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Delayed wound healing can cause significant issues for immobile and ageing individuals as
well as those living with co-morbid conditions such as diabetes, cardiovascular disease,
and cancer. These delays increase a patient’s risk for infection and, in severe cases, can
result in the formation of chronic, non-healing ulcers (e.g., diabetic foot ulcers, surgical site
infections, pressure ulcers and venous leg ulcers). Chronic wounds are very difficult and
expensive to treat and there is an urgent need to develop more effective therapeutics that
restore healing processes. Sustained innate immune activation and inflammation are
common features observed across most chronic wound types. However, the factors
driving this activation remain incompletely understood. Emerging evidence suggests that
the composition and structure of the wound microbiome may play a central role in driving
this dysregulated activation but the cellular and molecular mechanisms underlying these
processes require further investigation. In this review, we will discuss the current literature
on: 1) how bacterial populations and biofilms contribute to chronic wound formation,
2) the role of bacteria and biofilms in driving dysfunctional innate immune responses in
chronic wounds, and 3) therapeutics currently available (or underdevelopment) that target
bacteria-innate immune interactions to improve healing. We will also discuss potential
issues in studying the complexity of immune-biofilm interactions in chronic wounds and
explore future areas of investigation for the field.

Keywords: chronic wound, delayed healing, innate immune responses, inflammation, biofilm, host-pathogen
interaction, skin microbiome
INTRODUCTION

Wounds are a broad category of injuries that include everything from minor cuts and scrapes to
surgical incisions and serious trauma. In healthy individuals, minor wounds heal quickly without
complication. However, larger wounds take more time to heal, increasing risk of infection. Delayed
wound healing is a significant issue among ageing individuals, those with immobility and those
with chronic diseases such as diabetes, vascular disease, and cancer (1–3). In the most severe cases,
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these delays can result in the formation of non-healing or
chronic ulcers, which can cause significant pain, prolonged
hospitalization, loss of function, and may eventually lead to
amputations and/or the development of sepsis (1, 4). Wound
care (acute and chronic) is labor-intensive and represents a
substantial economic burden on healthcare systems, costing
billions of dollars annually in North America (5). As the global
population continues to age and experience increasing rates of
co-morbid chronic diseases such as diabetes, there is an urgent
need to understand the pathophysiology of delayed healing or
the formation of non-healing wounds to develop more effective
therapies that can repair tissue damage and restore health (3).

There is an increasing interest to understand how
dysregulated host-pathogen interactions affect healing
processes. For instance, colonization of the wound bed with
low levels of bacteria does not affect healing (6). However, local
infection with high levels of replicating bacteria plays a
significant role in delayed healing and in non-healing ulcer
formation (6, 7). Chronic wounds show a considerable
diversity in the bacterial species at the site of injury, but it is
unclear how these differences contribute to chronicity. Further,
these bacteria form robust biofilms, which embed the bacterial
cells in a self-produced polymeric matrix, protecting them from
host immune responses and antibiotics. This structure provides
numerous advantages to the community such as metabolic
cooperation, passive resistance, and horizontal gene transfer
(8). It has also been shown to impair the tissue repair
processes and promote a low-grade inflammatory response (7,
9). In this review we will discuss the current understanding of
how interactions between bacterial biofilms and innate immune
cells drive damaging inflammatory processes that contribute to
delayed healing in chronic wounds. We will also discuss how we
can target these interactions to develop novel therapeutics for
individuals with difficult to treat chronic wounds.
CONTRIBUTION OF BACTERIAL
BIOFILMS TO CHRONIC WOUNDS

Overview of Bacterial Biofilms
Bacteria exist as single, planktonic cells or as multicellular
communities and aggregates with or without surface
attachment, called biofilms (10–12). Biofilms possess distinct
characteristics compared to planktonic cells, including increased
antibiotic tolerance, changes in gene expression, and altered host
interactions (13). Bacteria within these structures are embedded
in a self-produced extracellular polymeric substance (EPS)
composed of extracellular DNA, proteins, exopolysaccharides
and water. In addition to the microbial components, the EPS can
also include host substances such as proteins, DNA,
immunoglobulins, and blood components (14, 15).

Biofilms are complex and diverse structures that can be
composed of single species or can be polymicrobial (15). They
are up to 1,000 times more tolerant to antimicrobial agents and
disinfectants than planktonic cells (16). Further, the immune
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system is often inefficient in combating biofilm-related infections
(17, 18). Several factors contribute to the increased robustness of
biofilms including low growth rates, high cell density, the
presence of persister cells, nutrient and oxygen gradients,
horizontal gene transfer, efflux pumps, and high rates of
mutation (16, 19). The presence of the EPS matrix is also
considered a physical barrier against antimicrobial agents and
the host immune responses since it reduces the diffusion of
drugs, antibodies and immune cells into the biofilm.

Biofilm-growing bacteria have been shown to colonize
medical devices (e.g., contact lenses, cardiovascular valves,
implants, ortho-dental prosthetics, urinary and central vascular
catheters) and a variety of host tissues, causing many chronic
infections, including osteomyelitis, vaginosis, lung infections in
cystic fibrosis patients, ventilator-associated pneumonia, device-
related infections, and chronic wound infections (15, 20). It is
estimated that bacteria in biofilms cause up to 80% of all human
infections (21) and are involved in more than 60% of all chronic
wound infections (15). These biofilms are composed of bacterial
species found in the normal flora of the skin, the gut and oral
mucosa as well as in external environments (22).

Human Skin Microbiome
The human body is naturally colonized by thousands of different
microbial species that collectively form a complex ecosystem
called the human microbiome (23). More than 1,000 different
bacterial species can be found on the human body, and it is
estimated that there are up to 150 times more microbial genes
than human genes within the human body (24, 25). These
microorganisms selectively colonize different parts of the body,
such as the skin, gastrointestinal tract, conjunctiva, oral cavity,
vagina, uterus, and lungs (26). The human microbiome plays
essential roles in health, including protection against invading
pathogens, metabolism of molecules, nutrient acquisition,
control of cellular proliferation and differentiation, and
development of the immune system (25, 27, 28). However, the
composition and diversity of the microbiome can be altered by
several factors (e.g., diet, use of antibiotics, mode of birth, and
age) and it can become associated with opportunistic pathogens
and specific isolates that cause severe infections (24, 28). For
example, certain isolates of Staphylococcus aureus can be either
commensal, opportunistic or pathogenic.

The highest number of microbes are found in the colon (1014

bacteria), followed by the skin (1012 bacteria) (26). The skin
microbiome is highly adapted to the skin’s physiological
environment, such as the absence of several nutrients, an
acidic pH and temperature. The bacterial microbiota found in
each skin region depends on the microbe’s ability to thrive in
these conditions. For example, bacteria from the Staphylococci
genus use urea from the sweat as a nitrogen source whereas
Cutibacterium acnes (formerly Propionibacterium acnes)
produce fatty acids by metabolizing triglycerides present in
sebum (27, 29). The skin is naturally considered a physical
barrier against external stressors, and the natural skin
microbiota protects the body by competing with pathogenic
microbes and impairing their development, catabolizes natural
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skin products, such as lipids, and modulates the immune system
(29). If the skin is disrupted, or there is an imbalance between
pathogenic and the natural microbiota and infections can occur
(27, 29).

Overall, most microbes from the skin microbiota belong to
four different phyla: Actinobacteria, Firmicutes, Bacteroidetes,
and Proteobacteria (29). While certain species are found in
multiple microenvironments (e.g., C. acnes, Staphylococcus
epidermidis, and Staphylococcus capitis), the composition of the
skin microbiome differs significantly according to the
environmental conditions and location. Figure 1 highlights
some of the most common bacterial species found in dry,
sebaceous and moist environments. Dry areas represent the
most diverse microbial environments. In these regions,
streptococcus species are very common but actinobacteria,
proteobacteria, firmicutes, and bacteroidetes are also detected
including Corynebacterium tuberculostearicum, Staphylococcus
sp., Veillonella parvula and Micrococcus luteus (27, 30). In moist
and sebaceous sites corynebacterium are highly prevalent.
However, these microenvironments are also populated with
other common species including Staphylococcus hominis,
Enhydrobacter aerosaccus, Streptococcus mitis and Micrococcus
lutues (27, 29, 30).
Frontiers in Immunology | www.frontiersin.org 3
It is important to acknowledge, that while bacteria are the
most prevalent microorganisms found on the skin, fungal species
also contribute to the microbiota (27). Malassezia is among the
most common fungal genera accounting for 53-80% of the fungal
population (29). Findley et al. found that Malassezia is found on
several sites including retroauricular crease, nare, palm, back,
and volar forearm. Other fungal species were also detected, with
the plantar heel showing the greatest diversity with
approximately 80 genera, including Malassezia, Aspergillus,
Cryptococcus, Rhodoturulla, Epicoccum (31).

