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Abstract

Predictability is a fundamental requirement in biological engineering. As we move to building

coordinated multicellular systems, the potential for such systems to display chaotic behav-

iour becomes a concern. Therefore understanding which systems show chaos is an impor-

tant design consideration. We developed a methodology to explore the potential for chaotic

dynamics in small microbial communities governed by resource competition, intercellular

communication and competitive bacteriocin interactions. Our model selection pipeline uses

Approximate Bayesian Computation to first identify oscillatory behaviours as a route to find-

ing chaotic behaviour. We have shown that we can expect to find chaotic states in relatively

small synthetic microbial systems, understand the governing dynamics and provide insights

into how to control such systems. This work is the first to query the existence of chaotic

behaviour in synthetic microbial communities and has important ramifications for the fields

of biotechnology, bioprocessing and synthetic biology.

Author summary

In chaotic systems, infinitesimally small differences in the initial conditions will become

amplified over time, making forecasting and prediction of behaviour impossible.

Although we know that chaos can be observed in the complex networks of natural ecosys-

tems, the field of biotechnology is interested in designing and building new microbial

communities and the presence of chaotic behaviour is unexplored. In this paper, we pres-

ent a statistical pipeline that can tell us how, when and why chaos arises in small microbial

communities. We apply this approach to study a set of communities involving quorum

sensing systems and amensal interactions through antimicrobial peptides. Out of 4182

interaction networks in these three strain communities, we identify the networks that

have the highest propensity to produce chaos. We then explore the levers we can pull to

bring these networks in and out of chaotic regimes. Our work is the first to look at chaos

in synthetic microbial communities and indicates that chaos is an important design

consideration.
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Introduction

Chaos can be defined as deterministic behaviour that displays aperiodic orbits and sensitivity

to initial conditions [1]. Infinitesimally small differences in the initial conditions of a chaotic

system will become amplified over time, making forecasting and prediction of behaviour

impossible [2]. Despite being deterministic, chaotic systems possess an inherent uncertainty

due to the fact that we can never describe the initial conditions of a system in sufficient detail.

Building systems which behave in a predictable and repeatable manner is essential across fields

invested in engineering biology and its applications. Evidence from studies of neural networks

suggests the increasing probability of chaotic behaviour as the number of dimensions in the

network grows [3–5]. Therefore we might expect opportunities for unpredictable behaviour to

become more probable as we try and implement larger synthetic communities, or edit existing

networks such as the human gut microbiome. Steps to date have not been taken to investigate

the existence of chaos in small synthetic microbial networks. A long-term goal of engineering

biology is to create truly scalable and robust synthetic microbial communities [6, 7]. Therefore

understanding and evaluating the possibility of chaotic behaviour in a system becomes an

important consideration.

Observations of chaotic behaviour in biological systems have been reported. A three species

system containing one predator and two prey species has been demonstrated to produce cha-

otic behaviour, with dilution rate a key parameter in enabling aperiodic behaviours [8]. An

eight year study of a planktonic food web measured chaotic behaviours, resulting in subpopu-

lation abundance predictability being limited to 15–30 days, despite constant external condi-

tions [9]. These experimental examples demonstrate that a low number of species are capable

of producing chaotic behaviour and are therefore unpredictable.

In order to predict the possibility for chaotic behaviour in synthetic microbial communities,

we need to develop models that capture interactions between different community species.

Generalised Lotka-Volterra equations (gLV) have previously been used to model pair-wise

interactions and infer inter-species relationships [10]. However, gLV models provide an

incomplete description of interactions we expect to find in microbial communities. They are

unable to capture the existence of chaos in three species networks [11]. Furthermore, gLV

models have failed to predict community formation from pairwise interactions in microbial

communities [12]. gLV models lack dynamics that occur with the accumulation and depletion

of extracellular species, which can be important for predicting the true dynamics of a commu-

nity [13]. Modified Lotka-Volterra equations produce chaotic behaviour in predator-prey sys-

tems by including time-delayed feedback [13, 14], or in one predator two prey systems, by

adding dampening effects [15]. While these abstractions are suitable in some circumstances,

by modelling the intermediates involved in competitive interactions we can include experi-

mentally measurable mechanisms and parameters. In previous work, we have modelled quo-

rum sensing (QS) to regulate bacteriocin expression and engineer inter-population

interactions. These methods allowed us to tune experimental parameters of an engineered two

strain system [16], and predict the most promising topologies for producing stability in two

and three strain systems [17].

The existence of chaos in dynamical models and the distribution of chaotic parameter

space can be identified using various optimisation techniques. The unscented Kalman filter

has previously been used to investigate chaos in electrical circuits and biological systems,

obtaining parameters yielding chaos [18]. Simulated annealing has been applied to finding

chaotic parameters in four species standard Lotka Volterra models [19]. Evidence also suggests

that perturbation of system parameters can be used to drive systems towards or away from
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chaotic attractors [20]. The possibility of chaos in synthetic microbial communities, to our

knowledge, has not been previously considered.

Standard competitive gLV models can produce chaotic behaviour in four species networks

[11]. We use these previous findings to demonstrate and validate our methodology, before

applying it to models that describe interpopulation interactions that are more specific to mech-

anisms found in synthetic microbial communities.

Results

Development of a novel statistical approach to identifying chaotic regions

in a multidimensional parameter space

Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC) is a method that

can be used for model selection and parameter inference in dynamical systems [21] (Algo-

rithm 1). This flexible algorithm can also be used to tackle the design question, namely what

model topologies and parameters are able to give rise to some specified target qualitative

behaviour [22]. ABC SMC requires a distance function, describing how far away a simulation

is from the objective behaviour. When searching for chaotic beahviour, we use the maximal

Lyapunov exponent (λ1) to create a distance function. We calculate λ1 by initialising two

nearby orbits and measuring their divergence or convergence over the course of a simulation

(see Methods and Algorithm 1). λ1 < 0 corresponds to linear stability, λ1 = 0 corresponds to

periodic oscillations, and λ1 > 0 corresponds to chaos. While these rules hold true for infinite

time, our simulations run for a finite time, meaning these boundary rules can be noisy. To

identify chaos, we therefore define a threshold above 0 where we can be sure simulations have

chaotic behaviour.

