloroplast transit peptide; myr, predicted myristoylation site; pal,

predicted palmitoylation site. The cTP was predicted by ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) [72]. The N-terminal myr site and the pal site were

predicted by GPS-Lipid (http://lipid.biocuckoo.org/webserver.php) [73]. For scores and cutoffs, please see S1 Table.

https://doi.org/10.1371/journal.ppat.1009915.t001
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hydrophobicity, hence favoring membrane association. The cTP acts as a chloroplast targeting

sequence and can be highly divergent in length, composition, and organization; this amino

acid sequence is cleaved upon protein import to the organelle through the translocon (TOC/

TIC) complexes, releasing the mature protein to the interior of the chloroplast. Lipidations

have been proven for the C4 protein from tomato yellow leaf curl virus (TYLCV) and C4 from

beet severe curly top virus (BSCTV) in vivo [8,26] and for that of tomato leaf curl Yunnan

virus (TLCYnV) in vitro [27], while the relevance of the potential myr and pal sites for protein

localization and/or function has been shown in several other cases [26,28–30]. Intriguingly,

these localization signals seem to have been either lost or gained multiple times during evolu-

tion, and all possible combinations can be found in nature (Fig 2).

As a consequence of the diversity in the combinatorial presence of targeting signals, as well

as, possibly, interacting partners, geminiviral C4 proteins can display an array of subcellular

localizations, including plasma membrane, chloroplasts, nucleus, and cytoplasm (e.g., [9,26–

29]); these subcellular localizations can be dynamically regulated at different stages of the infec-

tion [26,27]. The observed differences in subcellular localization will necessarily impact the

interactome and functionality of individual C4 proteins, as illustrated in the following sections.

In addition to lipidations, C4 is subjected to another posttranslational modification, namely

phosphorylation [27,30,31]; this modification might rely, at least partly and/or in some cases,

on the interaction with the plant kinase SKη/BIN2, a well-known signaling component origi-

nally described as a negative regulator of the brassinosteroid (BR) signaling pathway [32],

which seems to be common among C4 proteins [27,30,31,33,34]. Phosphorylation has proven

essential for the developmental effects of C4 from BCTV [30]; in combination with myr, phos-

phorylation controls the nuclear/cytoplasmic shuttling of C4 from TLCYnV, hence its activity

[27] (see below).

Evolutionary aspects of C4/AC4 proteins

The phylogeny of C4/AC4 sequences is incongruent with the whole-genome phylogeny. While

the whole-genome phylogeny of geminivirids shows a clear separation of members of the

Table 2. Described plant interactors of C4/AC4 proteins.

Protein Species Virus

abbreviation

Known interactor(s) Known function(s) Reference(s)

C4 Tomato Leaf Curl
Guandong virus

ToLCGdV BAM1 Suppression of intercellular spread of silencing [9]

C4 Beet severe curly top
virus

BSCTV CLV1, PEPR2 N/A [8,54]

C4 Tomato yellow leaf
curl virus

TYLCV BRI1, PSKR1, CLV1, BRL3, BAM1,

BAM2, BAM3, FLS2, NIK1, CAS

Suppression of intercellular spread of silencing; suppression

of SA-mediated defenses; weak PTGS supression in bean

[26,41,49,50,66]

C4 Tomato Leaf Curl
Yunnan virus

TLCYnV HIR1, NbSKη, BKI1, NbDRM2 Suppression of HIR1-dependent cell death; reactivation of

the cell cycle; impairing MAPK activation; TGS suppression

[10,48,60,61]

AC4 Cotton leaf curl
Multan virus

CLCuMV SAMS Suppression of TGS and PTGS [57]

C4 Tomato leaf curl
virus

ToLCV SlSK N/A [33]

C4 Beet curly top virus BCTV AtSKη Activation of cell cycle [30,31]

AC4 Mungbean yellow
mosaic virus

MYMV BAM1 Suppression of intercellular spread of silencing [28]

HIR1, HYPERSENSITIVE INDUCED REACTION 1; MAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutTable2andFig2:Pleaseverifythatallentriesarecorrect:APK, mitogen-activated protein kinase; PTGS, posttranscriptional gene silencing; SA, salicylic acid; TGS,

transcriptional gene silencing.