From Contamination to Infection
The human skin microbiota can influence the wound healing
process and affect the severity of infections. In chronic wounds,
microbial contamination and colonization can evolve to an
infection, a process that involves different microorganisms (32).
Contamination refers to the presence of non-proliferating bacteria
originating from the natural microbiota or the environment. All
wounds are contaminated by microorganisms; however, if they
encounter favorable conditions that support survival, the wounds
will become colonized. Colonization is characterized by the
presence of multiplying microorganisms on the surface of the
wound (33–35). In these initial processes, the host immune
FIGURE 1 | Schematic of skin microbiota according to the physiological sites: dry (green): buttock, volar forearm, hypothenar palm; moist (yellow): plantar heel,
popliteal fossa, toe web space, axillary vault, and nare; sebaceous (purple): back, occiput, retroauricular crease, and glabella. Developed using data from (27).
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defenses are not triggered, and there are no overt clinical signs of
infection. This is likely because the wound is colonized by Gram-
positive bacteria, especially those belonging to the Staphylococci
genus, which do not elicit strong immune responses (32, 36).

In the later stages, Gram-negative bacteria, mainly rod-
shaped bacteria such as Pseudomonas sp., Escherichia coli,
Klebsiella pneumoniae, and Enterobacter spp. contaminate the
wound and become the predominant species in this
microenvironment. These species typically originate from the
urogenital tract of the patient or from the nearby environment.
Colonization of may also be affected by any antibiotic use (local
or systemic). This acute colonization is an intermediate stage
before deeper tissue infections and only elicits a localized
immune reaction (32, 37). In this stage, the bioburden
increases, and the presence of these microbes can delay the
healing process. Finally, the last step is infection, in which the
microorganisms invade the deep tissues, the body cannot control
the levels of microbes, and an intense host response is induced
(32, 36). This stage is also characterized by the rapid
consumption of oxygen by aerobic bacteria, which favors
anaerobic microbes (32, 33).

Bioburden
Many aspects of wound bioburden correlate with healing
outcomes. These include microbial load, microbial diversity,
and presence of pathogenic organisms (38). Microbial load is
commonly used to diagnosis a wound infection when clinical
manifestations are absent (38). While the skin microbiota
contains approximately 1 billion bacteria/cm2 of tissue (39,
40), a microbial load higher than 105 colony-forming units
(CFU) per gram of tissue is generally considered the standard
reference for diagnosing infection (41). However, this value can
vary according to the type of infection and type of wound
evaluated. In diabetic foot ulcer (DFU), the microbial load may
be higher than in venous leg ulcer (VLU) patients (38, 41).

Microbial Diversity
Microbial composition and diversity are other factors associated
with delayed healing. The most common bacteria found in the
wound bed are aerobes such as Staphylococci ssp. ,
Corynebacterium spp, Pseudomonas spp. as well as anaerobes
such as Anaerococcus spp and Finegoldia spp (42–45). However,
a higher diversity of microbial species in the wound bed can be
associated with impaired healing outcomes (38). In addition to
overall diversity, the presence of specific pathogenic organisms
or even certain isolates can also contribute to chronic wound
formation. Some strains of S. aureus and group A streptococci,
have been shown to cause severe infections and trigger an intense
inflammatory response, affecting the healing process (32).
Moreover, high levels of S. aureus and P. aeruginosa can affect
healing outcomes because these organisms are often resistant to
different classes of antibiotics, they form biofilms with
antiphagocytic activities and they produce several virulence
factors, including secretion of toxins and enzymes, which drive
further tissue damage (34, 46). Further studies are required to
Frontiers in Immunology | www.frontiersin.org 4
understand how single species vs. poly-microbial biofilms may
contribute to these processes.

Methodologies for Characterization
Several factors must be taken into consideration when studying
the skin and wound microbiota. Among the most important, are
the sample collection technique and the method used to
characterize the microbial population (i.e., culture-based or
molecular methods) (47). At the level of sample collection,
wound swabs and tissue biopsies (or debridement tissue) are
commonly used for microbiota analysis. Swabbing the wound
surface is often preferred because it is non-invasive, and it can be
performed multiple times for longitudinal studies. However, dry
swabs generally collect a low biomass and do not capture the
diversity of species found in deeper tissues (48). Nakatsuji et al.
found the bacterial diversity on the surface was not the same as
that in the sub-epidermis, which included high levels of
proteobacteria (49). Further, Travis et al. found there was
minimal correlation between the number and types of bacteria
found in swabs compared to tissue biopsies. They also found
tissue biopsies contained an overall greater diversity of bacterial
species but that the frequency of potential pathogens was higher
in wound swabs (50). While biopsies represent the gold standard
to capture the true diversity of bacteria found in skin and wound
samples, it is invasive and requires a skilled clinician.

The two techniques most widely used to characterize bacteria
in chronic wound infections are: A) culture-based methods, in
which the microbial culture is collected from the affected tissue
and bacteria are grown on selective or nonselective media; and B)
molecular-based methods, in which the bacterial 16S rRNA is
sequenced and microbes are identified based on databases (41,
51–53). While the culturing of bacteria is primarily used in the
hospital setting, this method is usually limited to growing certain
strains of bacteria and does not allow for the detection of
fastidious and slow-growing bacteria, viable but nonculturable
bacteria (VBNC) or dormant bacteria (12). The use of molecular
methods, such as RNA sequencing, has increased in recent years
but is still predominantly used for research. In comparison to
culturing methods, these approaches allow for the identification
of a larger diversity bacterial species in the wound. It can also be
used to elucidate microbial activities, behaviors, strategies, and
processes during infections (12). However, RNA sequencing is
associated with a substantial demand for financial, time and
bioinformatic support. Moreover, it cannot distinguish between
living, dead or dormant bacteria and might overlook minority
species (52). To complement these approaches, microscopy can
be used to capture the complexity and the organization of
bacterial populations in the wound environment. It can be
used to visualize and characterize individual cells within a
population/structure (e.g., biofilm) and provide important
insights into their interactions and structural organization (48,
54). Regardless of the assay used, several other factors impact the
diversity (or our ability of evaluate the diversity) of the wound
microbiota including patient demographics, personal hygiene,
grade of wound severity, patient’s immune status, and ongoing
or previous use of antimicrobial therapies (12, 52).
April 2021 | Volume 12 | Article 648554
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Bacterial Diversity Across Chronic
Wound Types
Chronic wounds or non-healing wounds are commonly defined
as wounds that have failed to proceed through the normal phases
of wound healing in an orderly and timely manner (55). The
most common types of these wounds are diabetic foot ulcers,
pressure ulcers, venous leg ulcers, abscesses and surgical site
infections. While bacteria contribute to the pathophysiology of
delayed healing and chronic wound formation, the molecular
and cellular mechanisms underlying these processes remain
incompletely understood. To date, most studies have been
cross-sectional nature (Table 1). Few have used longitudinal
approaches to evaluate how bacterial communities change in
different chronic wounds over the course of infection. Moreover,
fewer studies have investigated correlations between the
microbiota and specific wound outcomes (53).

Diabetic Foot Ulcers
To date, most studies analyzing microbial communities in
chronic wounds have focused on infections from patients with
diabetic foot ulcers. These investigations have been recently
reviewed in significant detail and are beyond the scope of the
current review (52, 56–59). Briefly, the most frequently identified
genera in DFU include Staphylococcus, Corynebacterium,
Pseudomonas, Streptococcus, Stenotrophomonas, Enterobacter,
Escherichia , Enterococcus , Serratia , Acinetobacter ,
Peptoniphilus, Anaerococcus and Finegoldia (42–45, 50, 60–
67). The most common pathogens found were the Gram-
positive bacteria S. aureus, S. epidermidis, Enterococcus faecalis
and Streptococcus agalactiae and the Gram-negative bacteria P.
aeruginosa, Stenotrophomonas maltophilia, E. coli and
Acinetobacter baumannii (43–45, 62).

