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Abstract: Despite the great potential of design of experiments (DoE) for efficiency and plannability
in academic research, it remains a method predominantly used in industrial processes. From our
perspective though, DoE additionally provides greater information gain than conventional experi-
mentation approaches, even for more complex systems such as chemical reactions. Hence, this work
presents a comprehensive DoE investigation on thermally initiated reversible addition–fragmentation
chain transfer (RAFT) polymerization of methacrylamide (MAAm). To facilitate the adaptation of
DoE for virtually every other polymerization, this work provides a step-by-step application guide
emphasizing the biggest challenges along the way. Optimization of the RAFT system was achieved
via response surface methodology utilizing a face-centered central composite design (FC-CCD).
Highly accurate prediction models for the responses of monomer conversion, theoretical and appar-
ent number averaged molecular weights, and dispersity are presented. The obtained equations not
only facilitate thorough understanding of the observed system but also allow selection of synthetic
targets for each individual response by prediction of the respective optimal factor settings. This work
successfully demonstrates the great capability of DoE in academic research and aims to encourage
fellow scientists to incorporate the technique into their repertoire of experimental strategies.

Keywords: design of experiment; reversible addition–fragmentation chain transfer; response surface
methodology; prediction models; optimization

1. Introduction

As a powerful tool for efficient, reproducible, and predictable process optimization,
DoE is firmly established in different fields of industry [1,2], process development [3],
and engineering [4,5]. However, despite some promising recent works [6,7] and excellent
surveying articles [8–10], DoE is still widely unknown in the realms of academic research.
At least from our point of view, this might be a highly unfortunate omission as, if done right,
DoE also provides superior understanding of the examined system and greater knowledge
generation compared to conventional approaches to experimentation. On top of that, DoE
generates so-called prediction models by appropriate fitting of the acquired experimental
data, which accurately relate the experimentation parameters with a given observable
result. These DoE-associated benefits not only emerge for examination of simpler cause
and effect relationships but could also substantially advance workflows of more complex
chemical reaction systems, such as RAFT polymerization.

RAFT is one of the most powerful and versatile controlled radical polymerization
techniques [11] for the synthesis of complex multiblock architectures [12–18] as well as
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so-called “smart” materials, such as switchable filtration devices [19–21] or nanocarriers
for biomedical applications [22–24]. Within this group of “smart” materials, especially
upper critical solution temperature polymers, such as this work’s optimization target
polymethacrylamide (PMAAm) [25,26], have received increasing attention [27–30].

During the RAFT process, many parameters influence the outcome of the polymeriza-
tion and the quality of the final product. As RAFT is becoming increasingly relevant for
industrial applications as well [31], optimization of RAFT processes remains a highly valu-
able task. Recently, various RAFT simulation studies have been published with promising
results for kinetic computations [32,33] or specific challenges, such as transferring a RAFT
polymerization into a microscale reactor [34]. However, simulations are usually limited
by certain simplifications and require exact knowledge of the reaction mechanism. In the
specific case of RAFT polymerization simulations, for example, the choice between the
slow fragmentation model and intermediate radical termination model are still vividly
discussed in literature [35–37]. DoE, on the other hand, does not rely on any theoretical
assumptions regarding the examined system. In fact, correct application of DoE will always
lead to accurate representation of the system as the prediction models are solely “fed” by
experimental data (and thus also include all inevitable sources of error).

When applying RAFT to synthesize a polymer with tailored chain length, desired
dispersity (oftentimes the lowest possible), and maximum chain end fidelity, polymer
chemists are usually confronted with several challenges. The parameters, called factors in
DoE terminology, impacting the results of a RAFT polymerization are manyfold; categorical
factors, such as the type of solvent, RAFT agent, and initiator system, play a vital role.
Luckily, for most types of monomers, thorough investigations regarding suitable solvents
and RAFT agents have already been published [12,13,38–40]. Hence, it is rather common
that the polymer chemist already knows all the participants of the reaction a priori. In most
cases, the biggest challenge for a given goal of the polymerization lies in the optimal setting
of all numeric factors. Depending on the kind of RAFT polymerization that is required,
these factors can vary. Typically, these factors include reaction time and temperature,
concentrations of reactants, and the ratios between them.