https://doi.org/10.1371/journal.ppat.1009915.t002

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009915 October 7, 2021 5 / 15

https://doi.org/10.1371/journal.ppat.1009915.t002
https://doi.org/10.1371/journal.ppat.1009915


PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009915 October 7, 2021 6 / 15

https://doi.org/10.1371/journal.ppat.1009915


different genera [1] and divides begomoviruses into 2 strongly supported clades including

viruses from the Old World (OW) and New World (NW) [35], the clusters observed in C4/

AC4-based phylogenies include both OW and NW begomoviruses as well as members of dif-

ferent Geminiviridae genera (Fig 2; see also Fig 3 in [18] and Fig 2 in [36]). This incongruence

could be due to the location of C4/AC4 in a recombination hot spot [37]. Thus, the evolution-

ary history of C4/AC4 proteins may be distinct from those of the other geminiviral proteins.

As mentioned above, acquisition of alternative C4 sequences by recombination provides a

selective advantage [16,23–25], which is consistent with the multiple roles assigned to C4/AC4

proteins in the geminiviral infection cycle.

One interesting aspect of C4/AC4 proteins is that they are the only geminiviral protein to

be consistently under positive selection. This was initially noted for the OW monopartite bego-

movirus cotton leaf curl Multan virus (CLCuMV; [20]) and later shown to be the true also for

other OW and NW monopartite begomoviruses such as TYLCV [22] and tomato leaf defor-

mation virus (ToLDeV; [18]). AAU : PleasecheckwhethertheeditstothesentenceArecentstudyanalyzeddatasets . . . arecorrect; andprovidecorrectwordingifnecessary:recent study analyzed data sets of 200 randomly chosen bego-

moviruses (one sequence from each virus) and of 11 curtovirus isolates, and found that, in

both cases, C4/AC4 was under positive selection, while the overlapping portion of C1/AC1

was under purifying selection [36]. We have analyzed species data sets of 21 mono- and bipar-

tite begomoviruses, and C4/AC4 is under positive selection in 13 of them (Table 3). Four addi-

tional species data sets had values of approximately 0.9, indicating close to neutral selection.

Moreover, no other gene is under positive selection in 20 of the 21 species data sets, the single

exception being AV2 of mungbean yellow mosaic India virus (MYMIV) (Table 3). We also cal-

culated the dN/dS values for each of the 3 domains (cTP, myr, and pal), and they are generally

similar to the values for the full C4 sequence (S3 Table). Positive selection was observed in

viruses infecting cultivated (bean golden mosaic virus, BGMV; TYLCV) or noncultivated

hosts (euphorbia yellow mosaic virus, EuYMV; macroptilium yellow spot virus, MaYSV), with

narrow (African cassava mosaic virus, ACMV; CLCuMV) or wide (MaYSV) host ranges, and

was not dependent on the number of sequences in the data set. Thus, while positive selection

may not be a universal feature of C4/AC4 genes, they are indeed under positive selection in

many geminiviruses, unlike all the other geminiviral genes. This is even more remarkable

since, as mentioned above, the C4/AC4 gene is located in a recognized recombination hot spot

[37]. Inasmuch as recombination contributes to the genetic variability of geminiviruses, it also

plays an important role in purging deleterious mutations, which are mostly, if not entirely,

nonsynonymous. Evidently, such purging effect is not acting on C4/AC4. A clear example

MaYSV, in which AC4 is under strong positive selection (dN/dS = 1.4500) even though it is

located in a recombinant fragment [38]. This recombinant fragment is responsible for the high

nucleotide diversity of the MaYSV DNA-A, but this diversity is expressed mostly as synony-

mous mutations in Rep (dN/dS = 0.2248) and nonsynonymous mutations in AC4 [38].