First, we demonstrate the use of ABC SMC in resolving a chaotic parameter distribution in

a competitive gLV system. Competitive gLV equations are commonly used in ecological popu-

lation modelling, and have similarly been used to model microbial communities [23]. They

describe generic negative interactions between species that could represent competition for

nutrients or amensal interactions. Competitive gLV systems take the form

dNi

dt
¼ riNið1 �

Xn

j¼1

aijNjÞ

where Ni is the size of a species population, ri is the growth rate, n is the number of species in

the population and α the interaction matrix, describes the amensal interactions between pairs

of species in the system. To simulate the chemostat environment, we set the diagonal as a dilu-

tion rate, D, which is the same for all species. The diagonal of α can also be thought of as defin-

ing the carrying capacity of each species.

α ¼

D a12 a13 a14

a21 D a23 a24

a31 a32 D a34

a41 a42 a43 D

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Vano et al. previously identified a chaotic attractor in this system using a brute-force

parameter search [11]. Fig 1A shows the parameters identified, Fig 1B shows the resulting cha-

otic timeseries of the four species. We wanted to see if our ABC SMC methods could provide a

posterior distribution for chaotic behaviour, capturing the findings of Vano et al. We

PLOS COMPUTATIONAL BIOLOGY Chaos in synthetic microbial communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010548 October 10, 2022 3 / 24

https://doi.org/10.1371/journal.pcbi.1010548


identified a threshold of λ> 0.015 was sufficient for classifying chaotic behaviour and ran

ABC SMC for this chaotic objective. We show the posterior of several parameters in Fig 1C.

The black point corresponds to the parameters found by Vano et al, while the red scatter points

correspond to chaotic behaviour we identified using ABC SMC. We can see that the interspe-

cies interaction parameters, a42 and a43, are constrained, indicating their importance for pro-

ducing chaotic behaviour, given the prior parameter distributions. Conversely, the initial

population of N1 is not constrained, indicating the chaotic behaviours are robust to changing

initial conditions. Similarly, r3, defining the growth rate of N3 is not constrained. The full pos-

terior parameter distribution is shown in S1 Fig.

Mechanisms of interaction in microbial communities such as crossfeeding and toxin inter-

actions would be subjected to time delays, accumulation of intermediate species and dynamic

genetic regulation, contributing to non-linearity of these systems. gLV equations simplify

these mechanisms and as such, are unable to capture chaotic behaviour with three species. In

the next sections we move to studying more biochemically realistic systems.

Searching for chaos across synthetic microbial community models

In previous work we developed a model framework to describe QS regulated bacteriocin inter-

actions in a three strain model space, and predicted topologies that form stable communities

[17]. Here we use this same model space to investigate the existence of chaos in three strain

synthetic microbial communities.

Fig 1. Demonstration of chaotic attractor identified by Vano et al. in a four species competitive Lotka-Volterra model [11]. A Shows the

parameters used in the chaotic attractor and an illustration of the interaction topology. B Time series of the chaotic attractor. C Posterior parameter

distribution for chaotic objective, identified using ABC SMC (red) and the individual chaotic particle identified by Vano et al. (black). Center grid

shows 2D parameter distributions, left and top rows 1D parameter distribtuions.

https://doi.org/10.1371/journal.pcbi.1010548.g001
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Fig 2A shows the pipeline we developed to search for chaos in synthetic three strain sys-

tems. Three strains, N1, N2, N3, optionally express bacteriocins, B1, B2, and B3 under the con-

trol of optionally expressed QS molecules, A1, and A2. The QS molecules regulate expression

of bacteriocins positively or negatively. Each strain can be optionally sensitive to a bacteriocin.

The initial model space describes an enumeration of possible combinations of bacteriocin and

QS systems, and forms the first uniform prior model space of 4182 models (Fig 2A(i)). Prior

parameter distributions describe the range of characteristics for the different parts (Table 1).

We expected the existence of chaos to be sparse in this three strain model space, and therefore

computationally expensive to explore. Oscillations are a known route to chaos [1], therefore,

in order to narrow down the search, we defined a novel set of three distances that are used to

classify oscillatory behaviours. These were the period of the signal (defined through the Fourier

transform), the number of expected peaks, and the amplitude of the signal (see Methods).

We also define an extinction threshold of 10−5; if a strain population falls below this it is classi-

fied as extinct. Using these distances, we performed ABC SMC for an oscillations objective

Fig 2. Overview of the pipeline for identifying chaotic topologies. A(i) The initial model space is built from

different combinations of engineering options. N1, N2, N3 are the three strains being engineered, and can optionally

express QS molecules A1, A2 and bacteriocins B1, B2, B3. 4182 models are generated forming our initial model space. A

(ii) We then perform ABC SMC for an oscillatory objective, which yielded 117 models that were capable of producing

oscillations. A(iii) These form the prior model space for the chaos objective, using a threshold of λ1 > 0.003, we

identify models capable of producing chaotic behaviour B The barchart shows the probability of models for the chaotic

objective. The error bars represent the standard deviation. C An example time series representative of the chaos

objective posterior distribution. Population densities as optical density (OD) show sustained, nonrepetitive oscillatory

behaviour for the three species community.

https://doi.org/10.1371/journal.pcbi.1010548.g002
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(Fig 2A(ii)). We identified 117 models capable of producing oscillations. These models become

the new uniform prior model distribution for the next stage, where we perform ABC SMC for

the previously described chaotic objective (Fig 2A(iii)). In this model framework we identified

λ1 > 0.003 as sufficient for classifying chaos.

The posterior probabilities of the models for the chaotic objective given the prior distribu-

tions used are shown in Fig 2B. Fig 2C shows a representative chaotic trajectory, demonstrat-

ing aperiodic non-repeating behaviour, satisfying the qualitative features of chaos.

