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Abstract
Ion channels are a class of membrane proteins that attracts a significant amount of basic

research, also being potential drug targets. High-throughput identification of these channels

is hampered by the low levels of availability of their structures and an observation that use

of sequence similarity offers limited predictive quality. Consequently, several machine

learning predictors of ion channels from protein sequences that do not rely on high

sequence similarity were developed. However, only one of these methods offers a wide

scope by predicting ion channels, their types and four major subtypes of the voltage-gated

channels. Moreover, this and other existing predictors utilize relatively simple predictive

models that limit their accuracy. We propose a novel and accurate predictor of ion channels,

their types and the four subtypes of the voltage-gated channels called PSIONplus. Our

method combines a support vector machine model and a sequence similarity search with

BLAST. The originality of PSIONplus stems from the use of a more sophisticated machine

learning model that for the first time in this area utilizes evolutionary profiles and predicted

secondary structure, solvent accessibility and intrinsic disorder. We empirically demon-

strate that the evolutionary profiles provide the strongest predictive input among new and

previously used input types. We also show that all new types of inputs contribute to the pre-

diction. Results on an independent test dataset reveal that PSIONplus obtains relatively

good predictive performance and outperforms existing methods. It secures accuracies of

85.4% and 68.3% for the prediction of ion channels and their types, respectively, and the

average accuracy of 96.4% for the discrimination of the four ion channel subtypes. Stand-

alone version of PSIONplus is freely available from https://sourceforge.net/projects/psion/
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Introduction
Ion channels are membrane proteins that facilitate the flow of ions through the lipid mem-
branes [1, 2]. Besides their biological importance, they are of substantial research interest in the
context of drug development [3–5]. There are over 300 types of ion channels in living cells [6].
They differ in their structures and cellular functions. Ion channels are gated by variety of fac-
tors including voltage, ligands, membrane tension, temperature and light [7]. Considering
their mechanism of activation, ion channels are mainly classified into the voltage-gated and
ligand-gated ion channels [8, 9]. The ligand-gated ion channels open and close depending on
the interactions with specific ligands while the voltage-gated ion channels function in response
to the voltage gradient across the membrane. The voltage-gated ion channels can be further
classified into several subtypes including potassium (K), sodium (Na), calcium (Ca), anion ion
channels, proton channels, transient receptor potential channels and hyperpolarization-acti-
vated cyclic nucleotide-gated channels [9].

Studies of structure and function of ion channels continue to attract significant research
attention [10–16]. As a highlight, recent years have seen strong interest in the role of ion chan-
nels as antiviral targets [17]. In the specific case of influenza A, the structure and mechanistic
details of the voltage-gated M2 proton channel was recently analyzed [18–20] and a few high-
profile articles on the potential therapy that targets this channel were published [21, 22]. The
strong research interest and ubiquity of ion channels [23–25] motivate the development of
methods that predict them from protein sequences.

A naïve approach that finds ion channels based on their sequence similarity to sequences of
known channels was found to be flawed [26]. Consequently, more sophisticated, machine
learning methods which can predict different types and subtypes of ion channels that are dis-
similar in their sequences were developed. In one of the first attempts, Liu et al. [27] proposed
a method to predict voltage-gated potassium channels and certain families of this subtype of
channels based on a simple dipeptide compositions extracted from an input sequence and Sup-
port Vector Machine (SVM) predictive model. Using a more advanced design that included
SVMmodel and dipeptide composition combined with PSI-BLAST-based [28] and HMMER-
based [29] similarity searches, Saha et al. [30] have developed the VGIchan method that pre-
dicts voltage-gated ion channels and their subtypes. More recently, in 2011 Lin et al. [31] pro-
posed a method that offers a much wider scope including the prediction of ion channels, ion
channels types, and the four subtypes of the voltage-gated ion channels. However, the design of
this method was similar to the method by Liu et al. [27] and involved the use of a subset of
amino acid and dipeptide composition values and the SVMmodel. In 2012, Chen and Lin [32]
published a narrower in scope approach that predicts subfamilies of the voltage-gated potas-
sium channels, yet again using a similar design that applies SVM and amino acid and dipeptide
composition. Finally, in 2014 the same group released a slightly improved method for the pre-
diction of subfamilies of the voltage-gated potassium channels that applies an empirically
selected subset of tripeptide composition values and the SVMmodel [33]. All but one of the
existing methods are characterized by a relatively narrow scope being restricted to either volt-
age-gated potassium channels or voltage-gated ion channels. The one method that was devel-
oped in 2011 by Lin et al. offers a comprehensive scope but utilizes a relatively simple design
that is similar to all other methods. Our aim is to provide a novel method that provides simi-
larly comprehensive scope, i.e., it predicts whether a given sequence is an ion channel, what
type of the channel it is, and which subtype of the voltage-gated ion channel it is, while utilizing
a more advanced design that should lead to an improved predictive performance. Our method
considers an empirically selected collection of inputs that for the first time in this area utilizes
physiochemical properties of amino acid derived from the input protein chain, position specific
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scoring matrix (PSSM) profiles generated by PSI-BLAST, and predicted secondary structure,
relative solvent accessibility and intrinsic disorder.