It has been posited that overlapping genes may limit the accumulation of synonymous sub-

stitutions or a higher accumulation of nonsynonymous substitutions in one of the overlapping

genes, leading to an artifactual increase in the dN/dS ratio [39]. However, C2/AC2 and C3/

AC3 also overlap, and both genes are under purifying selection (Table 3). Therefore, the>1

Fig 2. Phylogenetic tree of C4/AC4 proteins and presence/absence of predicted cTP and myr/pal sites. Annotated C4/AC4 proteins were

used in (A); in (B), potential proteins encoded by predicted ORFs with positional and sequence homology to C4 (predicted C4; dark blue) as

well as Capulavirus, Grablovirus, and Topilevirus C3 proteins (pink) are included. In light blue, annotated C4/AC4 proteins. The presence or

absence of predicted cTP, myr, and pal is indicated; protein size in aa is shown on the right. Numbers within the gray boxes correspond to

different Geminivirus genera as follows: 1, Becurtovirus; 2, Begomovirus (BGYMV: NW; TYLCV: OW); 3, Capulavirus; 4, Curtovirus; 5,

Grablovirus; 6, Maldovirus; 7, Mastrevirus; 9, Opunvirus; 10, Topilevirus; 11, Topocuvirus; and 12, Turncurtovirus. The gray boxes without

name correspond to unclassified viruses. For further information, see S1 and S2 Tables. cTP, predicted chloroplast transit peptide; myr,

predicted myristoylation site; ORF, open reading frame; OW, Old World; NW, New World; pal, predicted palmitoylation site.

https://doi.org/10.1371/journal.ppat.1009915.g002
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dN/dS values for C4/AC4 can be correctly interpreted as positive selection acting upon this

gene.

Although the evolutionary and functional significance of positive selection in C4/AC4

genes of geminiviruses is unknown, it is reasonable to assume that it is related to the multiple,

accessory roles of C4/AC4 in the geminiviral infection cycle, as well as their large number of

interacting partners. The fact that several of the roles played by C4/AC4 can also be performed

by other geminiviral proteins may release it from evolutionary constraints, allowing it greater

freedom to explore the amino acid sequence space. In particular, positive selection has been

implicated in the counterresponse of viruses against host defense responses based on RNA

silencing [40], a role that has been assigned to C4/AC4 proteins. Nevertheless, it is remarkable

that such a small protein can tolerate a relatively large number of nonsynonymous mutations.

In this regard, it is noteworthy that C4/AC4 proteins were found to be intrinsically disordered

proteins [36], which are characterized precisely for tolerating nonsynonymous mutations and

for interacting with multiple cellular partners.

The broad functional landscape of C4

Functions of C4 at the plasma membrane

Multiple geminiviral C4/AC4 proteins have been described as associated to the plasma membrane, a

localization that requires their lipidation [12,26–29,41]. At the plasma membrane, at least some C4/

Table 3. Nonsynonymous to synonymous substitution ratios (dN/dS) calculated for OW and NW begomoviruses.

Virus Acronym Groupa Number of sequences AC4 Rep TrAP Ren CP AV2

African cassava mosaic virus ACMV OW 252 2.0018 0.1479 0.4342 0.4342 0.0975 0.2263

Ageratum enation virus AgEV OW 44 0.8989 0.2337 0.6903 0.2753 0.0627 0.1705

Bhendi yellow vein India virus BhYVIV OW 52 1.1987 0.2827 0.4495 0.5048 0.1453 0.2363

Bhendi yellow vein mosaic virus BhYVMV OW 75 1.4870 0.2125 0.4355 0.4392 0.1277 0.2233

Cotton leaf curl Gezira virus CLCuGV OW 81 1.4433 0.1576 0.5735 0.2560 0.1010 0.1705

Cotton leaf curl Multan virus CLCuMV OW 129 1.4449 0.2351 0.8385 0.3717 0.1419 0.3584

East African cassava mosaic virus EACMV OW 207 1.4322 0.1280 0.3743 0.6368 0.1432 0.2463

Mungbean yellow mosaic India virus MYMIV OW 85 0.5750 0.1345 0.3776 0.5309 0.0872 1.1188

Squash leaf curl China virus SLCCNV OW 38 1.4377 0.1171 0.7540 0.2530 0.0582 0.3112