Properties of chaotic models

We next explored some of the properties of chaotic topologies identified using ABC SMC. Fig

3A shows the top performing models when subsetting for complexity, based on the number of

parts expressed. mk refers to the k-th model from the initial model space. m850 contains four

expressed parts and possesses the highest posterior probability for chaotic behaviour. Systems

containing fewer parts all had a posterior probability of zero. As complexity increases to five

and six parts (m3177 and m2547), the posterior probability decreases. Our previous work dem-

onstrated that system stability increased with the number of parts [17]. The peak in the poste-

rior probability for chaos at four parts reflects a balance that includes enough mechanisms to

enable co-existence, without the tighter network of negative interactions that are associated

with linear stability [17, 24]. We highlight that these observations are limited to the small com-

munities defined in our prior. These properties may not be reflective of larger communities,

however, we hypothesise that a trade-off between stabilizing interactions that enable co-exis-

tence, and destabilising interactions to prevent linear stability, will remain important for pro-

ducing chaotic population dynamics.

Table 1. Prior distributions for both two and three strain systems are sampled uniformly between the min and max values listed below. Constant parameters have the

same min and max value.

Parameter / State variable Description Prior (min) Prior (max) Units Citation

Parameters

CN OD to cell number scaling factor 1e9 1e9 None N/A

CB Microcin scaling factor 1e−9 1e−9 None N/A

CA QS scaling factor 1e−9 1e−9 None N/A

D Dilution rate 0.01 0.5 h−1 N/A

KAyBz
Half maximal QS promoter activation/repression from Ay to Bz 1e−9 1e−6 M [43]

K Monod’s half saturation constant 3.9e−5 3.9e−5 M [44]

Kω Half saturation killing constant 1e−7 1e−6 M [45, 46]

S0 Substrate concentration of input media (0.4% glucose) 0.02 0.02 M M9 media

γ E. coli substrate yield 1e11 1e11 cell M−1 [47]

kAy
Production rate of AHL per cell 1e−22 1e−15 M h−1 [48]

KBmax z Maximal expression rate of microcin 1e−22 1e−15 M h−1 [49]

mxmax
Maximum growth rate 0.4 3 h−1 [50, 51]

nz Hill coefficient AHL induced expression 1 2 M [43]

nω Hill coefficient for killing 1 2 M [43]

ωmax Maximum rate of bacteriocin killing 0.5 2.0 M−1 h−1 [45, 46, 52]

Initial state variable

N OD of strain 0.01 0.5 OD N/A

S 0.4% glucose concentration 0.02 0.02 M N/A

B Microcin concentration 1e−81 1e−81 M CB N/A

A QS concentration 1e−10 1e−10 M CA N/A

https://doi.org/10.1371/journal.pcbi.1010548.t001
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Fig 3B provides summaries of how different parts contribute to chaotic behaviour in the

three strain models. We can see that one QS system and positive regulation of bacteriocin is

strongly favoured for producing chaos. This ensures all system bacteriocins are regulated in

tandem. Expression rates are all dependent upon the same QS, resulting in stronger negative

or positive correlations defined by the mode of regulation. Two bacteriocin systems also domi-

nate the model posterior. Bacteriocin interactions can be categorised as either self-limiting

(SL), whereby the strain is inhibited by the bacteriocin it produces, or other-limiting (OL)

where a strain is inhibited by a bacteriocin produced by a different strain. Both SL only and a

combination of SL and OL interactions are associated with producing chaotic behaviour.

These observations are interesting in comparison to other work on ecological systems. Coop-

erative interactions were previously found to give rise to unstable systems, whereas competi-

tion was more indicative of stability [24]. The same effect might occur here in systems with

Fig 3. Topologies and properties associated with chaotic behaviour. A Shows the models with highest posterior

probability when subsetted for number of parts expressed, in order of increasing complexity (4, 5 and 6 expressed

parts). The bar chart shows the mean model posterior probability across three experiments, the error bars indicate the

standard deviation. B Comparison between average posterior probabilities with different properties. In order from left

to right, the barcharts compare: The number of QS systems used, the modes by which QS regulates bacteriocin

expression (positive, negative or both), the number of bacteriocins used, and systems containing self-limiting (SL),

other-limiting (OL) or SL and OL interactions.

https://doi.org/10.1371/journal.pcbi.1010548.g003
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one QS, rather than two, as the system would be expected to have increased correlation. While

chaotic behaviour may seem to be very different from linear stability, both behaviours share

the necessity for coexistence. Our previous work showed that SL interactions were important

for producing linear stability, while OL interactions more frequently associated with extinction

events and non-linear stability [17]. This may explain why we see tendencies for topologies to

share a mixture of stability associated SL interactions, and instability associated OL interac-

tions. We also find models with three bacteriocins, and hence higher suppression of growth,

have a low posterior probability for chaos, given the prior distributions used.

Parameter importance for chaos in m850

The model with the highest posterior probability for chaotic behaviour was m850; the topology

is shown in Fig 4A. It consists of a single QS system, produced by N1, that positively regulates

two bacteriocins. B1 is produced by N1 and N2 but it inhibits the growth of N1 only. B2 is pro-

duced by N3 and inhibits the growth of N3 only. The system in total consists of four expressed

parts. m850 also ranked highly for the oscillatory objective, ranking 3rd out of the initial 4182

Fig 4. Examining chaos in m850. A Topology of m850 with key parameters labelled. kA1 is the rate of QS molecule

production, KBmax1 and KBmax2 are the maximal expression rates of bacteriocins B1 and B2 respectively. B Posterior

parameter distributions of m850 for chaos (red) and oscillatory (blue) objectives for key parameters in system design.

The borders show 1D posterior distributions for each parameter and the lower-diagonal element the 2D posterior

marginals, and the upper-diagonal shows the Pearson correlations. C Feature importance calculated using random

forest regression. The information gain (bits) is calculated as an average of the reduction in entropy across all trees in

the forest (2000 trees). The error bars indicate the standard deviation of the entropy for each feature across all trees. D

Sensitivity analysis of a chaotic input vector with chaotic region in red. Black stars refer to the identified stable steady

state. The fixed parameter values are shown in Table 2

https://doi.org/10.1371/journal.pcbi.1010548.g004
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models. This presents an interesting problem whereby a model that has promising use as an

oscillator also has a high potential to produce chaos, relative to other candidate models. Identi-

fying the parameters and initial conditions important for differentiating between chaotic and

oscillatory behaviour gives us insight into how to control this behaviour when constructing

genetic circuits or selecting chemostat settings.