Materials and Methods

Datasets
The data used to build the proposed prediction method are taken from Lin et al. [31]. Protein
sequences were downloaded from UniProt [34] and the Ligand-Gated Ion channel database
(http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php) [35]. The chains that include
non-standard amino acid types, fragments of proteins, and proteins annotated based on
homology or predictions were excluded. The remaining sequences were clustered at 40% iden-
tity using CD-HIT [36] to remove similar chains. This resulted in 298 ion channel proteins
with 150 ligand-gated and 148 voltage-gated ion channels. The voltage-gated ion channels
include 81 potassium (K), 29 calcium (Ca), 12 sodium (Na) and 26 voltage-gated anion chan-
nels. To facilitate assessment of prediction of the ion-channels vs. non-ion channel dataset, 300
membrane proteins that were randomly selected from UniProt and that share<40% identity
to the ion channel proteins were designated as the non-ion channel proteins. These data were
used to derive three training datasets (Table 1). TRAINION is used to develop predictor that
discriminates the ion channel and non-ion channel chains. TRAINVLG is used to build predic-
tor of ion channel types, i.e., voltage-gated vs. and ligand-gated ion channel. Finally, TRAINVGS

is the training dataset for prediction of the four subtypes of the voltage-gated ion channels.
We also developed three new test datasets that include proteins that are dissimilar to pro-

teins in the three training datasets. These test datasets, which were not used to design our pre-
dictor, were collected from UniProt two years after the dataset from Lin et al. was established.
We followed the protocol from ref. [31]. We collected reviewed chains annotated with the fol-
lowing five Gene Ontology keywords: 1) “ligand-gated channel”; 2) “voltage-gated” and “potas-
sium channel”; 3)“voltage-gated” and “calcium channel”; 4) “voltage-gated” and “sodium
channel”; and 5) “voltage-gated” and “anion channel”. Next, we excluded annotations that
were inferred from homology, which are predicted and uncertain. The non-ion channel

Table 1. Datasets used to design and test the proposedmethod.

Dataset name Annotations Number of chains

TRAINION Ion channel 298

Non-ion channel 300

TRAINVLG Voltage-gated channel 148

Ligand-gated channel 150

TRAINVGS Potassium(K) 81

Calcium(Ca) 29

Sodium(Na) 12

Anion 26

TEST30ION Ion channel 94

Non-ion channel 104

TEST30VLG Voltage-gated channel 43

Ligand-gated channel 17

TEST60VGS Potassium(K) 120

Calcium(Ca) 49

Sodium(Na) 23

Anion 47

doi:10.1371/journal.pone.0152964.t001
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proteins were randomly selected from the UniProt to match the number of the ion-channels.
We excluded chains with non-standard amino acid types (X, B and U) and chains that have
similarity of over 30% with the proteins in any of the training datasets, based on the clustering
with CD-HIT. Consequently, the TEST30ION and TEST30VLG datasets, which are used to
assess prediction of ion channels and ion channel types, include 198 and 60 proteins, respec-
tively (Table 1). Using the 30% similarity cutoff did not allow us to collect a sufficient number
of proteins for the four subtypes of the voltage-gated ion channels to perform tests. Thus, the
test set for these subtypes, TEST60VGS, is based on 60% similarity threshold to the training pro-
teins and includes total of 239 proteins (Table 1).

Assessment of the predictive performance
The predictors of the ion channels, their types and subtypes generate either a binary outcome
(ion channel vs. non-ion channel and voltage-gated vs. ligand-gated) or four outcomes (potas-
sium, sodium, calcium and anion ion channel). The assessment of these predictions uses the
same measures as in the related works, including accuracy [27, 30–33] and Matthews correla-
tion coefficient (MCC) [27, 30, 32, 33]:

Accuracy ¼ ðTP þ TNÞ=ðTP þ FP þ TN þ FNÞ ð1Þ

MCC ¼ ðTP�TN þ FP�FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTP þ FNÞðTN þ FPÞðTNþ FNÞ

p
ð2Þ

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. We
also compute Fmeasure, which is a weighted average of the precision and recall and has maximal
and minimal values of 1 and 0, respectively:

Fmeasure ¼ 2TP=ð2TP þ FN þ FPÞ ¼ 2�precision�recall=ðprecisionþ recallÞ ð3Þ

The accuracy, MCC and Fmeasure are computed for the two binary predictions and for each
of the four outcomes in the prediction of voltage-gated ion subtypes. We also compute average
accuracy, MCC, Fmeasure and Q4 accuracy to summarize the overall prediction over the four
subtypes:

Q4 ¼
X

i¼1::n

ðTPi=NÞ ð4Þ

where N is total number of sequences and n = 4 is number of classes.
The entire design process, which includes feature selection and parameterization of the pre-

dictive model, was run using five-fold cross validation on the training datasets; the same fea-
tures and parameters are used in all benchmark tests. The resulting design is compared using
N-fold cross-validation (jackknife test) on the training datasets with the results in ref. [31]
where the same jackknife test was performed. Finally, we computed predictive performance on
the test datasets utilizing our model trained on the corresponding training datasets.

Overall architecture of the predictor
The proposed method, PSIONplus (Predictor from Sequence of ION channels plus BLAST)
combines predictions from a machine learning model (PSION) and from sequence alignment
with BLAST. PSION consist of three modules: (1) PSIONION model that predicts whether a
given input sequence is an ion channel; (2) PSIONVLG model that predicts whether a given ion
channel is voltage- or ligand-gated; and (3) PSIONVGS model that generates predictions of the
four subtypes of the voltage-gated channels. The three models share common architecture
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where the input protein sequences is first processed to obtain its evolutionary profile and pre-
dicted secondary structure (SS), relative solvent accessibility (RSA), and intrinsic disorder (ID).
Next, this information is combined with the sequence itself to generate a set of numeric fea-
tures which are input into a predictive model. We applied SVM to generate the model given its
widespread use in the prediction of ion channels [27, 30–33] and results from ref. [31] that
empirically demonstrate that this machine learning model is superior when compared to four
other classifiers including Naïve Bayes, RBF network, logistic regression and random forest.
We used the LIBSVM implementation of SVM [37]. The model outputs a prediction based on
the numeric scores generated by SVM (ion channel vs. non-ion channel, voltage-gated vs.
ligand-gated channel, one subtype of voltage-gated channels). LIBSVM [37] uses “one-against-
one” approach for the multi-class classification of the subtypes. LIBSVM constructs k�(k-1)/2
binary classifiers to develop predictor for k classes. In our case, for k = 4 it constructs 6 binary
classifiers. For binary classification, LIBSVM estimates the probabilities for each class using
parametric sigmoid function as described in ref. [38]. The output class is the class with the
higher probability. For the multi-class classification, LIBSVM collects all pairwise class proba-
bilities that are estimated as in ref. [38], generates one probability for each class based on an
optimization described in refs. [39],[40], and outputs the class with the highest probability. We
designed the SVMmodel by considering a large pool of features, performing empirical selec-
tion of a subset of relevant and well-performing features, and empirically parameterizing the
predictive model.