Sweet potato leaf curl virus SPLCV OW 142 1.3603 0.2221 0.6123 0.3561 0.0868 0.1281

Tomato leaf curl New Delhi virus ToLCNDV OW 547 0.7223 0.1339 0.6691 0.2742 0.0594 0.3297

Tomato leaf curl Taiwan virus ToLCTV OW 54 0.9286 0.2107 0.4516 0.2385 0.0870 0.1519

Tomato yellow leaf curl China virus ToYLCCNV OW 39 0.9372 0.1566 0.4063 0.3554 0.0387 0.1818

Tomato yellow leaf curl Thailand virus TYLCTV OW 42 0.7963 0.2115 0.2937 0.4280 0.0387 0.2175

Tomato yellow leaf curl virus TYLCV OW 763 2.0298 0.2540 0.5549 0.4206 0.1204 0.2327

Bean golden mosaic virusb BGMV NW 117 2.5300 0.2490 0.4007 0.4261 0.1037 -c

Blainvillea yellow spot virusb BlYSV NW 30 0.8575 0.1837 0.4378 0.1902 0.0282 -

Euphorbia yellow mosaic virusb EuYMV NW 50 1.1500 0.2589 0.6470 0.2710 0.0611 -

Macroptilium yellow spot virusb MaYSV NW 21 1.4500 0.2284 0.5240 0.3078 0.0943 -

Tomato leaf deformation virus ToLDeV NW 72 0.5515 0.2699 0.9475 0.2292 0.0748 -

Tomato severe rugose virus ToSRV NW 74 1.8367 0.1133 0.3310 0.2407 0.1646 -

aOW, Old World; NW, New World.
bFrom Xavier and colleagues [21]
cNW begomoviruses do not have an AV2 gene.

Values >1, which are indicative of positive selection, are highlighted in bold.

https://doi.org/10.1371/journal.ppat.1009915.t003
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AC4 proteins can concentrate in plasmodesmata, the microscopic channels providing cytoplasmic

and membrane continuity between plant cells [28,41]; the presence of C4/AC4 at the cell periphery

has prompted long-standing speculations regarding its involvement in viral movement, a role that

would be consistent with its plasmodesmal localization. Nevertheless, the experimental evidence

supporting a movement role of C4 during the geminiviral infection is scarce and occasionally based

on the observation that a null mutant is impaired in systemic invasion despite retaining its ability to

replicate [15,42], a feature later shown applicable to other viral proteins. Arguing against an essential

role in viral cell-to-cell movement, C4 from TYLCV has limited capacity to move and/or to mediate

macromolecular trafficking intercellularly, at least in mesophyll and epidermal cells of Nicotiana
benthamiana or Arabidopsis [12,41], and null mutations in C4 do not always result in impaired sys-

temic infections [43–47]. At the plasma membrane, C4/AC4 from different geminiviruses has been

shown to interact with receptor-like kinases (RLKs) or associated proteins and potentially interfere

with their activity, possibly inhibiting signal transduction. The interaction of C4 from TLCYnV with

the inhibitor BRI1 KINASE INHIBITOR 1 (BKI1) impairs its dissociation from the RLK ERECTA

(ER), suppressing the autophosphorylation of the latter and the downstream activation of mitogen-

activated protein kinases (MAPK) cascades and their function in antiviral defense [48]. The C4 pro-

teins from TYLCV and tomato leaf curl Guangdong virus (ToLCGdV) and the AC4 protein from

mungbean yellow mosaic virus (MYMV) interact with BARELY ANY MERISTEM 1 (BAM1) (and,

at least for C4 from TYLCV, with its closest homologue BAM2); in the case of TYLCV and MYMV,

this interaction seems to be particularly strong at plasmodesmata [9,28,41]. BAM1 has been pro-

posed to promote the intercellular movement of silencing [41,49]; given that the silencing spread is

inhibited by these C4/AC4 proteins, an activity for which their plasma membrane localization is an

essential requirement, it has been speculated that the viral proteins might be suppressing this partic-

ular function of BAM1. Interestingly, other viral proteins have been recently shown to interact with

BAM1, suggesting a central role of this RLK in plant–virus interactions [50,51].