Other Types of Chronic Wounds
The bacterial communities of other types of wounds, including
venous leg ulcers, pressure ulcers, surgical site infections,
and abscesses, have not been fully evaluated. Previous studies
have shown that like DFU, commonly identified genera include
Staphylococcus, Corynebacterium, Streptococcus, Enterococcus,
Pseudomonas, Stenotrophomonas, Enterobacteriaceae,
Acinetobacter and Finegoldia (Table 2, and (43, 60, 78–82). To
date, Wolcott et al. have performed one of the largest studies
collecting samples from 916 venous leg ulcers, 767 decubitus
ulcers, and 370 samples from nonhealing surgical wounds and
evaluating bacterial diversity using 16s rDNA sequencing. They
found that the most frequent bacterial species found across
all wound types were S. aureus, S. epidermidis, E. faecalis,
P. aeruginosa, S. maltophilia and Finegoldia magna. They also
observed a high prevalence of anaerobic bacteria in wound
samples, including Finegoldia spp. and Anaerococcus spp
(present in 24% and 25% of wounds, respectively) and
variety of commensal bacteria including Staphylococci and
Corynebacteria across wound types (43). Interestingly, unlike
DFU, these wounds contained Cutibacterium acnes and other
Cutibacterium species suggesting an important role for the
location of the wounds in spectrum of microbial colonization
Frontiers in Immunology | www.frontiersin.org 5
(43, 83, 84). Further, most of these infections were polymicrobial
biofilms consisting of many different species. Only 7% of wound
samples were found to be mono-species biofilms with P.
aeruginosa and S. epidermidis being the most common bacteria
growing in single-species biofilms in wounds (43). More in vivo
studies with larger samples sizes are urgently needed to fully
understand the importance of microbial diversity, biofilms and
the wound microbiome in chronic wounds infections and to
elucidate the impact of aerobic, anaerobic, pathogenic and
commensal bacteria in driving chronic immune activation and
inflammation in situations of delayed wound healing.
CONTRIBUTION OF CHRONIC INNATE
IMMUNE ACTIVATION AND
INFLAMMATION TO CHRONIC WOUNDS

Overview of Wound Healing
Wound healing has been extensively described elsewhere, and for
that reason, we will only briefly summarize the process here
(Figure 2) (34, 85–92). Normal healing (Figure 2A, described as
Steps 1-4) is comprised of four coordinated phases: hemostasis,
inflammation, proliferation, and tissue remodeling (34).
Hemostasis includes platelet aggregation and activation, which
initiates the coagulation cascade and the formation of a transient
fibrin scaffold (Step 1) (86, 91, 92). During this process, platelet
degranulation releases damage-associated molecular patterns
(DAMPs), cytokines, chemokines, and growth factors, which
accumulate within the scaffold to generate a chemotactic gradient
for immune cell infiltration (Step 2) (86, 88, 90). This infiltration
is required to clear dead or damaged cells, cellular debris, and any
pathogens that colonize the wound bed. It also prepares the
wound for the healing phases. The innate immune system plays a
critical role in modulating these processes as well as the
transition from inflammation to proliferation phases, which
includes a transition of inflammatory macrophages (M1) into
anti-inflammatory wound healing cells (M2; Step 3) (86, 87).
This anti-inflammatory transition activates keratinocytes and
fibroblasts in the wound bed where they proliferate and
contribute to healing processes (91). Keratinocytes are essential
for wound re-epithelialization (86). Fibroblasts deposit collagen
to form the extracellular matrix (ECM) or granulation tissue,
which replaces the temporary fibrin scaffold (90, 92). During the
proliferation stage, angiogenesis also restores tissue vascularity
(86). Finally, in the remodeling phase, fibroblasts replace
granulation tissue with scar tissue and contraction occurs,
resulting in wound closure (Step 4) (34, 86, 88).

Role of the Innate Immune System in the
Inflammatory Phase of Healing
Although the inflammatory phase involves a wide range of
immune cells, such as mast cells, dermal dendritic cells
(Langerhans cells), and T lymphocytes, innate immune cells
such as neutrophils and macrophages play a central role in
regulating healing process (85, 91–93). For the purposes of this
review, we will focus on these two cell types.
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TABLE 1 | Summary of most common bacterial species found in chronic wounds (excluding DFU).

Venous Leg Ulcers

Gram-positive Aerobes Gram-negative Aerobes Gram-positive Anaerobes Gram-negative
Anaerobes

-Actinotignum schaalii
-Alcaligenes faecalis
-Brevibacterium casei
-Corynebacterium amycolatum
-C. jeikeium
-C. simulans
-C. striatum
-C. tuberculostearicum
-Enterococcus faecalis
-Staphylococcus aureus
-S. epidermidis
-S. haemolyticus
-S. lugdunensis
-S. pettenkoferi
-Streptococcus agalactiae

-Achromobacter xylosoxidans
-Acinetobacter baumannii
-Citrobacter spp.
-Delftia acidovorans
-Enterobacter cloacae
-E. hormaechei
-Klebsiella oxytoca
-Proteus spp.
-Pseudomonas aeruginosa
-P. fluorescens
-Serratia nematodiphila
-Stenotrophomonas maltophilia

-Anaerococcus vaginalis
-Finegoldia magna
-Peptoniphilus harei
-Peptostreptococcus
assacharolyticus
-Cutibacterium acnes

-Bacteroides tectus
-Flavobacterium succinicans
-Fusobacterium gonidiaformans

Pressure Ulcers

Gram-positive aerobes Gram-negative aerobes Gram-positive Anaerobes Gram-negative Anaerobes

-C. jeikeium
-C. striatum
-C. tuberculostearicum
-E. faecalis
-S. aureus
-S. epidermidis
-S. haemolyticus
-S. lugdunensis
-S. agalactiae
-S. dysgalactiae

-A. baumannii
-D. acidovorans
-E. hormaechei
-Escherichia spp.
-P. mirabilis
-P. aeruginosa
-Serratia spp.
-S. maltophilia
-unclassified Enterobacteriaceae spp.

-Allobaculum spp.
-A. vaginalis
-Eubacterium dolichum
-F. magna .
-Peptococcus spp.
-Peptoniphilus ivorii

-B. fragilis
-Dialister spp.
-F. nucleatum
-Prevotella bivia

Surgical Site Infections

Gram-positive aerobes Gram-negative aerobes Gram-positive Anaerobes Gram-negative Anaerobes Other
-Bacillus spp.
-E. faecalis
-Coagulase-negative staphylococci (CoNS)
-C. striatum
-C. tuberculostearicum
-Granulicatella elegans
-methicillin-resistant S. aureus (MRSA)
-S. aureus
-S. epidermidis
-S. haemolyticus
-S. lugdunensis
-S. agalactiae
-S. mitis
-S. salivarius

-A. baumannii
-A. lwoffii
-D. acidovorans
-Diaphorobacter spp.
-K aerogenes
-E. cloacae
-Enterobacteriaceae spp.
-E. coli
-K. oxytoca
-K. pneumoniae
-Moraxella spp.
-Morganella morganii
-Neorhizobium spp.
-Novosphingobium spp.
-Paracoccus spp.
-P. mirabilis
-P. aeruginosa
-Ralstonia pickettii
-S. nematodiphila
-Sphingomonas spp.
-S. maltophilia

-A. vaginalis
-Clostridium spp.
-F. magna
-C. acnes

-Cloacibacterium spp.
-F. nucleatum
-Methylobacterium spp.

-Candida
albicans

Abscesses

Gram-positive aerobes Gram-negative aerobes Gram-positive Anaerobes Gram-negative Anaerobes
-CoNS
-C.accolens/gurimucosum
-C. afermentans
-C. mucifaciens
-C. tuberculostearicum
-Enterococcus spp.

-Chryseobacterium spp.
-Haematobacter massiliensis
-P. aminovorans
-P. versutus
-Proteus spp.

-F. magna
-C. acnes

-Flavobacterium spp.
-Porphyromonas spp.
-Prevetolla spp.

(Continued)
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TABLE 1 | Continued

Venous Leg Ulcers

Gram-positive Aerobes Gram-negative Aerobes Gram-positive Anaerobes Gram-negative
Anaerobes

-Micrococcus luteus
-MRSA
-Methicillin sensitive S. aureus (MSSA)
-S. aureus
-S. caprae/capitis
-S. epidermidis
-S. haemolyticus
-S. lugdunensis
-S. petrasii
-S. agalactiae

-Rhodanobacter spp.
-Sphingomonas spp.
Frontiers in Immunology | www.frontiersin.or
g 7
 April 2021 | Volume 12 | Artic
TABLE 2 | Summary of studies characterizing host immune responses to bacteria and bacterial biofilms in wound models.