Considered input features
We considered seven groups of features which are based on (1) amino acid composition of the
input sequence; (2) dipeptide composition of the input sequence; (3) physiochemical properties
of the amino acid in the input sequence; (4) predicted SS; (5) predicted RSA; (6) predicted ID;
and (7) PSSM profile.

The amino acid composition is defined as the number of residues of a given amino acid type
divided by the sequence length. This type of features was used by the prior methods [31, 32].
The dipeptide composition is the composition of all 400 pairs of amino acid types and it was
also used in the related works [27, 30–32]. The physiochemical properties are a feature type
that is new to this area. We considered hydrophilicity [41], hydrophobicity [42], polarity [43],
flexibility [44], propensity for beta-turns [45] and transfer free energy [46], which are quanti-
fied based on the corresponding amino acid indices from the AAindex database [47]. The selec-
tion is motivated by the fact that the same properties have been used in similar works [48, 49].
We computed the average and standard deviation for each of the six properties over all residues
in the input sequence.

We also utilized new features that are based on several structural properties that were pre-
dicted from the input chain. SS and ID are predicted by the standalone version v3.3 of
PSIPRED [50] and v2.43 of DISOPRED [51], respectively. RSA is predicted with SPINEX [52]
and is defined as the ratio of solvent accessible surface area of a residue observed in its three
dimensional structure to that observed in an extended Ala-X-Ala tripeptide conformation [53,
54]. The PSSM profiles have been widely used in various related predictive efforts [55–61]. We
used the blastpgp implementation of PSI-BLAST with the default three iterations (-j 3) utilizing
the nr protein database to calculate the PSSM profiles for the input protein sequence.

Altogether, we considered the following 878 features:

• AA_j, composition of j = 1, 2,.., 20 amino acid (AA) types (20 features)

• Dipeptide_{AA}_{AA}, the composition of AA pairs (20�20 = 400 features).

PSIONplus: Predictor of Ion Channels and Their Types
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• AApropertyi_{avg, sd}, the average (avg) or standard deviation (sd) of i = {1 for hydrophilic-
ity, 2 for hydrophobicity, 3 for polarity, 4 for flexibility, 5 for beta-turns, 6 for transfer free
energy} amino acid property over all AA in the input protein chain. These features quantify
average and variability of propensity for a given property over the entire input protein
(6�2 = 12 features)

• Num_SS_Seg, the total number of predicted secondary structure segments in the input pro-
tein chain (1 feature)

• Num_{C,H,E}_Seg, the number of predicted coil, helix, or strands segments in the input pro-
tein chain (3 features)

• CV_{C,H,E}Seg_{min,max}, the minimal and maximal length of the predicted coil, helix,
strand segments divided by the protein length (3�2 = 6 features)

• Composition_{C,H, E}, the composition of coil, helix, or strand residues, i.e., the number of
coil, helix, or strand residues divided by the sequence length (3 features)

• Total_DisNonDis_Seg, the total number of predicted disordered and structured (non-disor-
dered) segments in the input protein chain (1 feature)

• Num_{Dis, NonDis}Seg, the number of disorder and structured (non-disordered) segments in
the input protein chain (2 features)

• CV_{Dis, NonDis}Seg_{min,max}, the minimal and maximal length of disorder and struc-
tured (non-disordered) segments divided by the sequence length (2�2 = 4 features)

• Composition_{Dis, NonDis}, the composition of disorder and structured residues, i.e., the
number of disorder and structured residues divided by the sequence length (2 features)

• {Bd, Ed}_{0.25, 0.75}, the composition of buried and exposed residues, i.e., the number of
buried and exposed residues divided by the sequence length. A given residue is considered to
be buried if it’s predicted RSA< 0.25 or 0.75; otherwise, it is assumed to be exposed. These
features quantify to some degree the overall shape of the input protein (2�2 = 4 features)

• RSA{min, max}_Seg{4,6,8,10,12,14,16,18,20,22}, the minimal or maximal value of the average of
the predicted RSA values for segments which are at least 4, 6, 8, 10, 12, 14, 16, 18, 20, or 22
residues long. These features identify long segments of either exposed or buried residues,
which again is related to the shape of the protein molecule (10�2 = 20 features)

• PSSM_{AA1}_{AA2}, PSSM profile scores where AA1 and AA2 stand one of the 20 amino
acid types in the input protein chain and in the columns of the PSSM profile, respectively.
These features quantify evolutionary conservation of individual amino acid types in the
input protein chain. We compute the PSSM profile scores by summing up rows in the PSSM
profiles for the same AA type. Next, each element in the resulting 400 dimensional vector (20
amino acid types � 20 columns in the PSSM profile) is divided by the length of the sequence
and normalized by1/(1+exp(-x)). Example is shown in Fig 1. A similar PSSM profile score
was used to classify transporters [62] (20�20 = 400 features)