As a first step, we analyzed the model to quantify the possible steady states and basins of

attraction. Our analysis gave analytical conditions for the existence and stability for complete

extinction and for single strain survival (See Methods). For three-strain co-existence, we find

the following necessary conditions:

maxfD
K þ S0

S0

; m1max

D
Dþ omax

; m3max

D
Dþ omax

g < m2max
< minfm1max

; m3max
g

This shows that for three-strain co-existence, the maximal growth rate of N2 has to lie

between certain upper and lower bounds. In particular, it has to be smaller than the maximal

growth rate of N1 or N3. We can see from the topology of m850 (Fig 4A) that the growth of N2

is not limited by any bacteriocin, therefore the only limitation on growth comes through

Table 2. Fixed parameters used in Figs 4D and 5.

Parameter/State variable value

Parameters

CN 1e9

CB 1e−9

CA 1e−9

D 0.167

KA1B1
3.37e−9

KA1B1
4.26e−8

K 3.9e−5

Kω 1.6e−7

S0 0.02

γ 1e11

kAy
3.5e−17

KBmax1 3.58e−17

KBmax2 8.89e−16

m1max
2.61

m2max
1.17

m3max
1.48

n1 1.2

n2 1.43

nω 1.87

ωmax 0.79

Initial state variable

N1 0.24

N2 0.25

N3 0.27

S 0.02

B1 1e−71

B2 1e−71

A1 1e−10

https://doi.org/10.1371/journal.pcbi.1010548.t002
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resource competition. If N2 had a higher growth rate than N1 or N3, it would out compete

these strains and cause an extinction event.

We then wanted to explore the most important parameters that separate oscillatory and

chaotic behaviours in m850 only. We refer to a set of parameters and initial conditions as an

input vector. Using ABC SMC, we performed parameter inference on m850 for the chaotic and

oscillatory objectives, generating 3750 input vectors for each objective. We can use this dataset

of labelled input vectors to understand the importance of individual parameters, initial condi-

tions and nearby steady states.

Fig 4B shows multivariate parameter distributions for the oscillator and chaotic objectives

for the experimentally accessible parameters. The dilution rate (D) is a directly controllable

parameter of the chemostat. The production rate of A1 (kA1) can be tuned by using an induc-

ible promoter to control expression of the AHL synthase species. Strain maximal growth rates

(μmax1, μmax2, μmax3) can be controlled by using different base strains or through the combined

use of auxotrophic strains and defined media. Finally, the initial population densities (N1, N2,

N3) can easily be set when inoculating the initial culture. Divergence between two parameter

distributions indicates its importance in differentiating between the two objectives. We can see

that the oscillatory objective distributions for D, N1 and μmax2 are all constrained towards

lower values relative to the prior. However, for all these distributions we can see that the cha-

otic and oscillatory regions overlap. This again implies that chaotic and oscillatory behaviour

exist close to one another in parameter space, and highlights the multidimensional nature that

determines the behaviour.

To further investigate the importance of parameters and initial conditions we trained a ran-

dom forest classifier model using the input vectors as features [25]. We curated a label-bal-

anced dataset of oscillating input vectors and chaotic input vectors. Using a train test ratio of

0.5, the trained classifier model was able to classify the test set with a *90% accuracy (Meth-

ods). Fig 4C shows the average information gain across all decision tree classifiers in the forest

for all free parameters. This can be used as an indicator of feature importance in correctly clas-

sifying an input vector. KA1B1
and KA1B2

describe the concentration of A1 required to produce

half-maximal repression of bacteriocins B1 and B2 respectively. While the feature importance

indicates these parameters are the most important, they are more difficult to tune compared

with other parameters in this system. The error bars indicate the variability in the importance

of a feature across all trees in the forest. Large error bars suggest single features are not essen-

tial for classification, and that redundancy exists between the features used [26].

From the set of chaotic input vectors, we used numerical methods to identify nearby steady

states that could be reached by changing the initial state of the system only. Fig 4D shows the

sensitivity analysis of a chaotic input vector. The black stars indicate stable steady states identi-

fied by numerical analysis. We perturbed the initial species values of either N1, B1 or B2 indi-

vidually. The plots show how changing these initial states yields different Lyapounv exponents,

highlighting the chaotic region in red. The range of Lyapunov exponents shown in Fig 4D sug-

gest that by changing the initial conditions only we are able to produce a range of different

behaviours. Perturbing N2, N3 or A1 did not produce chaotic behaviour. It is interesting that

the initial state of N1 as the A1 producing strain appears to be more important whereas the ini-

tial concentration of A1 itself is not.

Exploring the parameters in the transition to chaos

Being able to move a system from a chaotic state to a fixed point could be important in a

bioprocess control scenario so we explored this in more detail. Previous studies have fre-

quently identified the bioreactor dilution rate as an important parameter for transitioning
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between different population dynamics [27–29]. The posterior parameter distribution

shown in Fig 4B strongly indicated the dilution rate, D, to be important for defining chaotic

behaviour. We previously identified the QS production rate, kA1 and D as important param-

eters for transitioning between co-existence and extinction states [16]. We hypothesised

that the antagonistic effect of kA1 to D would make it a useful parameter for controlling pop-

ulation behaviour.