Wound Model Bacterial Species/
Component

Host Response Effects on Wound Healing Reference

Mouse full-thickness excisional wound P. aeruginosa PAO1 Early infection. In skin: ↑ neutrophils, ↓ NK cells,
↓CD11b+ DCs, ↓Gr1-low MoDCs. In spleen: ↓T-
cells. In lymph nodes: ↑pDCs.
Late infection. In spleen: ↑macrophages, ↓NK
cells, ↓IKDCs. In lymph nodes: ↑pre-apoptotic T-
cells, ↑pDCs.
Planktonic or biofilm infection: ↑TNF, ↑CXCL1, ↑IL-
6, ↑IL-1b mRNA expression in skin
HK infection: acute ↑neutrophils, ↓CD103+ DCs

↑Bioburden of biofilm-
infected wounds compared
to planktonic infection

(68)

Kostelec minipig excisional flank wound
reaching subcutaneous fat

S. aureus, E. faecalis, B.
subtilis, P. aeruginosa
clinical isolates
Preformed biofilm

↑IL-8, ↑CXC-13, ↑arginase-1
↑oxidative stress response (superoxide dismutase
2, angiopoietin-like 4)
↑MMP-1, ↑MMP-3
↓collagen-1, ↓laminin-2

↓Granulation tissue
formation

(69)

Pathogen-free mouse burn-induced
wound

P. aeruginosa PAO1
embedded in seaweed
alginate to mimic biofilm

↑ IL-1b, ↓AMP S100A8/A9
↓KC, ↓G-CSF
↓VEGF

↓Wound closure (70, 71)

Mouse full-thickness excisional wound Absence of commensal
microbiota

↑TNF-a, ↑ IL-10
↑Alternatively activated macrophage (Dectin-1,
Mannose receptor-1, Fizz-1, and Arginase-1)
infiltration.
↑Mast cell infiltration
↓Neutrophil infiltration
↑ VEGF, ↑ type III collagen, ↑TGF- b1

↑Wound closure
↑Angiogenesis
↓Scar tissue

(72)

New Zealand white rabbit full-thickness
ear wound

P. aeruginosa PAO1
S. aureus UAMS-1
Polymicrobial biofilm

↑IL-1b, ↑TNF-a mRNA expression compared to
single-species biofilm

↓Epithelial and granulation
tissue formation

(73)

New Zealand white rabbit full-thickness
ear wound

S. aureus UAMS-1
Planktonic and biofilm

Low-grade, chronic inflammation (↓IL-1b, ↓TNF-a)
mRNA expression compared to planktonic
infection

↓Wound healing (74)

Diabetic mouse full-thickness excisional
wound

Wound microbiota Longitudinal transcriptional shift in wound
microbiota correlates with impaired and prolonged
host defense response

↓Wound healing (75)

Mouse full-thickness wound Bioluminescent S. aureus
SH1000

↑Systemic and wound infiltrating PMNs No significant delay in
wound healing

(76)

Surgical biopsy of patients with local
infection due to a splinter, a bite, an
abscess, or thrombophlebitis
N=5

S. aureus was present in all
skin biopsies

↑Granulocytes, ↑T-cells, ↑monocytes/
macrophages in skin
↓IL-8, ↑IL-6
↑E-selectin, ↑VCAM-1
Keratinocytes: ↑ICAM-1, ↑TNF-a, ↑IL-1a

NA (77)
NA, not applicable; NK, natural killer cells; DC, dendritic cell; MoDC, monocyte-derived DCs; pDC, plasmacytoid DC; IKDC, interferon killer DCs; HK: heat-killed; PMN, polymorphonuclear
leukocytes; MMP, matrix metalloproteinase; AMP, antimicrobial peptide; KC, keratinocyte-derived chemokine; G-CSF, granulocyte-colony stimulating factor; VEGF, vascular epithelial
growth factor.
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Neutrophils
Neutrophils play a central role in healing damaged tissues and
resolving infections. Early after the initial tissue damage,
DAMPs, pathogen-associated molecular patterns (PAMPs),
leukotriene B4 (LTB4), and CXCL8 family chemokines induce
and augment neutrophil chemotaxis via CXCR2 into the wound
bed (94–97). As the first cells recruited to the site of injury,
neutrophils perform several diverse functions. First, they amplify
inflammatory processes by releasing cytokines such as IL-1b,
TNF-a, and IL-6 (85, 98) and function to prevent microbial
invasion by phagocytosing microorganisms and releasing
reactive oxygen species (ROS), proteases, and antimicrobial
peptides (99, 100). Further, they undergo NETosis, where they
form neutrophil extracellular traps (NETs) made of decondensed
chromatin, histones, granular enzymes, antimicrobial peptides
and proteases to immobilize and destroy exogenous pathogens
(91, 100). They also release serine proteases, such as cathepsin G
and elastase, and matrix metalloproteases (MMP), such as
MMP2, 8, and 9 that degrade the ECM, facilitating tissue
debridement that makes room for additional immune cell
influx (92, 99). Neutrophils also contribute to tissue
remodeling and repair. Theilgaard-Mönch et al. demonstrated
that infi ltrating neutrophils activate and induce the
transcritption of genes involved in angiogenesis, keratinocyte
adhesion, and migration and proliferation of keratinocytes and
fibroblasts at the site of injury (98).

Macrophages
After damage has occurred, resident macrophages become
activated by DAMPs and PAMPs in the local microenvironment,
Frontiers in Immunology | www.frontiersin.org 8
initiating the inflammatory response required to initiate the healing
process (101, 102). Pro-inflammatory chemokines and cytokines
such as CCL2, IFN-g, and TNF-a recruit neutrophils and then
circulating monocytes into the wound (102, 103). In mouse models,
the expression of chemokine receptors CCR2 and CX3R1 has been
shown to be critical for mediating monocyte recruitment to
damaged tissues (104, 105). These infiltrating monocytes
differentiate into macrophages, and along with resident
macrophages, potentiate the inflammatory and healing processes.

Macrophages display incredible phenotypic plasticity,
existing on a spectrum of inflammatory and anti-inflammatory
activation states (106, 107). During the inflammatory phase of
wound healing, macrophages display a proinflammatory or a
classically activated M1-like phenotype, producing inflammatory
mediators such as TNF-a, IL-6, IL-1b, IL-12, IL-23 to facilitate
additional leukocyte recruitment and activation (34, 88, 89, 92).
M1 cells also work cooperatively with neutrophils to phagocytose
damaged cells and clear the wound of bacteria and tissue debris
by producing ROS-containing phagosomes (92). Like
neutrophils, they also produce MMPs to degrade the wound
extracellular matrix to allow for further immune cell infiltration
(92, 102). This digested matrix feeds back as DAMPs to amplify
inflammatory signaling (108).

Fol lowing the clearance of debris and invading
microorganisms, macrophages adopt an anti-inflammatory or
an alternatively activated M2-like phenotype to support tissue
remodeling and repair (106, 107). In vitro studies have shown
that IL-4 and IL-13 drives M2 activation and wound healing
functions (107). However, in vivo, the mechanisms driving this
M1 to M2 phenotypic switch may be more complicated and may
FIGURE 2 | Contribution of innate immune cells and inflammation to timely and delayed wound healing. (A) Representation of the four phases of wound healing
([1] Hemostasis, [2] Inflammation, [3] Proliferation and [4] Tissue Remodeling). (B) Chronic wounds are stalled in the inflammatory stage. We hypothesize that this
inflammation is sustained by chronic activation of the innate immune system, which is driven their interactions and responses to polymicrobial biofilms found in and
on the wound bed. DAMPs, damage-associate molecular patterns; PAMPs, pathogen-associated molecular patterns; MMPs, matrix metalloproteinases; ROS,
reactive oxygen species; AMPs, antimicrobial peptides; TIMPs, tissue inhibitor of metalloproteinases. Created with BioRender.com.
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be regulated by IL-10, glucocorticoids, prostaglandins, miRNAs,
and adenosine and peroxisome proliferator-activated receptor
(PPAR-g) signaling in the wound microenvironment (86–88,
109). At the end of the inflammatory phase, macrophage
phagocytosis of apoptotic neutrophils (i.e. efferocytosis) may
also aid in the transition to the repair phases of wound
healing (110).

To initiate tissue remodeling and repair, M2 cells produce IL-
10, IL-12, and TGF-b to suppress inflammatory effects of TNF-a
and IL-1b (90). During the proliferation phase they also release
growth factors, such as vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), and fibroblast
growth factor-2 (FGF-2), which promote angiogenesis and
keratinocyte and fibroblast proliferation (86, 88, 89, 91, 111).
Finally, during the repair and remodeling phase, macrophages
stimulate fibroblasts to mature into myofibroblasts that deposit
collagen into the wound bed to replace the temporary fibrin
scaffold with granulation tissue (86, 92, 112). They also regulate
MMPs and tissue inhibitors of metalloproteinases (TIMPs)
production to allow for both ECM formation and degradation
of excess cellular components to restore homeostasis (92, 113).
This M1 to M2 phenotypic switch makes macrophages a central
cellular player in regulating the transition from inflammation to
proliferation during wound healing (86).