Each feature was normalized into [–1, 1] interval based on the min-max normalization: (2�x
—xmin—xmax) / (xmax—xmin) where x is a value of a given feature X and xmin and xmax are the
minimal and maximal values of X, respectively.
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PLOS ONE | DOI:10.1371/journal.pone.0152964 April 4, 2016 6 / 18



Feature selection and optimization of the predictive model
Given that some of the considered features may not be useful for the prediction of the ion
channels and some of the features could be correlated with each other (redundant), we per-
formed empirical selection of a subset of predictive and non-redundant features. The selection
was based on the biserial correlation coefficients (BCC) computed between values of a given
feature and the binary outcomes; this correlation was also used in related studies [63, 64]. We
performed selection for each of the three types of outcomes, i.e., prediction of ion channels, ion
channel types, and subtypes of voltage-gated channels. First, a given training dataset was ran-
domly divided into the five training and test folds to implement the five-fold cross validation
protocol. We ranked the features according their average BCC over the five training folds. Sec-
ond, we removed features that are characterized by low predictive power by considering five
cut-offs = {0.1, 0.15, 0.2, 0.25 and 0.3}, i.e., features with the average BCC below a given cut-off
were excluded. In the third step we removed correlated features. We selected the feature with
the highest average BCC and added the next ranked feature into the selected set of features if
the Pearson’s correlation coefficient (PCC) of this feature with every feature in the selected fea-
ture set was below a given cut-off value = {0.7, 0.75, 0.8, 0.85 and 0.9}. The use of the two cut-
offs results in 5�5 = 25 feature sets. In the fourth step, we further reduced the number of fea-
tures in each of the 25 feature sets using wrapper-based feature selection. This type of feature
selection scores a given feature set based on predictive quality of a prediction model that uses
this feature set. We quantified predictive quality with MCC based on predictions using the
five-fold cross validation protocol on the corresponding training dataset using the SVM classi-
fier and chose the feature sets that gives the highest MCC score. To clarify, in our cross-valida-
tion the training dataset was randomly partitioned into five equally sized subsets. One subset
was used as a test dataset and the remaining four subsets were used as a training dataset. This
was repeated five times, each time choosing a different subset as the test dataset and using

Fig 1. Example computation of scores from the PSSM profile.

doi:10.1371/journal.pone.0152964.g001
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same features and parameters of the prediction model. We combined predictions from the five
test subsets together to produce a single MCC value (Table 2) and we also averaged the five
MCCs from the 5 test subsets. (Table A in S1 File). In the wrapper selection we attempted to
remove each of the features in the set, measured the MCC of the smaller set, and accepted this
removal in case if the MCC value increases. As an alternative approach, in the fourth step we
implemented feature selection with the principal components analysis (PCA) using SVM clas-
sifier and 5-fold cross validation on the training dataset. We considered nine values of the cut-
off on the variance value that is covered by the PCA = {0.1, 0.2,. . ., 0.9} to generate the corre-
sponding nine feature sets. Next, like in the wrapper selection we considered removing one
PCA-based feature at the time and we removed it only if this increases MCC. Finally, in the
fifth step for each resulting reduced feature set we optimized parameters of the SVMmodel.
Following the Lin et al. [31] we used the radial basis function (RBF) kernel and performed grid
search over the regularization parameter C = 2−2, 2−1,. . ., 24 and width of the RBF kernel
gamma = 2−11, 2−10,. . .,20. We selected the set of parameters that provides the highest value of
MCC in the five-fold cross validation on the corresponding training dataset. The results are
summarized in Table 2 and Table B in S1 File.

For the prediction of ion-channels, the correlation-based feature selection results in the pre-
dictor that secures MCC = 0.836 which is higher than MCC = 0.810 that was obtained with the
PCA-based approach. For the ion channel type model, both feature selection lead to models
with similar predictive quality (MCC = 0.934 and 0.935) while the correlation-based approach
uses fewer features (56 vs. 69). For the prediction of the voltage-gated channel subtypes, corre-
lation- and PCA-based feature selections correspond to MCC = 0.735 and 0.669, respectively
(Table 2). We note that results obtained by averaging the MCC over the five cross validation
folds lead to consistent results with the same optimal designs that secure MCC = 0.836±0.051
for prediction of ion-channels, MCC = 0.933±0.041 for the ion channel type, and MCC = 0.740
±0.100 for the voltage-gated channel subtypes (Table B in S1 File). Consequently, the PSION-
plus predictor is built utilizing the feature sets generated with the correlation-based feature
selection, which are shown in bold font in Table 2 and Table B in S1 File. The predictor of ion
channels, PSIONION, uses 172 features and SVM with C = 4 and gamma = 0.03125; predictor
for ion channel types, PSIONVLG, utilizes 56 features and SVM with C = 2 and gamma = 0. 25;
and for voltage-gated ion channel subtypes, PSIONVGS, we apply 25 features and SVM with
C = 4 and gamma = 0.125.

PSIONplus: combination of SVMmodel and BLAST
PSIONplus is implemented by combining the prediction of the selected SVMmodel and
sequence alignment computed with BLAST against a dataset of annotated proteins. To com-
pute the prediction from BLAST, we query a given test protein sequence against the sequences
from the training dataset and transfer annotation from the most similar hit given that it is suffi-
ciently similar. We only use training sequences for which the corresponding e-value is better
than a threshold that we establish based on cross validation on the training datasets. We per-
formed grid search over the following set of e-values: 10−6, 10−5,. . .,100, 101. We selected the
values that provide the highest MCC in the five-fold cross validation on a given training set.
Consequently, PSIONplus uses e-value = 0.001 for the prediction of ion channels (based on the
TRAINION dataset), e-value = 10 for the ion channel types (based on the TRAINVLG dataset),
and e-value = 0.001 for the voltage-gated channel subtypes (based on the TRAINVGS dataset).