In order to optimize RAFT polymerization for any kind of synthetic goal, polymer
scientists typically start with one polymerization, setting the factors based on their expertise.
As it is highly probable that the result (e.g., the dispersity) is improvable, the impact of
each factor can only be adequately investigated individually by varying solely one factor
and repeating the experiment. Provided that the result changes, the investigated factor, for
example, the temperature, will either be further adjusted or just kept at the favorable level.
Now it is up to the expert to decide whether the result is satisfactory or if other factors
need to be investigated individually as well. In the statistician community, this approach
to experimentation is called the OFAT (one-factor-at-a-time) method and, expectably, does
not enjoy the best reputation.

Clearly, in some cases, the OFAT method is useful or even without alternative. Contem-
plating the aforementioned scenario, however, certain critical questions seem appropriate:

1. Can we effectively spot the optimal setting (or level in DoE terminology) of each
factor without innumerable experiments?

2. Can we just assume that an optimal factor level stays steadfast when another factor
is varied?

Both questions can be answered with a simple “no”. The reason question 2 is negated
is due to so-called factor interactions. In an example of a two-factor interaction AB, the
effect of factor A on a quantifiable result, called response in the realms of DoE, depends on
the factor level of factor B (and vice versa). This problem is illustrated in Figure 1, which
displays an arbitrary response surface with three experiments at different factor settings.
After starting the examination with a first experiment (factors are set to the levels A− and
B−, with the superscripts signifying high “+” or low “−” levels), factor A is investigated in
typical OFAT fashion and increased to A+, resulting in a reduced response. If the response
is maximized, the next experiment would likely be performed applying the factor levels
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A− and B+ which, in this arbitrary example, again does not lead to the desired response
enhancement. Presumably, not every scientist would go the extra mile and test the factor
combination A+ and B+, an understandable choice that could lead to missing out on an
unexpected result (provided the existence of a strong two-factor interaction AB).

Figure 1. Strategic route of conventional OFAT experimentation. When interactions between factors
are not revealed, a potential optimum might be missed.

At this point, it is obvious that the OFAT method runs against its limits. Fortunately,
the statistical approach of experimental design provides solutions to all these problems.
DoE takes a different approach to experimentation as it involves exploration of the whole
experimental space. This way, all relevant interactions and nonlinear relations will be
unveiled, and prediction models will be established that will ultimately disclose the optimal
reaction conditions and save the experimenter valuable time and resources. This work
will present a step-by-step guide for optimization of a thermally initiated RAFT solution
polymerization of MAAm via DoE, highlighting the most important aspects along the way.
We believe this work will not only be helpful for polymer chemists but also for interested
scientists performing reactions in other disciplines of chemistry.

2. Materials and Methods
2.1. Materials

The RAFT agent CTCA (Sigma Aldrich, St. Louis, MO, USA, 95%), the thermal
initiator ACVA, dimethyl formamide (DMF, VWR, Radnor, PA, USA, GPR Rectapure
99.5%), and acetone (Sigma Aldrich, St. Louis, MO, USA, 99.5%) were used as received.
MAAm (Sigma Aldrich, St. Louis, MO, USA, 98%) was dried in vacuo for 24 h at room
temperature and stored under nitrogen atmosphere. Ultrapure water (Milli-Q® quality,
resistivity >18.2 MΩ cm−1) was obtained from a Millipore Milli-Q® water purification
system and utilized as solvent for the RAFT polymerizations.