Dysregulated Inflammatory Processes in
Chronic Wounds
In chronic wounds, the orderly process of healing is thought to
be stalled in the inflammatory phase and is characterized by
persistent activation of the innate immune response (Figure 2B,
described as Steps 1-4) (55, 87). This sustained inflammation
drives additional immune cell infiltration and activation (Step 1),
which amplifies MMP, collagenase, and elastase activity and
suppresses TIMPs (114–119). This imbalance in proteolytic
activity leads to excessive degradation of growth factors, anti-
inflammatory cytokines, and ECM components, hindering
progression through the phases of healing (120–122). This
inflammation also drives excessive NETosis and reactive
oxygen production (ROS), which contributes to further tissue
damage and impaired healing (Step 2) (123–127). Impaired M1-
M2 phenotypic switching has also been implicated in chronic
wound formation (Step 3). In venous ulcers, iron overload has
been linked to sustained proinflammatory M1 macrophage
activation (128, 129). Further, studies in diabetic mice have
demonstrated that dysfunctional efferocytosis of apoptotic
neutrophils by pro-inflammatory macrophages results in
apoptotic cell burden that causes sustained inflammation,
preventing macrophages from transition into their anti-
inflammatory state (130). In further support of these
observations, depletion of M2 macrophages in mice with
surgical wounds has been shown to increase neutrophil and
M1 macrophage infiltration, which prolonged the inflammatory
phase and decreased collagen deposition in wounds (131).
Collectively these findings suggest sustained innate immune
activation plays a central role driving chronic wound
formation. Critically, it is unclear what exactly is driving this
Frontiers in Immunology | www.frontiersin.org 9
chronic innate immune activation. Further, it is unclear if the
mechanisms driving this innate immune dysfunction including
dysregulated M1-M2 switching differs across tissue
microenvironments (e.g., wound types), particularly as
emerging data suggests differences between antimicrobial and
inflammatory responses across wound types (132)

Role of Bacteria in Driving Innate Immune
Activation and Inflammation in Chronic
Wounds
Emerging evidence suggests the wound microbiome and the
formation of bacterial biofilms may contribute to delayed wound
healing (45, 133–138). However, the causal relationship between
microbiome composition, biofilm formation, dysregulated innate
immune activation and persistent inflammation in chronic
wounds remains poorly understood (12, 139). It is unclear
what comes first – if bacteria and biofilm formation drive
innate immune dysfunction, or if innate immune dysfunction
makes the wound microenvironment more susceptible to biofilm
formation. Understanding the role of bacteria-innate immune
interactions in driving persistent inflammation and impaired
healing in chronic wounds may offer new opportunities to
restore healing processes (140). Previous reviews have explored
key findings from in vitro studies (141–143). Here, we will focus
on in vivo evidence from animal models and patient samples. We
will summarize the existing knowledge on the role of bacteria-
innate immune interactions in driving persistent inflammation
in chronic wounds and explore novel treatments currently under
development to target these interactions.

General Host Response to Bacteria or
Bacterial Components in Wounds
While in vitro studies are important for identifying potential
cellular and molecular mechanisms underlying innate
dysfunction in chronic wounds, these models cannot capture
the dynamic and complex nature of the immune response in
vivo. Animal models and patient samples are better positioned to
capture this complexity and can be used to evaluate localized as
well as systemic immune responses.

Several studies have shown that wound bacterial infections can
alter local and systemic immune responses (Table 2). Sweere et al.
found that mice with chronic P. aeruginosa (PAO1) wound
infections showed time-dependent changes in wound, lymph
node, and spleen immune cell populations. In this model, early
stages were associated with increased skin neutrophil infiltration
and a reduction in the number of skin natural killer (NK) cells,
CD11b+ dendritic cells (DCs), and Gr1-low monocyte-derived
DCs (MoDCs) (68). Similarly, Kim et al. found wound
colonization by S. aureus increased systemic polymorphonuclear
leukocytes (PMN) by twofold and dramatically increased PMN
recruitment into the wound bed (76). Systemic immune responses
were more pronounced in later stages of wound infection and
included increased lymph node plasmacytoid DCs (pDCs),
increased splenic macrophages and lymph node pre-apoptotic
T-cells and a reduction in NK cells and interferon killer DCs
(IKDCs). Based on these findings, authors concluded that
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adaptive immune responses might not play a significant role in
driving the inflammatory response against P. aeruginosa (68). In
human skin biopsies, Van der Laan et al. found diverse injuries
result in different local inflammatory responses (77). Compared to
aseptic conditions, wounds infected with S. aureus contained
increased granulocytes, T-cells, and monocytes/macrophages in
the dermal layer and dermis (77). However, further studies are
required to understand changes to systemic responses in humans
with chronic wounds.

Animals models have also been used to evaluate differences in
immune responses to planktonic bacteria vs. biofilm infections in
wounds. Sweere et al. found that P. aeruginosa infection was
associated with increased TNF, CXCL1, IL6, IL1B mRNA
expression in mouse skin but that these responses did not
differ between planktonic bacteria vs. biofilms, despite the
higher bioburden associated with the biofilm structure (68).
However, Trostrup et al. found that P. aeruginosa biofilms
inhibit wound healing by suppressing VEGF, antimicrobial
peptide production (S100A8/A9) and neutrophil effector
cytokine production (70, 71). In dermal punch wounds in
rabbit ears, Gurjala et al. found that S. aureus biofilms trigger
lower levels of inflammation in the wound bed compared to
planktonic cells. However, they found that the persistent nature
of the immune response to biofilms was shown to impair
epithelial migration and granulation over time (74).
Interestingly, using a similar rabbit model, Seth et al. found
that polymicrobial biofilms containing P. aeruginosa (PAO1)
and S. aureus (UAMS-1) triggered substantially higher
inflammatory responses compared to single species structures
(73). This elevated inflammatory response impaired wound
epithelialization and granulation tissue formation. These
authors also found that biofilm-deficient mutant strains of S.
aureus were associated with reduced cytokine mRNA expression
suggesting that the biofilm structure may, at least in part,
contribute to the inflammatory response (73). In a porcine
model, polymicrobial biofilms containing S. aureus, E. faecalis,
Bacillus subtilis, P. aeruginosa were shown to prolong
inflammation, increase necrosis, delay granulation, and impair
the development of the extracellular matrix. Gene expression
analysis revealed an upregulation of inflammatory mediators
such as IL8, CXCL13, and arginase-1 (ARG1), as well as genes
associated with oxidative stress response including superoxide
dismutase 2 (SOD2) and angiopoietin-like 4 (ANGPTL4) (69).

Several studies have highlighted that the skin commensal
microbiota play important functions in the regulation of wound
healing and in the innate immune defense against infection
(144–146). In fact, using longitudinal transcriptional profiling,
Grice et al. found a shift in the wound microbiota of diabetic
mice, and found this shift correlated with impaired healing and a
prolonged inflammatory response (75). Alternatively, Canesso
et al. showed that in germ-free Swiss mice, the absence of
commensal microbiota enhanced TNF-a and IL-10
production, infiltration of alternatively activated macrophages
and mast cells, and impeded neutrophil infiltration (72). These
effects likely contributed to high levels of VEGF, type III collagen,
and TGF-b , thereby accelerating wound closure and
angiogenesis, and reducing in scar tissue formation (72).
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Further investigations are required to understand the intricate
balance between the pro-wound healing commensal microbiota
and pro-wound impairing pathogenic polymicrobial biofilms, as
well as their role in driving a dysregulated inflammatory
response in chronic wounds in humans.

Regulators of Immune Responses in
Wounds With Bacterial Infections
Several molecules and pathways have been implicated in driving
chronic inflammatory responses in non-healing wounds. Most of
these have been identified in the context of overt bacterial
infections (e.g., abscess) and do not address issues associated
with wound chronicity. It is unclear if similar molecules/
pathways contribute to delayed healing in wounds with varying
levels of bacterial burden (e.g., contamination, colonization, local
infection etc.). Despite these limitations, we have summarized
these studies below (Table 3).

S. aureus is the leading cause of skin and soft tissue infections
and is often used in abscess infection models (164, 165). Brandt
et al. infected mouse skin with methicillin-resistant S. aureus
(MRSA; USA300 LAC) and found high levels of LTB4 was
produced by macrophages surrounding the abscess (147). This
inflammatory lipid mediator is required to create a chemotactic
gradient that directs neutrophil infiltration and helps to form an
organized abscess architecture. It also aids in bacterial clearance
by upregulation of pro-inflammatory cytokines (IFN-g and IL-
12p70) and increased NADPH oxidase activity (147) and has
been shown to modulate keratinocyte activity (166). However, in
diabetic mice, very high levels of LTB4 were found to be
associated with dysregulated cytokine production and excessive
neutrophil recruitment (148). This dysregulation was found to
correlate with large nonhealing lesion areas and increased
bacterial loads (148). Further, inhibition of LTB4 signaling
through its receptor (BLT1) was shown to restore a functional
inflammatory response, suggesting this molecule may play an
important role in derailing the inflammatory milieu (148).