First, we took an input vector known to produce chaotic behaviour and randomly sampled

new values for kA1 and D from the prior and calculated the Lyapunov exponent of the new

input vector. Fig 5A shows the results where filled colour indicates the maximal Lyapunov

exponent calculated at each grid reference. The grid outline indicates the classification, the red

grid region of Fig 5A shows the chaotic region. Fig 5A illustrates that, changing D and kA1

affects the Lyapunov exponent. The bifurcation diagrams in Fig 5B and 5C for kA1 and D
respectively, illustrate the antagonistic transitions in behaviour that occur when changing the

two parameters. Fig 5A and 5B show transitions through one strain extinctions (Nx< 10−5),

stable steady state, oscillations and chaotic behaviour. Fig 5A and 5B both show that increasing

kA1 results in transitions from stable co-existence, through oscillations and then to chaos,

Fig 5. Parameters kA1 and D can be tuned to control transitions between chaotic, oscillatory and stable states. The

fixed parameter values are shown in Table 2. A Map showing how different combinations of kA1 and D change

population behaviour. The grid fill colour corresponds to the maximum Lyapunov exponent measured, the grid

outlines indicate the approximate classification where green is stable, yellow is oscillatory, red is chaotic and white is

extinction. B Bifurcation diagram showing the community states visited for different values of kA1. C Bifurcation

diagram showing the community states visited for different values of D. D Real-time ramp down tuning of kA1, moving

the system from a chaotic state to a stable steady state. E Real-time ramp up tuning of D, moving the system from a

chaotic state to a stable steady state.

https://doi.org/10.1371/journal.pcbi.1010548.g005
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followed abruptly by an extinction event. Fig 5A and 5C and c both show that a lower dilution

rate is associated with chaos; increasing the dilution rate reduces instability to produce oscilla-

tions, which abruptly transitions to a stable extinction state.

In a bioreactor control scenario it is interesting to understand if a community could be

switched between states in real time. Fig 5D and 5E show how this is possible by modifying kA1

and D respectively. The red arrows on Fig 5A indicate the position of the single start point and

two end points in these real-time transitions. It is important to note that when ramping up the

dilution rate in real-time, we reach stable steady state in a region that would not be obtainable

with a fixed dilution rate.

Discussion

We have developed a novel methodology to explore parameter regions that give rise to chaotic

dynamics. We have applied it to the exploration of chaotic dynamics in synthetic microbial

communities and found a high prevalence of such dynamics in these systems. This work is the

first to query the existence of chaotic behaviour in synthetic microbial communities. We show

that we can expect to find chaotic states in relatively small synthetic microbial systems, which

has important ramifications for the field.

By first running ABC SMC for the oscillatory objective we were able to drastically reduce the

model space for the search for chaos. However, the timecourse simulation and parameter sam-

pling makes this pipeline computationally costly. In the future we can consider using eigenvalue

stability methods to reject particles without simulation, improving the efficiency of our approach

and therefore improving the number of samples available for posterior estimation [30, 31].

We expect it will become increasingly important to consider the location of chaotic attractors

in parameter space as the microbial communities we build or interact with become more com-

plex. These methods can easily be applied to parametrise different models. It would be interest-

ing to compare the existence of chaotic attractors in systems that use toxin-antitoxin systems

[32], combinations of cooperative and competitive interactions [33], or mutualistic only interac-

tions [34]. Genome scale metabolic models contain a large number of linear reactions [35]; they

can be combined to describe microbial communities and used to model industrial bioprocesses

[36, 37]. Given the high dimensional nature of metabolic networks, it would be interesting to

investigate whether these models yield chaotic behaviour in small community networks.

Conclusion

To conclude, we have developed methods for identifying chaotic parameter regions using

ABC SMC. We have demonstrated the application of this method to resolve a previously iden-

tified chaotic attractor in a gLV model, and identified models susceptible to chaos in three

strain synthetic microbial communities. Although chaotic attractors are generally thought to

be sparse in low dimensional systems, we have shown their existence in realistic synthetic

microbial systems. They may also exist in close proximity to stable steady state regions. This

work demonstrates that deterministic chaos will be an important factor in microbial commu-

nity design and should be studied in much more detail.

Materials and methods

Three strain synthetic communities model space definition

Models are generated from a set of parts, that are expressed by different strains in the system.

We represent an expression configuration through a set of options. We define the options

for expression of A in each strain, where the options are: not expressed, expression of A1, or
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expression of A2 (0, 1 or 2 respectively). We define the options for expression of bacteriocin

as: no expression, expression of B1, expression of B2 or expression of B3 (0, 1, 2 and 3 respec-

tively). Lastly we define the mode of regulation, R, for each bacteriocin, which can be either

induced or repressed (0 and 1). This is redundant if a bacteriocin is not expressed.

A ¼ f0; 1; 2g

B ¼ f0; 1; 2; 3g

R ¼ f0; 1g

This enables us to build possible part combinations that can be expressed by a population.

Let Pc be a family of sets, where each set is a unique combination of parts.

PC ¼ A� B� R

Each strain in a system can be sensitive to up to one bacteriocin. Let I represent the options

for strain sensitivity. The options are: insensitive, sensitive to B1, sensitive to B2 or sensitive to

B3 (0, 1, 2 and 3 respectively).

I ¼ f0; 1; 2; 3g

Each strain is defined by its sensitivities, and expression of parts. Let PE be all unique engi-

neered strains:

PE ¼ I � PC

Which can be combined to form a model, yielding unique combinations:

PM ¼ PE � PE � PE

Finally, we use a series of rules to remove redundant models. A system is removed if:

1. Two or more strains are identical, concerning bacteriocin sensitivity and combination of

expressed parts.

2. The QS regulating a bacteriocin is not present in the system.

3. A strain is sensitive to a bacteriocin that does not exist in the system.

4. A bacteriocin exists that no strain is sensitive to.

This cleanup yields the options which are used to generate ODE equations for a system.

System equations

State variables in each system are rescaled to improve speed of obtaining numerical approxi-

mations. NX describes the concentration of a strain, Bz describes the concentration of a bacteri-

ocin and Ay describes the concentration of a quorum molecule. CN, CB and CA are scaling

factors:

N 0x ¼ NxCN

B0z ¼ BzCB

A0y ¼ AyCA

Each model is represented as sets where N defines the number of strains, B defines the set

of bacteriocins and A defines the set of QS systems. The following differential equations are
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used to represent each model.

dNx

dt
¼ NxmxðSÞ � Nx

XB

z¼1

oðB0zÞ � NxD

dS
dt
¼ DðS0 � SÞ �

XN

x¼1

mxN 0x
g

dBz

dt
¼
XN

x¼1

ðkBx;z
N 0xÞ

CB
� DBz

dAy

dt
¼
XN

x¼1

kAx;y
N 0x

CA
� DAy

Growth is modelled by Monod’s equation for growth limiting nutrient, S. mxmax
defines the

maximal growth rate of the strain and KX defines the concentration of substrate required for

half-maximal growth.