2.1.1. RAFT Polymerization of MAAm

RAFT polymerizations were conducted in 12 mL screw-capped vials (Labsolute®)
sealed with bored poly(propylene) caps and butyl/PTFE septa (Labsolute®, ND15, 1.6 mm).
All polymerizations conducted within the scope of the FC-CCD were performed at a fixed
mass of water of 3.000 g. In this fixed mass of Milli-Q® water, the masses of MAAm, CTCA,
and ACVA are, depending on the ratios RM and RI, exactly predefined to ensure the desired
ws of the reaction solution. ws is the combined weight content MAAm, CTCA, and ACVA
with respect to the whole reaction solution (precluding internal standard DMF). A typical
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thermal RAFT polymerization for all factors (T, t, RM, RI, and ws) at their center levels
was conducted as follows. MAAm (533 mg, 6.26 mmol, RM = 350) and CTCA (5.6 mg, 18
µmol) were dissolved in Milli-Q® water. The required mass of ACVA (31 µg, 1.12 µmol,
RI = 0.0625) was added using an Eppendorf Multipette® E3, which transferred the appro-
priate volume from an ACVA solution (10 mg mL−1) in DMF into the reaction mixture. As
the DMF serves as internal standard for monomer conversion determination via 1H NMR
spectroscopy, more DMF was added to employ a DMF concentration of 5 wt % (in terms of
total mass of the final reaction mixture). Afterwards, the mixture was homogenized under
vigorous stirring, and a small sample was taken for NMR referencing. As already observed
in previous works, neither the MAAm nor the DMF signal are affected by subsequent N2
bubbling [25]. The homogenized reaction solution was purged by N2 bubbling for 10 min.
The solution was stirred (600 rpm) at T = 80 ◦C for t = 260 min and quenched by rapid
cooling to 0 ◦C and exposure to air. Another sample was taken for NMR analysis, and
the solution was precipitated by dropwise addition into 60 mL of ice-cold acetone. The
precipitate was filtrated and dried in vacuo for 24 h at room temperature. PMAAm was
obtained as a yellowish powder (p = 42.7%. Mn,th = 12.8 kDa, Mn,app = 6.2 kDa, Ð = 1.28).
Experimental design, ANOVA, model prediction, and diagnostics were performed using
the software DesignExpert® V12.

2.2. Analytics
2.2.1. Nuclear Magnetic Resonance Spectroscopy

1H NMR measurements were performed with a Bruker® AVANCE III HD 400 MHz
spectrometer. Spectra were recorded at a temperature of 300 K with 64 scans per spectrum
and a delay of three seconds. Deuterium oxide (D2O) was used as solvent, and the residual
solvent peak was set at 4.79 ppm and used as reference. The sample concentration was ap-
proximately 10 mg mL−1 for all measurements. In order to determine the monomer conver-
sion of a typical RAFT polymerization of MAAm, DMF was added and the DMF/monomer
integral ratios before the polymerization and at a given polymerization time were compared
(see Figure S1 as well as Equations S1 and S2 in the Supporting Information).

2.2.2. Size Exclusion Chromatography

Size exclusion chromatography (SEC) experiments were conducted on a PSS® Agilent
Technologies 1260 Infinity system utilizing a SUPREMA® column system consisting of a
precolumn (8 mm × 50 mm, particle size: 5 µm) and three analytical columns (column
1: 8 mm× 300 mm, particle size of 5 µm, mesh size of 1000 Å; column 2: 8 mm× 300 mm,
particle size of 5 µm, mesh size of 1000 Å; and column 3: 8 mm × 300 mm, particle size
of 5 µm, mesh size of 30 Å). All columns were always kept at a constant temperature of
50 ◦C. A 0.1 M NaNO3 aqueous (Milli-Q® quality) solution with an added 0.05 wt % NaN3
served as eluent, while concentrations of PMAAm varied between 1 and 2 mg mL−1. The
measurements were conducted at a flow rate of 1 mL min−1 by applying an isocratic PSS®

SECcurity pump and ethylene glycol (20 µL per 100 mL of solvent) as internal standard.
Poly(ethylene glycol) was used as reference, and the PSS® SECcurity differential refractometer
detector was operated at 50 ◦C. Subsequent data analysis was performed with the software
WinGPC UniChrom® V8.10.

3. Results and Discussion
3.1. Screening: Finding the Significant Factors

A schematic display of the RAFT polymerization of MAAm (the examined system)
is given in Figure 2. The polymerization of MAAm was performed in aqueous solution
with the use of the thermal azo initiator 4,4′-azobis(4-cyanovaleric acid) (ACVA) and RAFT
agent 4-(((2-carboxyethyl)thio)carbonothioyl)thio-4-cyanopentanoic acid (CTCA).
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Figure 2. Polymerization of MAAm in aqueous solution utilizing CTCA as RAFT agent and ACVA
as initiator. The responses of the polymerization system dispersity Ð, apparent number averaged
molecular weight Mn,app, and monomer conversion p(as well as the theoretical number averaged
molecular weight Mn,th, which is proportional to p) are influenced by the factors of reaction tempera-
ture T, reaction time t, the initial concentration ratios of [MAAm]/[CTCA] RM and [ACVA]/[CTCA]
RI, and the total solid content ws.