Besides the binary prediction, the numeric score generated by BLAST equals to normalized
e-value of the first hit: score = threshold/(threshold + e-value); this way the score is higher when
similarity is higher, which is when the e-value is smaller. If there is no hit from BLAST (all e-
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Table 2. Results of the feature selection and optimization of the three predictive models for ion channels, ion channel types, and subtypes of volt-
age-gated channels.

BCC PCC Maximal MCC over selected feature sets (step 4) Optimal SVM parameters (C, gamma) Number of features

Ion
channel

Ion channel
type

Voltage-gated
channel subtype

Ion channel Ion channel
type

Voltage-gated
channel subtype

Ion
channel

Ion channel
type

Voltage-gated
channel subtype

0.1 0.9 0.835 0.927 0.697 8, 0.0625 4, 0.0625 16, 0.0625 190 158 46

0.85 0.832 0.934 0.664 8, 0.0625 4, 0.03125 8, 0.25 205 122 29

0.8 0.830 0.921 0.656 16, 0.03125 0.5, 0.0625 4, 0.0625 171 102 48

0.75 0.836 0.934 0.665 4, 0.03125 2, 0.0625 16,0.015625 172 103 71

0.7 0.796 0.933 0.614 8, 0.0625 4, 0.0625 16, 0.007812 150 107 63

0.15 0.9 0.798 0.928 0.668 2, 0.125 2, 0.125 4, 0.0625 138 109 53

0.85 0.788 0.934 0.664 4, 0.125 2, 0.0625 8, 0.25 134 102 29

0.8 0.777 0.927 0.656 4, 0.125 2, 0.0625 4, 0.0625 92 80 48

0.75 0.802 0.907 0.665 4, 0.125 4, 0.125 16,0.015625 114 110 71

0.7 0.787 0.922 0.614 2, 0.0625 0.5, 0.03125 16, 0.007812 99 82 63

0.2 0.9 0.773 0.920 0.715 8, 0.03125 1, 0.125 4, 0.0625 70 77 48

0.85 0.766 0.908 0.562 8, 0.125 4, 0.125 2, 0.25 69 94 37

0.8 0.769 0.914 0.619 8, 0.125 0.5, 0.25 16, 0.0625 72 76 68

0.75 0.763 0.934 0.618 8, 0.03125 2, 0.25 4, 0.25 60 56 28

0.7 0.776 0.920 0.641 16, 0.125 1, 0.0625 2, 0.25 64 65 32

0.25 0.9 0.743 0.921 0.695 4, 0.25 1, 0.25 16, 0.0625 40 63 32

0.85 0.756 0.893 0.670 8, 0.25 16, 0.015625 16, 0.0625 38 60 33

0.8 0.760 0.913 0.682 4, 0.5 2, 0.125 16, 0.25 39 69 26

0.75 0.759 0.893 0.735 8, 0.5 0.5, 0.25 4, 0.125 29 41 25

0.7 0.741 0.880 0.589 2, 0.5 1, 0.25 8, 0.125 27 42 26

0.3 0.9 0.686 0.908 0.574 2, 0.5 1, 0.25 16, 0.0625 22 53 31

0.85 0.700 0.907 0.634 1, 1 2, 0.125 16, 0.25 21 37 25

0.8 0.700 0.914 0.716 1, 1 1, 0.5 8, 0.25 21 38 31

0.75 0.700 0.907 0.653 1, 1 1, 0.5 16, 0.125 20 33 25

0.7 0.675 0.893 0.573 0.5, 1.0 2, 0.015625 8, 0.5 16 33 22

Cutoff on
variance in
PCA

Maximal MCC over selected feature sets (step 4) Optimal SVM parameters (C, gamma) Number of features

Ion
channel

Ion channel
type

Voltage-gated
channel subtype

Ion channel Ion channel
type

Voltage-gated
channel subtype

Ion
channel

Ion channel
type

Voltage-gated
channel subtype

0.1 0.445 0.582 0.168 8, 0.00977 16, 0.001953 8, 0.125000 2 1 1

0.2 0.670 0.582 0.240 4,0.007812 16,0.001953 16,0.12500 4 1 1

0.3 0.670 0.817 0.397 4,0.007812 1,0.015625 32,0.007812 4 5 2

0.4 0.680 0.776 0.486 2,0.03125 1,0.015625 8,0.000488 7 6 6

0.5 0.719 0.850 0.503 16,0.003906 2,0.015625 2,0.015625 13 14 6

0.6 0.803 0.870 0.505 4,0.003906 2,0.007812 4,0.007812 32 21 6

0.7 0.767 0.896 0.669 4,0.001953 4,0.003906 4,0.003906 66 38 26

0.8 0.804 0.935 0.661 8,0.001953 16,0.000977 2,0.007812 116 69 22

0.9 0.810 0.922 0.596 8,0.000977 2,0.001953 8,0.007812 153 65 30

The table shows results for different cut-offs for the minimal biserial correlation coefficients (BCC) computed between values of a given feature and the

binary outcomes (step 2 of feature selection) and the maximal Pearson’s correlation coefficient (PCC) between features (step 3), the maximal MCC value

obtained via wrapper-based feature selection (step 4) and the optimal SVM parameters (step 5) that were computed via five-fold cross validation on the

corresponding training dataset, and the final number of selected features. The lower part of the table shows results for an alternative feature selection

based on Principal Component Analysis (PCA) with different cut-off on the value of variance. Predictions from the five test folds in the cross validations

were combined together to produce a single MCC value. The selected setup for each of the three predictors is shown in bold font.

doi:10.1371/journal.pone.0152964.t002
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values> threshold) then PSIONplus uses the score from the SVMmodel. Otherwise, PSION-
plus uses the score from BLAST. Fig 2 shows the workflow of PSIONplus.