Advanced glycation end products (AGEs) and its receptor
(RAGE) have also been implicated in the regulation of skin
inflammation and diabetic pathologies (167, 168). Interestingly,
Na et al. found that RAGE knockout mice infected with S. aureus
(SH100) experienced less severe skin lesions and increased
abscess formation (149). This milder skin damage was
associated with increased neutrophil migration and increased
bacterial clearance with reduced inflammation (e.g., monocyte
chemoattractant protein-1 (MCP-1), high mobility group box
protein 1 (HMGB1), IL-6, and TNF-a) (149). Paradoxically,
RAGE-/- were also found to have high baseline levels of
inflammation prior to infection (149). However, it was
speculated that this priming may be protective and help
establish rapid innate immune responses in early infection.
Collectively, this data suggests that RAGE may be pathogenic
in staphylococcal skin infection, particularly in supporting
chronic inflammation.

Accumulating evidence suggests appropriate regulation of
neutrophil activation is also critical for effective bacterial
killing while limiting inflammation. This process is complex
and multifactorial. For example, Cho et al. found that neutrophil
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TABLE 3 | Summary of molecules and pathways that regulate the inflammatory responses to bacteria in wounds.

Molecule/
Pathway

Wound Model Bacterial Species Host Response Effects on Wound
Healing

Reference

Leukotriene B4

(LTB4)/BLT1
activity

Mouse
subcutaneous
wound

S. aureus USA300 LAC Produced by skin macrophages.
↑Neutrophil chemotaxis (CXCL2,
CXCL1, CCL8, CCL4, CCL2, and
CXCL1)
↑IFN-g, ↑IL-12p70
↑NADPH oxidase bactericidal activity
↓Chronic inflammation (RAGE, TIM,
CXCL2, IFN-g, MMP12, and CCL8)

Organized abscess
formation
↑Bacterial clearance

(147)

Diabetic mouse
skin wound
(undefined)

S. aureus USA300 LAC ↑LTB4/BLT1 activity
↑Macrophage and neutrophil
infiltration
↓Localization to abscess
Early infection: ↑ICAM-1, ↑MCP3,
↑IL-33, ↑IL-12p70, ↑IL-1a, ↑RAGE,
↓CXCL1, ↓CXCL2, ↓MIP1b, ↓CCL2,
↓IL-1b, ↓P-selectin
Late infection: ↑CXCL1, ↑CCL2,
↑CCL8, ↑MCP3, ↑MIP1b, ↑P-
selectin, ↑ICAM-1, ↑IL-1a, ↑IL-33,
↓IL-12p70, ↓RAGE

↑Abscess size with diffuse
immune cell organization
↑Bacterial burden

(148)

Receptor for
Advanced
Glycation End
Products (RAGE)

Mouse
subcutaneous
wound

S. aureus SH1000 ↓MPO, ↓MCP-1, ↓HMGB1, ↓IL-6,
and ↓TNF-a in skin prior to infection
↓Blood neutrophil and peritoneal
macrophage infiltration

Severe open skin lesions
↓Abscess formation
↑Bacterial burden

(149)

Myeloid
peroxisome
proliferation
activator receptor
g (PPARg)

Mouse
subcutaneous
wound

S. aureus SF8300 For inflammation➔ resolution phase
Formation of a glucose-depleted,
hypoxic fibrotic abscess

↑Bacterial clearance of
established infection that
failed to clear during the
inflammatory phase

(150)

miR-142 Mouse
excisional
wound

S. aureus NBRC 100910 ↑miR-142-3p and miR-142-5p
expression by infiltrating neutrophils
and macrophages
↑Neutrophil recruitment and timely
phagocytosis

Timely resolution of
abscess
Protection against
horizontal transmission of
infection

(151)

Myeloid
differentiation
primary response
88 (MyD88)

Mouse ear pinna
intradermal
wound

S.aureus Newman Resident dermal macrophages sense
S.aureus via myD88
For early recruitment and regulation
of PMNs

Timely control and
clearance of infection

(152)

IL-33 Patients with
abscesses due
to MRSA. N=3
Mouse
intradermal
wound

S. aureus CMCC(B)26003 ↑IL-33 in human skin samples
↑iNOS in murine skin

↓Lesion size
↓Bacterial burden

(153)

Neutrophil-
derived IL-1b/IL-
1R signaling

Mouse
intradermal
wound

S. aureus SH1000 ALC2906 Induces expression of genes
associated with neutrophil
chemotaxis
IL-1b is produced by neutrophils.
TLR2, NOD2, and FPR1 aid in IL-1b
production

↑Abscess formation (154)

Proline-rich
kinase (Pyk2)

Mouse skin
abscess.
Air-filled
pouches in the
dermis infected
with bacteria

S. aureus (unknown strain) ↑PMN activation
↑MPO, ↑MMP9

↑Bacterial clearance (155)

iNOS Mouse full-
thickness skin
incisional and
excisional
wound

HK polymicrobial culture of S. aureus,
coagulase-negative Staphylococcus,
Enterococcal species, P. mirabilis previously
isolated from normal mouse skin flora

↑IFN-g from lymphocytes
↑iNOS

NA (156)
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recruitment and abscess formation is temporally linked to IL-1b/
IL-1R activation, which neutrophils produce as part of an
autocrine loop. This loop is driven by a-toxin mediated
activation of TLR2, NOD2, FPR1 and the ASC/NLRP3
inflammasome (154). Alternatively, Kamen et al. found proline
rich kinase 2 (Pyk2) plays an important role in regulating
integrin-mediated degranulation responses (155). Further, a
number wound healing-related miRNAs have been identified
and recent studies suggest that their dysregulation may
contribute to wound pathologies (169). Among these, miRNA-
142 has been shown to be an inflammation related miRNA that
regulates neutrophil recruitment and S. aureus clearance through
the inhibition of small GTPase translation (151). Additional
studies are required to better elucidate its role in chronic
wounds. Interestingly, resident dermal macrophages have been
shown to play a central role in regulating both the timely
escalation and eventual termination of neutrophil recruitment.
Feuerstein et al. showed that this regulation is dependent on
MyD88-dependent sensing of staphylococci and the recruitment
of Ly6Chigh inflammatory monocytes into the skin (152).

In addition to neutrophils, macrophage responses must be
tightly regulated during healing processes. In the inflammatory
phase, these cells are proinflammatory (M1) and produce high
levels of nitric oxide, reactive oxygen species and other
antimicrobial peptides, which can be damaging to the local
microenvironment. IL-33 represents a potential target as it
plays a central role in activating antibacterial responses by
activating the AKT-b-catenin pathway, which induces
inducible nitric oxygen synthase (iNOS) and increases NO
production (153). Alternatively, Mahoney et al. found
lymphocyte derived IFN-g drives the induction of iNOS in
mouse wounds infected with heat-killed polymicrobial culture
of S. aureus, coagulase-negative Staphylococcus and Enterococcal
species as well as Proteus mirabilis (156). Alternatively, Xu et al.
have shown that decreased NADPH oxidase activity and ROS
production is associated with decreased infiltration of M2
macrophages and delayed wound healing suggesting a
dichotomous role for these bioactive molecules (170). PPAR-g
has been shown to facilitate the M1-M2 transition (150). PPAR-g
has also been shown to play a role in MRSA clearance in chronic
wounds by forming a glucose-depleted, hypoxic, fibrotic abscess
that hinders bacterial growth (150). Finally, Guo et al. have
demonstrated that AGEs contribute to excessive macrophage
autophagy, which polarizes macrophages towards an M1
phenotype and supports sustained inflammatory processes
(171). Moving forward it will be critical to understand how
bacterial bioburden and composition contributes to the
activation/inactivation of these pathways and to better
understand the downstream consequences of dysregulated M1-
M2 phenotypic switching in humans.

Other Modifiers of Host Antibacterial
Immune Responses in the Wound
Microenvironment
Aging is among one of the most significant predisposing factors
to delayed healing and chronic wound formation. Older
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individuals are more commonly affected by vascular disease,
venous insufficiency, unrelieved pressure, and post-surgery
wound complications (172). Further, various studies have
shown that aging affects all stages of the healing process
including delayed re-epithelialization, angiogenesis, and
collagen deposition (173–175). Changes skin strength may also
result in a more pronounced breakdown of skin epithelial
barriers, which may increase the bacterial bioburden in the
wound microenvironment (175, 176). At the level of the
immune system, advanced age is associated with a
hyperinflammatory state (177). Innate cells have delayed
infiltration, reduced phagocytic capacity, decreased reactive
oxygen and nitrogen species production and impaired
intracellular killing (178, 179). Interestingly, a recent study
observed no age-related changes in TLR2 and FcgRIII
expression, phagocytosis, and bactericidal activity in aged mice
with cutaneous S. aureus infection (157). However, they did find
that neutrophils had diminished sensitivity to chemokines (e.g.,
KC, MIP-2, and MCP-1), which reduced their chemotaxis into
the wound bed and delayed healing (157). Additional studies are
required to evaluate if similar dysfunction is observed in humans.