Only three factors are required for the unequivocal description of the RAFT reac-
tion solution: the ratios RM and RI, which represent the initial concentration ratios of
[MAAm]/[CTCA] and [ACVA]/[CTCA], respectively, as well as the total solid content
ws, which is the combined mass content of MAAm, CTCA, and ACVA of the reaction
solution precluding N,N-dimethyl formamide (DMF, see Section 2.1.1.). At a designated
solvent mass of H2O, the combination of these three factors unambiguously predefines the
reaction solution. The influence of ws on the reactant solutions is rather straightforward as
it determines the total mass to be occupied by MAAm, CTCA, and ACVA. The interplay of
RM and RI, however, is a bit more complicated. While [MAAm] and [CTCA] stay largely
unaffected by RI (as the weight content of ACVA will always be negligibly low), [ACVA]
strongly depends on both RM and RI (high initiator concentrations are obtained at low RM
values and high RI values).

Before performing any DoE, it is generally mandatory to specify the responses of
interest. For example, when performing a RAFT homopolymerization, scientists are
typically interested in three polymer attributes: the molecular weight, the molecular weight
distribution (represented by the dispersity Ð), and the chain end fidelity. Unfortunately
though, the latter quantity is very difficult to obtain analytically and in a reliable and precise
fashion due to various imponderabilities. Therefore, the responses monitored within the
scope of our experimental designs were Ð, the monomer conversion p, and the apparent
number averaged molecular weight Mn,app (obtained from size exclusion chromatography
(SEC) using poly(ethylene glycol) standards). An additional response is the theoretical
number averaged molecular weight Mn,th which is proportional to p (and determined via
1H NMR spectroscopy, as shown in Section S1 and Figure S1, Supporting Information).

As any RAFT expert knows, apart from RM, RI, and ws, two additional factors clearly
possess significant influence on the outcome of p, Mn,th, Ð, and Mn,app, namely the reaction
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temperature T and the reaction time t. Fortunately, DoE is not only apt to evaluate the
obviously significant factors but can also classify the more unimposing parameters. The
step of testing factors to extract the significant few (i.e., factors exerting a significant
effect on at least one of the system’s responses) from the insignificant many is commonly
called screening. The screening is usually built of a two-level design with low amounts
of experiments (which are called runs within the scope of experimental design), only
allowing for modeling of linear relationships. Consequently, screenings mostly serve
the qualitative purpose of the distinction between significant and insignificant factors.
Deeper understanding and adequate mathematical predictions of more complex, nonlinear
relationships will only be achieved with subsequent more sophisticated designs, such as
the so-called response surface methodology (RSM, see Section 3.3).

Typically, at the beginning of any screening process, a group of experts will gather
to brainstorm and think of all factors potentially impacting at least one response and
subsequently examine them within a low-run design. In some cases though, it might
be redundant to inspect clearly significant factors; experts often already know some of
the factors that need to be examined in the ensuing RSM design. Thus, an efficient DoE
specialist can save on the number of required screening runs by setting all unequivocally
significant factors at a reasonable level and only testing the remaining, less predictable
ones. In our case, for example, T, t, RM, RI, and ws were excluded from the screening as we
already knew of their significance. It must be stated that screening designs can theoretically
suffice for precise modeling of the most complex systems if only linear relations are
investigated. However, as soon as a single factor has a nonlinear effect on any response, a
design with the capability to examine higher order model terms is required. Because, for
example, p will most certainly not correlate linearly with t for any kind of chain growth
polymerization, later investigation of the RAFT polymerization of MAAm via an RSM
design was imperative (see Section 3.3).

Thinking of factors potentially influencing p, Mn,th, Ð, and Mn,app, more than the
obvious five come to mind. Prior to a thermally initiated RAFT polymerization, a desig-
nated solvent mass (defined by the mass of the applied solvent H2O), stirring rate, N2
purging time, and concentration of internal standard (DMF in our case) need to be selected.
Naturally, all these factors can certainly drastically influence polymerization. In small
scales and within reasonable factor ranges though, it is commonly assumed and rightfully
so that their impact is negligible. A pleasant feature of DoE is that these assumptions of
negligibility can easily be confirmed or in other cases refuted with statistical security. As
expected, after sufficient N2 purging and within low scaled ranges of H2O solvent mass
(1−5 g), stirring speed (400–800 rpm), and DMF concentration (2−5 wt %), none of these
factors turned out to be significant (for detailed display of the conducted screening see
Tables S1 and S2, Supporting Information).