Results

Analysis of predictive model
Table 3 summarizes the selected features for each of the three SVMmodels: SVMION for the
prediction of ion channels, SVMVLG for the prediction of ion channel types, and SVMVGS for
the prediction of voltage-gated channel subtypes. It reveals that majority of these features are
based on amino acid pairs and PSSM profile scores. However, all types of features were selected
in at least one predictive model. This demonstrates that the new types of features that we intro-
duce including PSSM profiles, predicted SS, ID and RSA and physiochemical properties of
AAs, contribute to the predictive performance.

To quantify relative impact of each type of features we divided the selected features into five
groups that are based on dipeptide composition, predicted intrinsic disorder, predicted relative
solvent accessibility, predicted secondary structure, and PSSM-based profiles. Next, using fea-
tures from a given group, we optimized SVMmodel based on the five-fold cross validation on

Fig 2. Workflow of the PSIONplus model. SS: secondary structure, RSA: relative solvent accessibility.

doi:10.1371/journal.pone.0152964.g002

Table 3. Summary of considered and selected features used by the PSION predictor.

Feature group Number of features Number of selected features

SVMION SVMVLG SVMVGS

PSSM profile scores 400 75 29 18

Dipeptide composition 400 82 24 4

Predicted relative solvent accessibility 24 4 0 0

Amino acid composition 20 5 1 0

Predicted secondary structures 13 2 1 1

Properties of amino acid 12 3 1 0

Predicted intrinsic disorder 9 1 0 2

Total 878 172 56 25

doi:10.1371/journal.pone.0152964.t003
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the corresponding training dataset using the same procedure as described in Materials and
Methods section. The accuracies obtained by each feature group on each of the three training
datasets are shown in Table 4; we note that in some cases the results are not available if none of
the features from a given group was used in the corresponding model. We computed a single
value of accuracy based the results that are combined over all test folds (entire test datasets).
The best performing feature group is based on the PSSM profiles, which we introduced into the
prediction of the ion channels and their types. However, each of the remaining feature groups
also obtains relative strong accuracy. For the prediction of the ion channels the lowest accuracy
is 60.3% while a baseline classifier, which would always predict the most frequent outcome, has
accuracy of 100%�(300/598) = 50.1% (Table 1). Similarly, for the prediction of ion channel
type and voltage-gated channel subtype the lowest accuracies are 68.1% and 62.2% compared
to the baseline accuracies of 100%�(150/298) = 50.3% and 100%�(81/148) = 54.7%, respec-
tively. Most importantly, the PSION model that combines all these features obtains higher pre-
dictive performance compared with the best performing feature group. By using all features
together the error rates are reduced by 100%�(91.6–89.6)/(100–89.6) = 19.2% for the prediction
of ion channels, by 100%�(96.3–95.6)/(100–95.6) = 15.9% for the prediction of ion channel
types, and by 100%�(88.5–81.8)/(100–81.8) = 36.8% for the prediction of voltage-gates channel
subtypes (Table 4). This suggests that aggregation of the various types of previously used and
new feature types leads to an improved predictive performance.

Comparative analysis of results on the training datasets
Table 5 compares results generated by PSIONplus and its two modules based on SVM and
BLAST based on the jackknife tests on the training datasets with the equivalent results on the
same datasets from the only other method that also predicts ion channels, their types, and sub-
types of voltage-gated channels from ref. [31]. We compared the accuracies and number of fea-
tures since the MCC and Fmeasure values were not provided in the other article; these measures
are compared on the test datasets.

The accuracy of the SVMmodel used in the PSIONplus predictor is higher than the accu-
racy of the method by Lin et al. across all three types of predictions. The corresponding error
rates of our SVM are reduced by 100%�(91.5–86.6)/(100–86.6) = 36.6%, 100%�(96.3–92.6)/
(100–92.6) = 50%, and 100%�(89.9–87.8)/(100–87.8) = 17.2% for the prediction of ion chan-
nels, ion channel types, and voltage-gates channel subtypes, respectively. Since our predictor
uses a similar or smaller number of features and predictive model compared to the other
method, the improved predictive performance stems from the use of novel feature types. More-
over, the PSIONplus that combines this SVMmodel with sequence alignment obtains even bet-
ter predictive quality. The corresponding error rates of are reduced by 100%�(97.7–86.6)/(100–

Table 4. Accuracy obtained based on the cross validation on the training datasets TRAINION and TRAINVLG and Q4 based on the cross validation
on the TRAINVGS dataset by different groups of input features.

Models TRAINION (accuracy) TRAINVLG (accuracy) TRAINVGS (Q4)

Model based on the PSSM profile 89.6 95.6 81.8

Model based on the dipeptide composition 84.5 87.6 65.5

Model based on the predicted relative solvent accessibility 79.8 not used not used

Model based on the predicted secondary structure 69.9 68.1 62.2

Model based on the predicted intrinsic disorder 60.3 not used 62.2

Model based on all features 91.6 96.3 88.5

We computed a single value of accuracy based the results that are combined over all test folds (entire test datasets)

doi:10.1371/journal.pone.0152964.t004
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86.6) = 82.8%, 100%�(100–92.6)/(100–92.6) = 100%, and 100%�(98–87.8)/(100–87.8) = 83.6%
when compared with method by Lin et al.