Diabetes is also associated with delayed healing and chronic
wound formation (Table 4). Among the most common
manifestations are non-healing foot ulcers (180). In these
individuals wound healing is influenced by a predisposition to
vascular disease and neuropathy, hypoxia, and hyperglycemia
(181). Of particular importance, impaired vascular flow creates a
prolonged hypoxic wound microenvironment, which along with
hyperglycemia, contributes to oxidative stress (181).
Hyperglycemia is also associated with AGE formation, which
further delays healing (182). Chronic low-grade inflammatory
also defines diabetes pathology and dysregulated healing
response in these individuals (183). Emerging evidence
suggests altered inflammatory responses to bacteria in the
wound microenvironment may contribute to the development
of these chronic wounds. In diabetic mice with cutaneous S.
aureus infection, there is excessive macrophage and neutrophil
infiltration into the wound but poor localization to abscess (148).
These mice also have altered inflammatory cytokine and
chemokine profiles during early and late stages of infection.
Despite forming large abscesses, their structure had diffused
immune cell organization and higher bacterial burdens (148).
In mice infected with P. aeruginosa, diabetes was associated with
prolonged M1 activation, which impaired healing processes by
diminishing re-epithelialization, granulation tissue formation
and angiogenesis (158). Alternatively, Nguyen et al. found
diabetic mice inoculated with S. aureus biofilms had reduced
TLR2 and TLR4 mRNA expression and high levels of
inflammatory cytokines (IL-1b and TNF-a) (159). They also
showed diabetic mice experience poor neutrophil penetration
into regions with bacterial aggregates and downregulation of
myeloperoxidase activity, a marker of neutrophil oxidative
burst (159).

The type of chronic wound and the diversity/number of bacteria
found in the woundmay also play an important role in determining
the magnitude of the inflammatory responses (Table 4).
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For example, chronic venous leg ulcer (CVLU) exudate
commonly conta ins Pseudomonas , S taphy lococcus ,
Corynebacterium spp (160). With increasing levels of bacteria
(≥107 CFU/ml), angiogenin, ICAM-1, IL-1b, IL-4, IL-6, TNF-a,
TNFr2, VEGF, and antioxidant capacity are shown to be elevated
(McInnes et al., 2014). Alternatively, diabetic foot ulcers, which
lacked P. aeruginosa, have diminished IFN-g, IL-2, IL-4, IL-5, IL-
12p40, IL-12p70, IL-13, and TGF-b1 production with increasing
bacterial bioburden (160). In comparison of the inflammatory
response between CVLUs and DFUs, McInnes et al. determined
that CVLUs have higher levels of IFN-g, IL-1b, IL-2, IL-4, IL-13,
TNF-a, VEGF, and increased collagenase activity compared to
DFUs. On the other hand, DFUs showed higher levels of
carbonyl, malondialdehyde and antioxidant capacity compared
to CVLUs (160). Moreover, Fazli et al. found in chronic venous
leg ulcer biopsy samples, P. aeruginosa aggregates displayed
amplified neutrophil infiltration compared to S. aureus
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aggregates in wounds, suggesting that these differences may be
due to the intrinsic properties of P. aeruginosa to mount a higher
inflammatory response (161). Additional studies are required to
further explore these associations and differences.

Past exposures to bacterial infections may also alter local
immune responses to wound infections (Table 4). Upon first
exposure to a pathogen, innate immune cells can adapt, such that
upon re-exposure, they mount a heightened pathogen-specific
inflammatory response to boost host defense and provide long-
term protection (184). This phenomenon is known as innate
immune memory (184). Emerging evidence suggests innate
immune memory may provide protection against recurrent
staphylococcal skin infection. In mice primed by prior S.
aureus infection, lesion severity was reduced by increased M1
macrophage, Langerhans+ DCs (LDC), NK cells, Th17 cells, and
neutrophil influx to the abscess (162, 163). Interestingly,
cytokines IL-6, IL-17, IL-22, chemokines MIG and RANTES,
TABLE 4 | Summary of other physiological factors that modify the inflammatory responses to bacteria in wound models.

Physiological State Wound Model Bacterial Species Host Response Effects on
Wound
Healing

Reference

Ageing Mouse with full-
thickness excisional
wound

S. aureus Newman No age-dependent changes in TLR2 expression, FcgRIII
expression, phagocytosis, and bactericidal activity in
macrophages and neutrophils
↓Neutrophil sensitivity to chemokines KC, MIP-2, and
MCP-1
↓Neutrophil chemotaxis and infiltration

↑Bacterial
colonization,
↓Wound
closure

(157)

Diabetes Mouse full-thickness
wound

P. aeruginosa
ATCC27853

Prolonged M1 activation (TNF-a, IL-1b, IL-6)
M2 activation (IL-10, arginase-1, or ym1)

↓Re-
epithelialization
↓Granulation
tissue
formation
↓Angiogenesis
↓Wound
closure

(158)

Mouse full-thickness
wound

S. aureus UAMS-1 biofilm ↓TLR2, ↓TLR4 mRNA expression
↓TNF-a, ↓IL-1b mRNA expression
↓Neutrophil infiltration in regions containing bacterial
aggregates
↓MPO activity

↓Wound
closure
↑Bacterial
burden

(159)

Chronic venous leg ulcer
(CVLU) or diabetic foot
ulcer (DFU)

Wound exudate from
patients with a CVLU
or DFU

CVLU: Pseudomonas,
Staphylococcus,
Corynebacterium spp.
DFU: Corynebacterium,
Staphylococcus spp.

↑Bioburden (≥ 107 CFU/ml), CVLU: ↑Angiogenin, ↑ICAM-1,
↑IL-1b, ↑IL-4, ↑IL-6, ↑TNF-a, ↑TNFr2, ↑VEGF, ↑antioxidant
capacity
DFU: ↓IFN-g, ↓IL-2, ↓IL-4, ↓IL-5, ↓IL-12p40, ↓IL-12p70,
↓IL-13, ↓TGF-b1
CVLU vs DFU, CVLU: ↑IFN-g, ↑IL-1b, ↑IL-2, ↑IL-4, ↑IL-13,
↑TNF-a, ↑VEGF, ↑collagenase activity
DFU: ↑carbonyl, ↑malondialdehyde, ↑antioxidant capacity

NA (160)

CVLU biopsy P. aeruginosa (N=5) and
S. aureus (N=5)
aggregates

↑neutrophil infiltration in P. aeruginosa infected wounds
compared to S. aureus infected wounds

NA (161)

Recurrent subcutaneous
SSSI

Mouse
subcutaneous
wound

MRSA USA300 LAC Innate immune memory provides protection against
recurrent SSSI:
↑M1 macrophages, ↑LDCs, ↑NK cells, ↑Th17 cells,
↑neutrophil influx to abscess
↑total macrophage population in inguinal lymph nodes.
↑IL-22, ↑IFN-g, ↑IL-17A, ↑IL-6
↑MIG, ↑RANTES in the skin and ↑IP-10 in blood
AMPs ↑CRAMP, ↑mbD-3

↓Abscesses
↓Bacterial
burden

(162, 163)
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NA, not applicable; KC, keratinocyte-derived chemokine; Ym1, Chitinase-like 3 protein; MPO, myeloperoxidase; SSSI, skin and soft tissue infection; LDC, Langerhans+ dendritic cell; NK,
natural killer; MIG, monokine inducible by IFN-g; RANTES, regulated upon activation, normal T cell expressed and secreted; IP-10, interferon gamma-induced protein 10; AMP,
antimicrobial peptide.
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and antimicrobial peptides CRAMP and mbD-3 contributed to
the development of innate immune memory in these mice (162,
163). In the context of chronic wounds, innate immune cells are
chronically exposed to bacterial biofilms rather than a first
exposure followed by recurrent exposure paradigm. Whether
persistent activation of innate immune cells constrains
development of this protective innate immune memory or not
remains to be elucidated.
TARGETING HOST-PATHOGEN
INTERACTIONS TO RESTORE
HEALING PROCESSES

Managing and treating chronic wounds can be very challenging.
It requires a comprehensive wound assessment and the
establishment and implementation of a plan of care. These
individualized plans aim to optimize the local wound
environment and drive healing using four basic strategies:
wound cleansing, debridement, moisture control, and bacterial
balance (35). Among these, controlling bacterial bioburden is
essential for wound healing and can be done by 1) reducing the
levels of bacteria found in the wound and/or by 2) optimizing
host immune responses to the infection. For the purposes of this
review, we will briefly discuss how standard treatments reduce
bacterial bioburden and/or restore immune function. Then, we
will discuss emerging therapeutics designed to target interactions
between bacteria/biofilms and the host immune response to
restore healing processes.