A close homologue of BAM1, CLAVATA 1 (CLV1), interacts with C4 from BSCTV, which

may interfere with the downstream signaling pathway [8]. This same C4 protein also interacts

with Pep1 RECEPTOR 2 (PEPR2), one of 2 receptors of the plant endogenous peptide Pep1

[52–54]. Pep1 acts as a damage-associated molecular pattern (DAMP), and its perception acti-

vates DAMP-triggered immunity (reviewed in [55]). Strikingly, overexpression of PEPR2 and

its activation by exogenously applied Pep1 promotes the internalization of C4 from the plasma

membrane, and has an antiviral effect [54], which prompts the speculation that PEPR2 might

modify C4 to trigger its plasma membrane release and therefore interfere with its virulence

function. Of note, phosphorylation-dependent detachment of N-myristoylated proteins from

the plasma membrane occurs in animals [56], raising the idea that PEPR2 might phosphorylate

and free C4 following perception of Pep1 and activation of its intracellular kinase domain.

The physical association of C4/AC4 proteins with the intracellular domain of RLKs seems

to be an extended phenomenon; whether these interactions are specific for a given C4/

AC4-RLK combination, or, on the contrary, C4/AC4 proteins target the conserved kinase

domain of RLKs and hence can broadly bind members of this protein family is at this point

unclear. Nevertheless, the finding that C4 from BSCTV interacts with both CLV1 and PEPR2

[8,54] and that C4 from TYLCV can associate with a number of RLKs from Arabidopsis [50]

seems to favor the latter; certain C4/AC4-RLK interactions might have been selected for in

specific geminivirus/plant pathosystems.

C4 as silencing suppressor

Some C4/AC4 proteins have been described to function as suppressors of gene silencing, both

TGS and PTGS. As mentioned above, some C4/AC4 proteins specifically interfere with the cell
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to cell or systemic spread of silencing [5,9,28,41]. The C4/AC4 proteins from African cassava

mosaic virus (ACMV), EACMV, CLCuMV, and tomato leaf curl virus-Australia (ToLCV)

suppress PTGS [29,33,57,58]. At least for ACMV, this property might be associated to its abil-

ity to bind small RNA (sRNA) [59]. In the case of ToLCV, binding of the protein to the host

shaggy-like kinase (SlSK) through its carboxyl terminus seems essential for its silencing sup-

pressing capacity [33]. The activity of C4 from CLCuMuV depends on its interaction with the

core enzyme in the methyl cycle S-adenosyl methionine synthetase (SAMS), which underlies

its capability to act as both PTGS and TGS suppressor [57]. The C4 protein from TLCYnV

also functions as a TGS suppressor, in this case by interacting with and impairing DNA bind-

ing of the DNA methyltransferase DOMAINS REARRANGED METHYLASE 2 (DRM2) [60].

C4 manipulates defense responses

Another common theme in the function of geminivirus-encoded C4/AC4 proteins is the sup-

pression of different aspects of plant defense, which is not restricted to antiviral gene silencing.

As previously mentioned, at the plasma membrane, C4 from TLCYnV suppresses the activa-

tion of MAPK cascades, which restrict viral accumulation, through the interaction with BKI1

[48]; in addition, this protein abolishes the HYPERSENSITIVE INDUCED REACTION 1

(HIR1)-mediated cell death following a double approach: by impairing the HIR1 homotypic

interaction, essential for the onset of cell death, and by inducing the accumulation of the nega-

tive regulator of HIR1 LRR1 [61]. C4/AC4 from TYLCV, BCTV, and EACMV can relocalize

from the plasma membrane to the chloroplast upon perception of a biotic threat at the cell sur-

face, and impair the downstream activation of chloroplast-dependent defenses, including sali-

cylic acid (SA) accumulation and SA-dependent responses, which are proven to play an

antiviral defense [26,62].