As larger numbers of factors included into the subsequent RSM design equal markedly
higher experimental and monetary effort, proving factors to be insignificant in the screening
is usually a rather welcome finding. In our particular case, this allowed for a complacent
conclusion, namely execution of an RSM design with only T, t, RM, RI, and ws (which we
ex ante knew to have significant influence) will fully suffice for thorough comprehension
of the RAFT polymerization of MAAm.

3.2. Setting Factor Levels and Choosing the Design

Setting the factor levels is by no means an easy task. In fact, this step can be one of
the biggest challenges of DoE. While wide factor ranges grant information over a larger
experimental space, optimal prediction accuracy (and prevention of factor correlations) will
only be achieved when a quantifiable value for each response is obtainable for every single
run, even for the most “extreme” set of factor combinations. In our case, the lowermost
response for p is expected at the factor levels RM

+, RI
−, and ws

− as this combination
leads to minimal ACVA concentration. Coupled with the low levels of T and t, the lowest
conversion of the whole RSM design will most likely be obtained. As a result, parts of the
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polymer’s molecular weight distribution might fall outside of the SEC column permeation
limit, leading to a corrupt or even missing response. To sum things up, finding a sweet spot
between a large experimental space (caused by widely spread factor levels) and assuring
run feasibility is essential. Hence, before starting elaborate experimental designs, a prudent
scientist will perform appropriate preliminary tests.

An additional and essential element of RSM that is potentially able to impact the
design’s feasibility is the design itself. Depending on the design’s geometry, certain factor
combinations are required or evaded. There is a wide range of viable RSM designs with
various geometries, each one offering certain assets as well as challenges [41]. The RSM of
our choice was a FC-CCD, which allows for great prediction accuracy whilst examining
each factor at three levels only. The experimental geometry is shown in the Supporting
Information (Figure S2).

Table 1 lists the low (−) and high (+) as well as the center (0) level for all five factors
examined in the FC-CCD. The levels were carefully selected after appropriate preliminary
testing with regard to the design geometry and SEC permeation limits. The prediction
models for each response will be valid within these exact level ranges; extrapolation is
error-prone.

Table 1. Low (−), center (0) and high (+) level for each factor examined in the FC-CCD.

T/◦C t/min RM/a.u. RI/a.u. ws/a.u.

− 75 120 200 0.025 10.0
0 80 260 350 0.0625 15.0
+ 85 400 500 0.1 20.0

Being aware of all significant factors, a well-suited combination of factor levels, and
the design geometry, the experimental design can be constructed (see Table S3, Supporting
Information). After completion of all runs and generation of the respective response data,
the prediction models can be generated by polynomial regression and revised via analysis
of variance (ANOVA) and appropriate model diagnostics tools.

3.3. Response Surface Methodology: Generation and Interpretation of Prediction Models

Depending on the applied design, prediction models with certain polynomials can
be established. The FC-CCD allows for generation of a quadratic model, while higher
ordered terms, such as T3, will be confounded (i.e., unambiguous estimation is impossible).
The challenge of finding out which polynomial terms are significant and thus should be
included in the prediction model is mastered by an ANOVA of the regression model as well
as evaluation of so-called goodness-of-fit measures (see Supporting Information), which
will typically be computed by appropriate statistical software (we used DesignExpert®).