mxðSÞ ¼
mxmax

S
KX þ S

Killing by bacteriocin is defined by oðB0zÞ, where ωmax defines the maximal killing rate

which is set to 0 if the strain is insensitive. Kω defines the concentration at which half-maximal

killing occurs.

oðB0zÞ ¼ omax
B0noz

Kno
o þ B0noz

Induction or repression of bacteriocin expression by QS, is defined by kB(z, y), where z
defines the bacteriocin being expressed and y defines the quorum molecule regulating its

expression. KBmax z is the maximal expression rate of the bacteriocin and KBz
is the concentra-

tion of quorum molecule at which bacteriocin is half-maximal. nz defines the cooperativity of

the AHL binding.

kBðz; yÞ ¼ KBmaxz
A0nz

y

Knz
Bz
þ A0nz

y

kBðz; yÞ ¼ KBmaxz
Knz

Bz

Knz
Bz
þ A0nz

y

Software packages and simulation settings

The ABC SMC model selection algorithm was written in python using Numpy [38], Pandas

and Scipy [39]. ODE simulations were conducted in C++ with a Rosenbrock 4 stepper from

the Boost library [40]. All simulations use an absolute error tolerance of 1e−9, and relative

error tolerance of 1e−4. Simulations were conducted for 5000hrs, and were stopped early if the

population of any strain fell below 1e−5 (extinction event). Simulations with an extinction

event have distances set to maximum in order to prevent excessive time spent simulating col-

lapsed populations.
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Approximate Bayesian computation with sequential monte-carlo (ABC

SMC)

Particles are first sampled from the prior distribution and simulated. A set of distances, d, are cal-

culated from the simulation. If all distances are less than the intermediate threshold, ϵt, the parti-

cle is accepted (d< ϵt). Accepted particles are weighted using importance sampling. The next

population is sampled from the previous, and a new threshold is generated that is closer to the

final threshold, ϵF. This process is repeated until we reach a distance threshold of ϵF. ABC SMC

is highly parallel, allowing us to take advantage of high performance computing resources [21].

Updating ϵt. At the end of each population of ABC SMC, the distance threshold ϵt is

updated to approach the final population, ϵF. The quantile parameter, α, is defined. The dis-

tances of the population are sorted in ascending order and the distance at quantile α is used as

the threshold for the next population. If ϵt< ϵF, we set ϵt = ϵF, marking the next population as

the final population.

Algorithm 1: Algorithm for model selection with ABC SMC
1: Initialisation
Set population indicator, t = 0
Set ϵt
Set final epsilon, ϵF
Set population size, N
Set population particle count, i
Set distance threshold quantile, α

2: Sample particle, consisting of a model (m) and parameters (θ):
If t = 0, sample θ��(m�) from prior distribution, π(m, θ)
If t > 0, sample θ�(m�) from previous distribution fyðm�Þit� 1

g with
weights w(m�)t−1
3: Perturb particle
If t > 0, perturb particle using perturbation kernel Kt, yielding

perturbed particle θ��(m�)
4: Simulate particle
x� * f(x|θ�, m�)

5: Calculate distance from objective
d = ρ(x�, x0)

6: Accept or reject particle
If d > ϵt, reject particle and go to 2
If d < ϵt, accept particle, add θ��, m� to population fyðm�Þitg

7: Set accepted particle weight
Particle weight, w, is set to 1 for the initial population. For sub-

sequent populations, the weight of a particle is equal to the proba-
bility of observing the particle given the prior, divided by the
probability of observing the particle given the previous population.

wi
t ¼

pðy��ÞPN

j¼1
wj

t� 1
Ktðy

i
t� 1
jy��Þ

i = i + 1
If i < N go ot 2

8: Population full
Normalise population particle weights
If ϵt == ϵF, return fyðm�Þitg and wt, the approximation of the posterior

distribution
Prepare next population
Set i = 0
Set t = t + 1
Update the distance threshold as a function of the distances in the

population, d and the threshold quantile, α, ϵt = fe(α, d)
go to 2
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Oscillatory population dynamic objective

We define the oscillatory population dynamic using three summary statistics for each strain.

First, we use Fourier transform of the population signal to find the maximum frequency, f, and

convert this to the period, T.

T ¼ 1=f

We set a minimum period of t/2 where t is the simulation time, giving us do1
. do1

. Any simu-

lations in which T< t/2, do1
is set to 0, this distance ensures that all we have frequencies of

oscillations that are on a scale relevant to the time period being measured. It was found that

using the signal frequency alone resulted in acceptance of many simulations with very small

oscillations, or simulations that rapidly dampen. We therefore generated two additional dis-

tances that account for oscillation amplitudes to select for sustained oscillations only. We can

define the number of expected peaks in the simulation, p.

p ¼
t
T

Peaks in the trajectory are identified by changes from a positive gradient to a negative gradi-

ent, and troughs via changes from negative gradient to positive gradient. The peak-to-peak

amplitudes are calculated by differences between consecutive peaks and troughs. AK is the

number of amplitudes above the threshold, K = 0.05. do2
is the difference between the number

of expected oscillations in the simulation, and the count of above threshold oscillations.

Because incomplete oscillations at the time the simulation ends can impact the distance mea-

surement, we set a lenient final distance threshold for do2
:do3

compares the final amplitude AF

in the simulation to the threshold. We set do3
¼ 0 if do3

> K.

do1
¼ jT � t=2j

do2
¼ jAK � pj

do3
¼ jAF � Kj

d ¼ ðdo1
; do2

; do3
Þ

ϵF ¼ ð2:0; 2:5; 20:0Þ

Maximal Lyapunov exponent calculation

Lyapunov exponents can be used to measure chaotic behaviour; they describe the average

exponential rate of divergence between two near trajectories of a dynamical system. The maxi-

mal Lyapunov exponent, λ1, can be used as determinant of chaotic behaviour. Using a method

described by Sprott et al. [41], we evolve two nearby orbits and measure their average rate of

separation. This directly investigates whether small changes to an initial state will produce a

disproportionate separation. By periodically readjusting the distance of divergence after each

time step we measure separation across a period of time, preventing a single event dominating

subsequent states (Fig 6). The method is described in full by Algorithm 2. For all simulations

we generate nearby orbits by perturbing one of the strain initial strain densities by40 = 10−10.