We compared the predictive performance of PSIONplus and BLAST on the training data-
sets. In Table 5, PSIONplus achieves accuracies of 97.7 and 100 and Q4 of 97.3 on the TRAI-
NION, TRAINVLG and TRAINVGS datasets based on the jackknife test. BLAST achieves
comparable levels of accuracy at 98.0, 99.7, and 98.0, respectively. Similar conclusion is true
when measuring predictive quality with MCC and both cross-validation and jackknife tests.
The strong performance of BLAST is due to the relatively high sequence similarity in these
training datasets. Moreover, we also compared sensitivity (defined as the fraction of correctly
predicted true positives) of PSIONplus and BLAST. We note that PSIONplus achieves higher
sensitivity values at 98.7 and 100 (97.7 and 100) on TRAINION and TRAINVLG, and higher
average sensitivity at 96.2 (83.0) on TRAINVGS compared to 97.0, 99.3 and 95.2 (95.0, 98.6, and
77.4) of BLAST when using jackknife (cross-validation) test. These differences indicate that
PSIONplus that combines BLAST with the SVM can identify more positives than BLAST
alone. This means that some of the correct predictions generated by PSIONplus come from the
SVMmodel.

Table 5. Summary of results based on the jackknife and 5-fold cross validation (5-cv) tests on the training datasets TRAINION, TRAINVLG and
TRAINVGS.

Evaluation
measure

Method TRAINION TRAINVLG TRAINVGS

Ion-channel vs. non-
ion channel

Voltage-gated vs.
ligand-gated

Potassium Anion Calcium Sodium Q4 Average of the
four subtypes

Accuracy Lin et al. 86.6 92.6 92.6 84.6 82.8 75.0 87.8 83.8

(Jackknife) SVM
model

91.5 96.3 93.9 97.3 91.9 96.6 89.9 94.9

BLAST 98.0 99.7 98.6 99.3 98.0 98.6 97.3 98.6

PSIONplus 97.7 100 99.3 100 98.0 98.6 98.0 99.0

MCC SVM
model

0.830 0.927 0.880 0.905 0.732 0.782 NA 0.825

(Jackknife) BLAST 0.960 0.993 0.973 0.977 0.935 0.909 NA 0.948

PSIONplus 0.953 1 0.986 1 0.935 0.909 NA 0.958

MCC SVM
model

0.833 0.934 0.736 0.855 0.441 0.695 NA 0.682

(5-cv) BLAST 0.944 0.980 0.774 0.831 0.597 0.773 NA 0.744

PSIONplus 0.940 0.993 0.846 0.929 0.650 0.773 NA 0.799

Sensitivity SVM
model

93.0 98.0 98.8 84.6 72.4 83.3 NA 84.8

(Jackknife) BLAST 97.0 99.3 100 96.2 93.1 91.7 NA 95.2

PSIONplus 98.7 100 100 100 93.1 91.7 NA 96.2

Sensitivity SVM
model

90.3 98.6 96.3 80.8 41.4 75.0 NA 73.4

(5-cv) BLAST 95.0 98.6 100 73.1 44.8 91.7 NA 77.4

PSIONplus 97.7 100 100 88.5 51.7 91.7 NA 83.0

# of features Lin et al. 140 159 104 104 104 104 NA NA

PSION 172 56 25 25 25 25 NA NA

Results of PSIONplus and its two modules based on SVM and BLAST are compared with the method by Lin et al. MCC and Fmeasure were not reported in

the article by Lin et al. and thus only accuracy is compared. The best accuracy values for each dataset is shown in bold. For the cross-validation tests we

computed a single value of accuracy, MCC and sensitivity based in the results that are combined over all test folds (entire test datasets). NA means “not

applicable”.

doi:10.1371/journal.pone.0152964.t005
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Comparative analysis of results on the test datasets
The predictive quality of PSIONplus is compared using the test datasets with the method by
Lin et al. [31] and with alignment with BLAST for the prediction of ion channels, their types,
and subtypes of the voltage-gated channels, and with VGIchan [30] for the prediction of ion
channels (Table 6). The empirical results suggest that PSIONplus offers substantially higher
predictive quality than VGIchan with MCC equal 0.71 vs. 0.49. Comparison with the predictor
by Lin et al. leads to similar conclusions to the conclusions drawn based on the results on the
training datasets. PSIONplus obtains higher values of MCC by 0.08 and 0.29, accuracy by 4.6
and 5.0 and Fmeasure by 3.7 and 1.0 for the prediction of ion channels and ion channel types,
respectively. The results concerning the prediction of the voltage-gated channel subtypes are
similar, with the differences in average Fmeasure, average MCC and average accuracy equal to
7.4, 1.1 and 4.0, respectively. The Q4 of PSIONplus is 92.9 on TEST60VGS, which is higher than
the Q4 of 84.9 from Lin et al.

We compared PSIONplus with BLAST on the three test datasets in Table 6. PSIONplus
achieves better accuracy = 85.4 than the accuracy = 74.7 by BLAST on the TEST30ION

Table 6. Summary of results on the test datasets TEST30ION, TEST30VLG, and TEST60VGS.