The resulting coded prediction models for p, Mn,app, and Ð are listed in Equations
(1)–(3) (respective ANOVA tables and relevant fit statistics are tabulated in Tables S4–S11
and model diagnostics are displayed in Figures S3–S6 in the Supporting Information). Due
to the proportionality of p and Mn,th, both models are highly similar (thus the model of
Mn,th is shown in Table S7 of the Supporting Information. The models are “coded”, i.e.,
the actual factor ranges are converted to−1 and +1. In this form, the intercept (the first
term of each equation) signifies the average of all responses. Moreover, the coefficients
β are dimensionless, thereby granting straightforward assessment of each term’s effect
size. If, for example, all factors are set to their center level (0), the model for p predicts
a conversion of 42.3%. Changing the temperature to the low level of 75 ◦C (coded level:
−1), will, according to the prediction model, result in a conversion of 37.1% (also mind the
T2 term). In this manner, the equations allow for comparison of factor effects (within the
observed factor level ranges) as well as cause interpretation of each individual model term.

p/% = 42.3 + 3.10 T + 12.7 t− 6.31 RM + 9.59 RI + 4.78 ws − 2.06 T t + 0.719 T RI + 0.275 T ws − 1.74 t RM
+1.28 t RI + 1.52 t ws − 1.09 RM RI − 2.08 T2−4.28 t2+2.62 R2

M−2.88 R2
I − 1.17 T t RI − 0.725 T t ws

(1)
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Mn,app/kDa = 6.23 + 0.259 T + 1.25 t− 1.06 RM + 0.927 RI + 0.488 ws − 0.259 T t + 0.209 T RM + 0.053 T ws + 0.453 tRM+
0.109 t RI + 0.322 t ws + 0.278 RM RI + 0.278 RM ws + 0.047 RI ws − 0.366 T2 − 0.766 t2 − 0.134 T t ws − 0.303 t RI

(2)

Ð/a.u. = 1.26 + 0.04 T + 0.0194 t + 0.0135 RM − 0.0194 RI − 0.0297 ws + 0.025 T t− 0.0144 T RI − 0.0025 T ws
+0.0188 t ws + 0.0131 RI ws + 0.0307 t2 + 0.0212 t RI

(3)

Despite being rather bulky equations, the prediction models offer comprehensive and
valuable information. For any set of factors (i.e., reaction parameters) within the given
experimental space, all system responses of the polymerization can be forecast. At this point
though, it is evident that prediction models offer more than the mere forecast of responses at
given factor combinations. In fact, the models provide great potential for academic purposes
and qualitative understanding of the examined system as they conclusively reveal the impact
of each model term. This grand avail becomes particularly obvious when looking at factor
interactions. To demonstrate this, Figure 3 illustrates the T t-interactions for of the p and Ð
prediction model. Within this illustration, all factors except T and t are set to their center
(0) level. In both graphs, the respective predicted responses are plotted versus t for the
temperatures of 75 ◦C (blue line) and 85 ◦C (red line); the respective prediction models
are also displayed. The two plots in graph A depict two typical saturation functions. The
model coefficients of temperature βT and time βt are greater than 0 (βT = 3.10 and βt = 12.7),
indicating that p will increase along with both factors, which is an expected result. With
progressing t, more monomer is consumed, while elevated T values facilitate quicker reaction
rates according to the Arrhenius law. The interpretation of the quadratic coefficients βT2 and
βt2 (−2.08 and −4.28, respectively) is also straightforward. As both are negative, the slope
of the conversion will recede (whether plotted against T or t). This phenomenon can be
attributed to the continuous depletion of monomer, which is directly proportional to the rate
of polymerization [42].

Figure 3. Illustration of two temperature–time interaction plots. The responses (p in graph (A) and Ð in graph (B)) are
plotted against t for the temperatures of 75 ◦C (blue line) and 85 ◦C (red line), whilst the factors RM, RI, and ws are set to
their center (0) level. The respective coded prediction models are additionally displayed.

In spite of this, actual and often nontrivial insights are usually acquired by interpreta-
tion of the interactions. As the interaction coefficient βT t 6= 0, the effect of t on the monomer
conversion will vary for different values of T and vice versa, or to put it in other words,
the prediction plots for the t dependence at different levels of T will be nonparallel. Within
the examined time range, the average polymerization rate (i.e., the slope of p against t)
appears to be higher at 75 ◦C, which is a rather abnormal observation. Apparently, the
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polymerization rate at 85 ◦C is suppressed (compared to the one at 75 ◦C). This might be
due to the slightly lower monomer concentration (at 120 min, p is already higher at 85 ◦C).
Yet, this result is much more plausibly explained by an insufficient radical generation. As
around 98% of the initial [ACVA] has decomposed after only 260 min at 85 ◦C in water, the
concentration of growing active species may be significantly reduced, especially towards
the later stages of the polymerization (for calculation of initiator decomposition see chapter
4 and Equations S4 and S5, Supporting Information) [43].