All simulations use a transient time equivalent to the first 10% of the time series.
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Chaos population dynamic objective

dC1
is the only distance for the chaotic objective. If dC1

< 0, the particle is rejected. The final

distance threshold, ϵC, is equivalent to all λ1 > 0.003.

dC1
¼ 1=ð1þ l1Þ

d ¼ ðdC1
Þ

ϵC ¼ f0:997g

For each sampled particle a prescreening process was performed to minimise time spent

conducting the more computationally time consuming dual-orbit method. Simulations in

which a strain fell below 10−5 were rejected. The number of oscillations with an amplitude

greater than 0.05 was counted for each strain signal. If any strain showed less than 2 oscilla-

tions the particle was rejected. ABC SMC was conducted with population sizes of 10, repeated

255 times yielding a combined final population of 2550 particles.

Random forest classifier model

Using the sci-kit learn (sklearn) python package [42], a random forest classifier was trained

using 2000 estimators. The data used consisted of 3750 oscillatory input vectors, and 3750 cha-

otic input vectors. Training and test datasets were generated with a ratio of 0.5 by random

sampling. Fig 7 shows the performance of the classifier model on the test data.

Algorithm 2: Description of dual-orbit method, demonstrated with two-dimensional system
1 Set S = 0.0
2 Set parameters and initial state θi = (xi, yi) for orbit, f(θi)
3 Simulate f(θi) for transient time, tt, yielding state, θa0
4 Set initial state of nearby orbit, f(θb0), where, θb0 = θa0 + 40

5 Set t = 0
6 Advance f ðya0

Þ and f ðyb0
Þ by one step, dt, yielding states ya1

and yb1

respectively
7 Set t = t + dt
8 Calculate separation between the state variables of the two orbits,

41 ¼ ½ðxa1
� xb1

Þ
2
þ ðya1

� yb1
Þ

2
�
1=2

Fig 6. Illustration of dual-orbit algorithm used to calculate the λ1. Two orbits with an initial state separation of40 are followed. After each

time step measure the separation,41, is measured. The perturbed orbit (red) is readjusted to prevent excess separation. The average rate of

separation between the two orbits corresponds with the λ1.

https://doi.org/10.1371/journal.pcbi.1010548.g006
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9 S = S + log2(|41/40|)
10 Readjust yb1

to align directionally with ya1
, xb0

¼ xa1
þ40ðxb1

� xa1
Þ=41

and yb0
¼ ya1

þ40ðyb1
� ya1

Þ=41

11 Set xa0
¼ xa1

and xb0
¼ xb1

12 Repeat lines 6 to 11 for n iterations
13 Calculate maximal Lyapunov exponent as an average of the separation
values, λ1 = S/n

Analysis of m850

m850 is described by the following equations

dN1

dt
¼ N1

m1max
S

K þ S
� omax

N1B
0no
1

Kno
o þ B0no1

� N1D ð1aÞ

dN2

dt
¼ N2

m2max
S

K þ S
� N2D ð1bÞ

dN3

dt
¼ N3

m3max
S

K þ S
� omax

N3B
0no
2

Kno
o þ B0no2

� N3D ð1cÞ

dS
dt
¼ DðS0 � SÞ �

m1N 01
g
�
m2N 02
g
�
m3N 03
g

ð1dÞ

dB1

dt
¼

kB1;1
N 0

1

CB
� DB1 ð1eÞ

dB2

dt
¼

kB2;1
N 0

3

CB
� DB2 ð1fÞ

dA1

dt
¼

kA1;1
N 0

1

CA
� DA1 ð1gÞ

Fig 7. Confusion matrix showing accuracy of random forest classifier on test data.

https://doi.org/10.1371/journal.pcbi.1010548.g007
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N 0x ¼ NxCN

B0z ¼ BzCB

A0y ¼ AyCA

kBz;y
¼ KBmaxz

A0nz
y

Knz
Bz
þ A0nz

y

By setting the left hand side of (1) to 0 we find a number of steady states P = (N1, N2, N3, S,

B1, B2, A1).

The trivial steady state. P0 = (0, 0, 0, S0, 0, 0, 0). The Jacobian of the linearisation has

eigenvalues

� D; � D � m1max

S0

S0 þ K

� �

; � D � m2max

S0

S0 þ K

� �

; � D � m3max

S0

S0 þ K

� �

:

Consequently the trivial steady state always exists and is linearly stable for

D >
S0

S0 þ K
maxfm1max

; m2max
; m3max

g:

This shows that if the dilution rate is high enough, no strain can survive.

One strain only steady states. There are three steady states where only one strain sur-

vives, P1, P2, P3. While P2, and P3 can be calculated explicitly, P1 is given implicitly (see

below).

We start with P2:

P2 ¼ ð0;N2; 0; S; 0; 0; 0Þ; where

N2 ¼
g

CN

S0m2max
� DðS0 þ KÞ

m2max
� D

; S ¼
DK

m2max
� D

:

We see that P2 exists provided

D <
m2max

S0

S0 þ K
:

The linearisation at P2 has eigenvalues

� D; � D 1 �
m1max

m2max

 !

;

� D 1 �
m3max

m2max

 !