Dataset Prediction outcome Method Fmeasure MCC Accuracy Q4

TEST30ION Ion-channel vs. non-ion channel VGIchan 63.0 0.49 72.7 NA

Lin et al. 2011 81.7 0.63 80.8 NA

BLAST 64.3 0.56 74.7 NA

PSIONplus 85.4 0.71 85.4 NA

Confidence interval of PSIONplus 86.0(±3.7) 0.73(±0.07) 86.3(±3.3) NA

TEST30VLG Voltage-gated vs. ligand-gated Lin et al. 2011 76.6 -0.06 63.3 NA

BLAST 77.6 0.23 68.3 NA

PSIONplus 77.6 0.23 68.3 NA

Confidence interval of PSIONplus 78.1(±6.1) 0.22(±0.15) 68.7(±7.4) NA

TEST60VGS Potassium Lin et al. 2011 87.6 0.74 86.6 NA

BLAST 91.6 0.83 90.8 NA

PSIONplus 94.8 0.90 94.6 NA

Anion Lin et al. 2011 86.7 0.85 95.4 NA

BLAST 86.7 0.85 95.4 NA

PSIONplus 88.1 0.87 95.8 NA

Calcium Lin et al. 2011 73.7 0.67 89.5 NA

BLAST 91.1 0.90 96.7 NA

PSIONplus 92.0 0.90 96.7 NA

Sodium Lin et al. 2011 90.5 0.90 98.3 NA

BLAST 93.0 0.93 98.7 NA

PSIONplus 93.0 0.93 98.7 NA

Average over Lin et al. 2011 84.6 0.79 92.4 84.9

all subtypes BLAST 90.6 0.88 95.4 90.8

PSIONplus 92.0 0.90 96.4 92.9

Confidence interval of PSIONplus 91.9(±2.1) 0.90(±0.03) 96.4(±0.9) 92.9(±1.7)

Results of PSIONplus are compared with VGIchan on the TEST30VLG dataset, and with the method by Lin et al. and BLAST on all datasets. Best MCC,

Fmeasure and accuracy values for each dataset are shown in bold. Confidence intervals are obtained by computing average and standard deviations

(shown in brackets) of 10 repetition of the test where in each repetition we randomly select 50% of test data set. NA means “not applicable”; for the two-

class classification the Q4 equals accuracy.

doi:10.1371/journal.pone.0152964.t006
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dataset and the same accuracy on the TEST30VLG dataset. For the prediction of voltage-
gated four subtypes, PSIONplus obtain average accuracy = 96.4 and MCC = 0.90 which is
higher than the average accuracy = 95.4 and MCC = 0.88 by BLAST. The Q4 of PSIONplus
is 92.9 which is again higher than the Q4 of BLAST at 90.8. This shows that PSIONplus
improves over the sequence alignment and justifies the use of the SVM model in the
PSIONplus.

We also computed confidence intervals for PSIONplus. We randomly selected 50% of the
test proteins and calculated the corresponding Fmeasures, MCCs and accuracies. This was
repeated 10 times and we computed the averages and standard deviations over these 10 repeti-
tions. Table 6 shows that the standard deviations are relatively low on the TEST30ION and
TEST60VGS datasets. The standard deviations are larger on the TEST30VLG dataset, however,
the results obtained by the method by Lin et al. are also proportionally lower.

Finally, we estimated false positive rate, defined as the number of false positives divided by
the number of actual negatives, of PSIONplus. Our method achieves the false positive
rate = 19.2%, 52.9%, and 3.2% on the TEST30ION, TEST30VLG and TEST60VGS datasets,
respectively (see Table B in S1 File), compared to 1%, 52.9% and 4.6% by BLAST. Although the
false positive rate of PSIONplus is higher than for BLAST on TEST30ION, the sensitivity (true
positive rate) of PSIONplus = 90.4% and is much higher than BLAST’s sensitivity that is 47.9%
(see Table B in S1 File). This means that the increase by 42.5% in sensitivity by PSIONplus is
traded for the higher by 18.2% false positive rate. However, for the TEST60VGS dataset PSION-
plus secures both lower average false positive rate and higher average sensitivity when com-
pared to BLAST.

Discussion
We propose the PSIONplus method for accurate prediction of ion channels proteins and their
types, and subtypes of the voltage-gated ion channels. Empirical results show that combination
of results generated by SVMmodel with the alignment by BLAST that is implemented in
PSIONplus leads to improved predictive performance for the prediction of ion channels and
voltage-gated channel subtypes when compared to using just BLAST. Results on the bench-
mark datasets that are independent of the datasets used to design our predictor reveal that
PSIONplus obtains relatively good predictive performance. Its accuracy is 85.4% for the predic-
tion of ion channels, 68.3% for the prediction of ion channel types, and its average accuracy is
96.4% for the prediction of the four subtypes of the voltage-gated channels. PSIONplus outper-
forms existing methods for the prediction of ion channels including VGIchan and the method
by Lin et al.

PSIONplus is the first method that uses new types of predictive inputs including PSSM pro-
files and predicted secondary structure, solvent accessibility and intrinsic disorder. We note
that computation of the PSSM profiles and structural predictions is relatively computationally-
heavy and it may take up to several minutes for a single sequence on a desktop computer. How-
ever, our empirical tests demonstrate that the PSSM profiles provide the strongest predictive
input and that all new types of features contribute to the prediction, i.e., prediction using the
combined set of all inputs is better when compared to using individual sets of features, and
every feature set individually provides good predictive quality. Given the strong predictive
value of the PSSM profiles, one interesting extension of our method would be to develop fea-
tures based on generic (instead of position specific like PSSM) sequence similarity utilizing for
instance the BLOSUMmatrices. Another potentially impactful extension would be to apply an
alternative methods to generate alignment profiles, such as HHBLITS[65] that was shown to
be competitive with the currently used PSI-BLAST.
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Standalone version of PSION can be freely downloaded from https://sourceforge.net/
projects/psion/.

Supporting Information
S1 File. This file includes Tables A and B.
(PDF)
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