Part B of Figure 3 displays the Ð prediction plots versus t at the two temperatures of
75 ◦C (blue line) and 85 ◦C (red line) as well as the respective coded prediction model (RM,
RI, and ws are set to their center level). Overall, higher Ð values are obtained at higher
temperatures (βT > 0). At 75 ◦C, Ð initially decreases with polymerization time, which we
can assume correlates with higher average chain lengths in well-controlled radical polymer-
izations (CRP). This result comes as no surprise as CRPs follow the Poisson distribution,
leading to lower dispersity with growing degree of polymerization [44]. After the initial
descent, Ð actually passes a minimum before increasing towards the later stages of polymer-
ization (βT2 > 0). This might be due to the increased likelihood of irreversible termination
reactions or hint towards thermal decomposition of the trithiocarbonate over the course of
polymerization. Thermal decomposition of RAFT agents is a well-reported phenomenon
known to broaden the resulting polymer’s molecular weight distribution [45,46], with
trithiocarbonates attached to acrylates being particularly labile [47]. The increase of Ð is
even more pronounced (and starts earlier) at higher temperatures (βT t > 0), strengthening
this argument.

Interpretation of the two interaction plots of Figure 3 is just an example of the prospects
of DoE when it comes to knowledge generation and true understanding of the examined
system. Information that would potentially be lost via conventional OFAT experimentation
will be revealed in a reliable and plannable fashion. Alongside these academic prospects,
it can be easy to forget the other great benefit of the prediction models, namely the great
capability when it comes to tailored and targeted syntheses. This virtue will be presented
in the following section.

3.4. True Optimization

With the help of the prediction models, scientists are able to find the optimal factor
settings for various different synthetic goals. Such goals might be to minimize or maximize
a response, to stay within an adjustable range, or to achieve a certain response target.
Remarkably, these exact goals can also be defined for the factors themselves. Deploying a
scientist’s demands, appropriate statistical software will compute the respective optimal
factor settings (this is typically achieved through application of a so-called desirability
algorithm) [48].

At this point, a RAFT specialist may notice another highly pleasant feature that the
prediction models will provide optimized reaction conditions (i.e., factor combinations)
for a wide range of selectable Mn,th targets (in our case between 2.1 and 25.1 kDa). In
conventional OFAT experimentation, Mn,th targets will usually be achieved by picking a
fixed value of RM and polymerizing up to the corresponding monomer conversion (see
Equation (S2), Supporting Information). The resulting Ð value (or other potential quantities
of interest) will then be optimized by modification of parameters such as T, ws, or the
initiator concentration. For targeting a certain chain length though, a full kinetic study will
be required for each modification as the polymerization rate will most likely be affected. In
other words, the achievement of a comparably sophisticated, comprehensive and reliable
optimization for even just a single Mn,th target is nearly unobtainable via conventional
OFAT experimentation.

3.5. Model Validation

One purpose of this work is to demonstrate the perks of experimental design, even
in relatively complex reactions such as CRPs. Literal optimization, however, was not
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aspired as the “optimal” polymer always depends on the later application purpose.
In many cases though, DoE is deployed for actual optimization of certain specific re-
sponses. As soon as the optimal factor settings for a given goal are provided by the
models, despite full confidence in statistics, it is strongly advised to empirically validate
the prediction experimentally.

As no actual optimization target existed within the scope of this work, three arbitrarily
picked polymerization goals were defined. Herein, three relatively diverse Mn,th values
with specific (or minimal) Ð values were targeted. In Table 2, the predicted responses for
the three arbitrarily chosen polymerizations are listed, with the targets highlighted in bold
letters (respective factor settings are shown in Table S12, Supporting Information).

Table 2. Predicted responses of arbitrarily chosen polymerizations for empiric validation of the
prediction models. The polymerization targets are highlighted in bold letters.

Goal Mn,th
a/kDa p a/% Mn,app

b/kDa Ð b/a.u.

1 8.0 45.2 4.70 minimize
2 13.1 57.5 6.35 1.25
3 23.0 58.8 9.87 1.32

a Determined via 1H NMR spectroscopy and referencing to DMF. b Measured by SEC at 50 ◦C in an 0.1 M NaNO3
aqueous (Milli-Q® quality) solution with an added 0.05 wt % NaN3 and calibration with poly(ethylene glycol).