C4 as symptom determinant

The geminiviral C4/AC4 protein has long been described as a symptom determinant (e.g.,

[11,14,17,63,64]). Transgenic expression of C4/AC4 in plants leads to dramatic developmental

phenotypes, which can vary between viruses (e.g., [10,31,63,65,66]) but frequently include leaf

curling, organ twisting, and darker green color in photosynthetic tissues. C4 is the major determi-

nant of the distinctive vein swelling associated to BCTV infection [14,63,64], and its expression in

transgenic plants results in ectopic cell division [30,31,63,65]. Constitutive expression of C4 from

BSCTV in Arabidopsis induces the expression of cell cycle–related genes and leads to callus for-

mation or ectopic cell divisions, suggesting that at least one of the activities underlying the capac-

ity of C4 to prompt developmental alterations is the reactivation of the cell cycle [67,68]. The

reactivation of the cell cycle by the C4 protein from BCSTV seems to occur through the induction

of RKP, a ubiquitin E3 ligase [67]; recently, the symptom determinant ability of this C4 has been

attributed to its capacity to bind CLV1 in the shoot apical meristem [8], although whether the

virus will reach this area during a natural infection remains to be determined. However, it is pos-

sible to generate stable transgenic plants constitutively expressing C4 from other geminiviruses

(e.g., TYLCV), which suggests that either not all of them induce cell dedifferentiation and divi-

sion or their efficacy and/or underpinning molecular mechanisms differ.

In the case of TLCYnV, C4 promotes cell division by interacting with NbSKη (the homo-

logue of Arabidopsis BIN2 in N. benthamiana) [10,27,34]; interestingly, the interaction

between C4 and BIN2/NbSKη is prevalent in the geminivirus family [30,31,33,34,69]. C4 from

TLCYnV shuttles NbSKη from its native nuclear localization to the cell periphery, in turn trig-

gering the accumulation of the NbSKη substrate Cyclin D1;1, an effect that stimulates reentry

in cell cycle and ultimately cell division [10,27].
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C4/AC4 proteins have been shown to interfere with hormone synthesis and/or signaling,

specifically those of BR, auxin, and SA [26,50,69,70], an effect that may underlie or contribute

to the impact of these viral proteins on development. Supporting this notion, application of

exogenous BR alleviates viral symptoms in TYLCV-infected tomato plants [71], as well as

C4-triggered developmental abnormalities in transgenic Arabidopsis lines [63].

Conclusions and outlook

Recent years have witnessed an unprecedented increase in publications featuring the gemini-

viral C4/AC4 protein, uncovering a plethora of functions and different properties of this posi-

tional homologue in different viruses; in all probability, however, we are just scratching at the

surface of the diversity of this viral protein. Systematic comparative studies will be required to

unveil the full breadth of the functional and mechanistic portfolio of the C4/AC4 proteins and

their evolutionary underpinnings. Specifically, the annotated or predicted C4/AC4 homo-

logues in members of the genera Becurtovirus, Capulavirus, Grablovirus, Maldovirus, Mastre-
virus, Mulcrilevirus, Opunvirus, Topilevirus, and Turncurtovirus remain to be functionally

characterized. Many members of these genera cause mild or symptomless infections, and it

will be interesting to see if these viruses actually encode C4/AC4 proteins and, in case they do,

to which extent these proteins are indeed functionally homologous to C4/AC4 proteins

encoded by begomoviruses and curtoviruses.

Importantly, available examples in which the C4 coding sequence determines breakdown of

resistance or independence from a satellite molecule underscore the importance of gaining

insight into the C4/AC4 protein and its potential implications for disease control. Moreover,

the identification of the virulence-promoting functions gained in C4/AC4 proteins may

uncover processes required for a successful viral infection, which may be used as targets in strat-

egies to engineer antiviral resistance, and the unraveling of their molecular bases may shed new

light on plant cellular and molecular mechanisms. Last but not least, the exploitation of func-

tional properties of geminiviral C4/AC4 proteins may entail high potential for biotechnological

applications, e.g., in the targeted manipulation of plant signaling pathways. In all probability,

research on these versatile and fascinating proteins will keep broadening our understanding of

the intricate plant–geminivirus interactions, offering insight into geminiviral evolution, and,

hopefully, propelling the rational design of antiviral strategies for years to come.
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