;

�
1

Km2max

m2max
� D

� �
m2max

S0 � DðS0 þ KÞ
� �

:

This shows that P2 exists and is linearly stable if

D <
m2max

S0

S0 þ K
; and m2max

> maxfm1max
; m3max

g:
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The situation for P3 is very similar:

P3 ¼ ð0; 0;N3; S; 0; 0; 0Þ; where

N3 ¼
g

CN

S0m3max
� DðS0 þ KÞ

m3max
� D

; S ¼
DK

m3max
� D

:

We see that P3 exists provided

D <
m3max

S0

S0 þ K
:

The linearisation at P3 has eigenvalues

� D;

� Dð1 �
m2max

m3max

Þ;

� Dð1 �
m1max

m3max

Þ;

�
1

Km3max

ðm3max
� DÞðm3max

S0 � DðS0 þ KÞÞ:

This shows that P3 exists and is linearly stable if

D <
m3max

S0

S0 þ K
; and m3max

> maxfm1max
; m2max

g:

The steady state P1 = (N1, 0, 0, S, B1, 0, A1) is more complicated and can not be expressed

explicitly. Instead it is given as follows: Assume there exists a solution S to the following equa-

tion

m1max

S
K þ S

� D ¼ omax
ðB1ðSÞCBÞ

no

Kno
o1
þ ðB1ðSÞCBÞ

no ; ð2Þ

where

B1ðSÞ ¼
KBmax1

kA1

ðA1ðSÞCBÞ
n1þ1

Kn1
AB1
þ ðA1ðSÞCBÞ

n1
; and A1ðSÞ ¼

kA1
g

CBm1max

ðS0 � SÞðK þ SÞ
S

:

If such a solution S exists then B1 = B1(S), A1 = A1(S) and N1 ¼
DCB

kA1
CN

A1.

Lemma 1 There exists a unique steady state P1 if and only if

D < m1max

S0

K þ S0

:

Proof: We need the solution to (2) to fulfil S< S0 in order for A1 to be positive. We inter-

pret the right and left-hand-sides of (2) as a function of S, denoting them by R(S) and L(S)

respectively. It is easy to see that A1(S) is a decreasing function of S, B1(S) increases as a

function of A1 and R(S) is an increasing function of B1. Consequently the R(S) is a decreasing

function of S. We also see that R(0) = ωmax> 0 and R(S0) = 0. Further L(0) = −D and

LðS0Þ ¼ m1max

S0

KþS0
� D and L(S) increases as a function of S. This proves the statement.

To summarise, the single-strain survival steady state requires the corresponding maximal

growth rate to be large compared to other parameters.
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The three-strain co-existence steady state. P123 = (N1, N2, N3, S, B1, B2, A1).

From the equation for N2 we obtain that

S ¼
DK

m2max
� D

m2max
< minfm1max

; m3max
g;

D < minfm2max

S0

K þ S0

;omax

m2max

m1max
� m2max

;omax

m2max

m3max
� m2max

g

Stability. Solved numerically using MATLAB. For each of the 3750 chaotic input vectors we

used numerical root finding to calculate P123, and determined its stability by numerically

determining the eigenvalues of the Jacobian. We found P123 existed for all 3750 input vectors

and was stable for 7.8% of them.

Supporting information

S1 Fig. Posterior distribution of chaotic objective for gLV model. Posterior distribution of

of all parameters.
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9. Benincà E, Huisman J, Heerkloss R, Jöhnk KD, Branco P, Van Nes EH, et al. Chaos in a Long-Term

Experiment with a Plankton Community. Nature. 2008; 451(7180):822–825. https://doi.org/10.1038/

nature06512 PMID: 18273017

10. Hsu RH, Clark RL, Tan JW, Ahn JC, Gupta S, Romero PA, et al. Microbial Interaction Network Inference

in Microfluidic Droplets. Cell Systems. 2019; 9(3):229–242.e4. https://doi.org/10.1016/j.cels.2019.06.

008 PMID: 31494089

11. Vano JA, Wildenberg JC, Anderson MB, Noel JK, Sprott JC. Chaos in Low-Dimensional Lotka-Volterra

Models of Competition. Nonlinearity. 2006; 19(10):2391–2404. https://doi.org/10.1088/0951-7715/19/

10/006

12. Momeni B, Xie L, Shou W. Lotka-Volterra Pairwise Modeling Fails to Capture Diverse Pairwise Micro-

bial Interactions. eLife. 2017; 6. https://doi.org/10.7554/eLife.25051 PMID: 28350295

13. Fan G, Wolkowicz GSK. Chaotic Dynamics in a Simple Predator-Prey Model with Discrete Delay. Dis-

crete and Continuous Dynamical Systems—Series B. 2021; 26(1).

14. Zhao H, Sun Y, Wang Z. Control of Hopf Bifurcation and Chaos in a Delayed Lotka-Volterra Predator-

Prey System with Time-Delayed Feedbacks. Abstract and Applied Analysis. 2014; 2014. https://doi.org/

10.1155/2014/104156

15. Gilpin ME. Spiral Chaos in a Predator-Prey Model. The American Naturalist. 1979; 113(2):306–308.

https://doi.org/10.1086/283389

16. Fedorec AJH, Karkaria BD, Sulu M, Barnes CP. Single Strain Control of Microbial Consortia. Nature

Communications. 2021; 12(1):1–12. https://doi.org/10.1038/s41467-021-22240-x PMID: 33785746

17. Karkaria BD, Fedorec AJH, Barnes CP. Automated Design of Synthetic Microbial Communities.

Nature Communications. 2021; 12(1):1–12. https://doi.org/10.1038/s41467-020-20756-2 PMID:

33510148

18. Silk D, Kirk PDW, Barnes CP, Toni T, Rose A, Moon S, et al. Designing Attractive Models via Automated

Identification of Chaotic and Oscillatory Dynamical Regimes. Nature Communications. 2011; 2(1).

https://doi.org/10.1038/ncomms1496 PMID: 21971504

19. Roques L, Chekroun MD. Probing Chaos and Biodiversity in a Simple Competition Model. Ecological

Complexity. 2011; 8(1). https://doi.org/10.1016/j.ecocom.2010.08.004

20. Liu YY, Barabási AL. Control Principles of Complex Systems. Reviews of Modern Physics. 2016; 88(3).

https://doi.org/10.1103/RevModPhys.88.035006

21. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP. Approximate Bayesian Computation Scheme for

Parameter Inference and Model Selection in Dynamical Systems. Journal of the Royal Society Inter-

face. 2009; 6(31):187–202. https://doi.org/10.1098/rsif.2008.0172 PMID: 19205079

22. Barnes CP, Silk D, Sheng X, Stumpf MPH. Bayesian Design of Synthetic Biological Systems. Proceed-

ings of the National Academy of Sciences. 2011; 108(37):15190–15195. https://doi.org/10.1073/pnas.

1017972108 PMID: 21876136
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