The prediction models were confirmed empirically by performing additional valida-
tion runs and comparison of observed and predicted responses. Figure 4 illustrates the
predicted responses (black spheres) for Mn,th, Ð, and Mn,app (p is left out due to redun-
dancy with Mn,th) and the observed responses (green spheres) as well as the so-called 95%
prediction intervals (PIs) of the three arbitrarily picked polymerization goals. A PI is an
estimate of an interval in which 95% of the observed responses of individual repetitions
should fall based on the examined system’s systematic error. By definition, the model is
validated empirically if the observed response falls within the 95% PI.

Figure 4. Predicted (black spheres) and observed (green spheres) responses of M n,th, Ð, and Mn,app

as well as the 95% PIs for the three arbitrarily picked polymerization goals. Value projection with
respective coloring on the response planes is added as a guide to the eye.

Clearly, the prediction models predicted the experimental findings with exceptional
accuracy (comprehensive validation data is given in Table S13, Supporting Information).
The model is confirmed.
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4. Conclusions

This work may serve as an introductory example for scientists who have been unaware
of the great potential of experimental design in their fields of academic research. DoE
was shown to be eminently well suited for the complex reaction system of RAFT poly-
merization. Highly accurate prediction models offering greater and statistically credible
understanding of the examined system were generated, and a step-by-step presentation of
the DOE-associated workflow was provided. Within appropriate scales of solvent mass,
three factors (RM, RI, and ws) sufficed for unambiguous definition of the reaction solu-
tion. Additional incorporation of factors T and t facilitated a comprehensive mathematic
portrait of the whole reaction system of thermally initiated RAFT solution polymerization
of MAAm. Within this context, it was shown that DoE not only provides routes towards
potential “sweet spots” of the examined system but also offers grand potential for genera-
tion of knowledge and thorough qualitative understanding. In particular, the detection
and interpretation of two- or even three-factor interactions, which would most likely
stay hidden without utilization of DoE, reveals decisive advantages over conventional
OFAT experimentation.

Therefore, we think that not only RAFT experts but also scientists of other disciplines
might find it useful to incorporate DoE into their research. However, when doing so,
it is important to state that for every new specific system with a certain specific goal,
appropriate adaptations to our proposed route might be necessary. Obviously, a system
other than a thermally initiated RAFT polymerization will require different factors, new
setting of factor levels, and perhaps even utilization of a better suited design geometry
than an FC-CCD. Here, the so-called computer-generated optimal designs have especially
received attention due to their great flexibility and often optimal compromise of prediction
accuracy and experimental effort [49–51].

Despite these hurdles, we want to encourage scientists to integrate DoE into their
repertoire of experimental strategies and employ it routinely into their workflows. At
first, some help by excellent textbooks [52,53] or cooperative statisticians may be neces-
sary. In the long run, however, DoE can be highly beneficial and just might facilitate an
unexpected breakthrough.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13183147/s1, Figure S1: Relevant parts of two 1H NMR spectra of a MAAm homopoly-
merization, Figure S2: Design geometry of an arbitrary three-factor FC-CCD, Figure S3: Diagnostic
plots for the prediction model of p, Figure S4: Diagnostic plots for the prediction model of Mn,th,
Figure S5: Diagnostic plots for the prediction model of Mn,app, Figure S6: Diagnostic plots for the
prediction model of Ð, Table S1: Standard order experimental design of the screening, Table S2:
ANOVA tables for the responses p, Mn,th, Ð, and Mn,app, Table S3: Standard order experimental
design of the FC-CCD, Table S4: ANOVA table for the response p, Table S5: Coded prediction model
of p, Table S6: ANOVA table for the response Mn,th, Table S7: Coded prediction model of Mn,th, Table
S8: ANOVA table for the response Mn,app, Table S9: Coded prediction model of Mn,app, Table S10:
ANOVA table for the response Ð, Table S11: Coded prediction model of Ð, Table S12: Listing of the
paradigmatic polymerization goals and their respective optimal factor settings, Table S13: Predicted
and observed responses as well as the 95% PIs of the three paradigmatic polymerization goals.
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