Debridement and Negative Pressure
Wound Therapy (NPWT)
Both debridement and NPWT have been shown to affect
bacterial bioburden and/or inflammation in the wound bed.
Many types of debridement technologies exist including
biological (maggot/larval therapy), mechanical, hydrosurgical,
chemical, autolytic, enzymatic, surgical, and conservative sharp
debridement (35). The purpose of these procedures is to remove
necrotic or infected tissue to facilitate healing. In addition to
removing infected tissue, debridement has been shown to
remove and disrupt mature biofilms. Wolcott et al. found serial
debridement to continually remove mature biofilms can be used
to increase the efficacy of topical antimicrobials on newly
forming/immature biofilms, which are more susceptible to
treatment (185). NPWT, also known as vacuum assisted
closure (VAC) therapy, improves healing by removing excess
exudate, maintaining moisture balance, and increasing blood
flow into the wound. It has also been shown to control infection
and modulate immune responses. In animal models, NPWT has
been shown to have anti-biofilm effects (186–188). It has also
been shown to modulate growth factor, cytokine expression, and
matrix metalloproteinases to support healing (189, 190). This
includes decreasing IL-6, iNOS, TNF-a, IL-1b, MMP-1, and
MMP-9 and upregulating VEGF, TGF-b1 and TIMP-1 in
patients with diabetic foot ulcers (191, 192).
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Antiseptics
Irrigation solutions such as sterile normal saline or sterile water
are the simplest wound cleansing methods. Antiseptic agents,
such as octenidine dihydrochloride (OCT), polyhexamethylene
biguanide (PHMB), povidone-iodine, and super oxidized
hypochlorous acid (HOCl) and sodium hypochlorite (NaOCl)
are widely used in topical wound therapy in solution form or as
functionalized dressings due to their high microbicidal and anti-
biofilm properties (193–197). OCT and PHMB have surfactant
properties to help break apart biofilms and PHMB is particularly
useful due to its low toxicity (198). Silver- and copper-
impregnated dressing are also widely used in chronic wound
management (199, 200). However, a recent scoping review by
Rodriguez-Arguello et al. established mixed results in terms of
antimicrobial activity and clinical effectiveness of silver agents
(201). Moreover, a recent systematic review that evaluated the
efficacy of commercially available topical agents containing
silver, iodine, PHMB, or hypochlorous acid concluded that a
lack of in vivo evidence makes it difficult to make
recommendations for biofilm-infected wounds (202). Little
research is available on the effects of these agents on
modulation of the immune/host response. In human ex vivo
full-thickness skin injury, OCT has been shown to dampen pro-
inflammatory and anti-inflammatory cytokines IL-8, IL-33, and
IL-10, but not growth factors VEGF and TGF-b1 (203). In an ex
vivo porcine skin model, povidone-iodine, silver lactate, and
OCT showed antiprotease activity that was dependent on their
wound penetration ability (204). These anti-inflammatory
properties need to be further investigated in vivo.

Antibiotics
Antibiotics are often also used in the management of chronic
wound infections. However, the type of antibiotic prescribed, and
the administration route depend on the clinician evaluation and
must take into consideration the microbial bioburden, patient
clinical condition (e.g., allergies, immunocompetence,
comorbidities, and pregnancy), the severity of the infection, and
drug toxicity and dosage (35, 205). For instance, contaminated and
colonized wounds do not require the use of antibiotics to improve
wound outcomes. Alternatively, local infection often involves the
use of topical antimicrobials including antibiotics compared to
systemic infections that use systemic antibiotics (35, 206).

Topical antibiotics provide a high drug concentration at the
infection site and possess low toxicity since the body systemically
absorbs a low amount of drug. Moreover, they are easy to apply, and
their use can avoid the use of systemic antibiotics. However, topical
antibiotics cannot be prescribed to treat deep tissue infections, can
affect healing, can cause hypersensitivity, and can select for resistant
microorganisms (207, 208). They are often formulated as ointments,
gels, creams, and powders, and only a few are available for use (e.g.,
bacitracin, fusidic acid, gentamicin, mafenide acetate,
metronidazole, mupirocin, neomycin, nitrofurazone, polymyxin B,
retapamulin, silver sulfadiazine, sulfacetamide Na+). The antibiotic
used also depends on the type of wound. Bacitracin, neomycin
sulfate, and polymyxin B are frequently used in combination to treat
minor skin injuries. Silver sulfadiazine cream is commonly used as a
April 2021 | Volume 12 | Article 648554

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Versey et al. Host-Pathogen Interactions in Wounds
topical antibiotic to treat DFUs and pressure ulcers (209, 210).
Gentamicin and sulfacetamide are used to treat secondary
infections, colistin (polymyxin E) is used for MDR gram-negative
infections and metronidazole is commonly used to treat infections
caused by anaerobic microbes and to reduce the odor of
wounds (207).

Systemic antibiotics are used in patients with more severe
infections. However, in these cases, the resistance profile of the
pathogen is closely related to the success of the treatment (206). For
instance, vancomycin is the first-line treatment to fight MRSA
infections, followed by second-line agents, including linezolid,
daptomycin, and quinupristin-dalfopristin. Other examples of
systemic antibiotics used to treat chronic wounds include
macrolides (e.g., erythromycin, azithromycin, and dirithromycin),
b-lactams (e.g., cephalosporin, amoxicillin), penicillinase-resistant
penicillins (e.g., cloxacillin, oxacillin), trimethoprim-
sulfamethoxazole, fluoroquinolone, tigecycline, and clindamycin
(35, 206, 211). The type of antibiotic prescribed is also dependent
on the type, location and severity of the wound. For mild and
moderate DFUs, narrow-spectrum antibiotics are recommended,
especially those active against Gram-positive cocci (211).
Alternatively, severe DFUs should be initially treated with broad-
spectrum antibiotics, such as carbapenem b-lactams or the
combination of b-lactam antibiotics and b-lactamase inhibitors
(e.g., piperacillin/tazobactam, ampicillin/sulbactam, ticarcillin/
clavulanic acid and amoxicillin/clavulanic acid) (210). The use of
intravenous antibiotics is recommended to treat pressure ulcers
when there is sign of osteomyelitis (209). In these cases, antibiotics
that penetrate the bone are required, such as b-lactams (e.g.,
penicillin and cephalosporin), fluoroquinolones aminoglycosides,
and glycopeptides (e.g., vancomycin), linezolid, and rifampin (212).

Several challenges, such as the formation of multi-species
biofilms, are implicated in antibiotic treatment success. Wounds
are often infected with polymicrobial biofilms formed by several
species of resistant bacteria. These biofilms are commonly resistant
to topical and systemic antibiotics, which reduces the effectiveness of
the antimicrobial treatment. For instance, Shettigar et al. found the
authors showed that 60% of the DFU samples investigated were
infected with polymicrobial biofilms, in which the isolated E. faecalis
showed higher resistance to antibiotics than non-biofilm grown cells
(213). Furthermore, bacteria within biofilms produce several
protective components. Among them, the EPS matrix is an
important factor that impairs the penetration of antibiotics into
the wound bed. For instance, P. aeruginosa EPS contains
extracellular DNA and alginate lyase that impairs the diffusion of
aminoglycosides (214, 215). Another problem associated with the
low permeability of antimicrobial agents through the biofilm
structure is the induction of resistance due to the low
concentration of antibiotics when they reach the bacterial cells (56).
New Approaches to Treating Chronic
Wounds
A variety of new treatments are under development to improve
healing and restore tissue homeostasis. Among the most promising
are candidates that target or work in conjunction with the innate
immune system to improve antibacterial immune responses and/or
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regulate inflammatory responses. Some of the most promising are
highlighted in Figure 3. These pathways and molecules represent
viable targets because they can be used to modulate both early and
late healing processes. There is also a reduced risk of developing
drug resistance. Here, we will discuss the potential use of
antimicrobial peptides in targeting bacteria levels/biofilm
formation and in modulating immune function. We will also
describe other strategies under development that seek to develop
smarter and controlled innate immune responses by priming the
antibacterial immune responses, restoring inflammatory balance,
and selectively inducing an M1-M2 transition.

Antimicrobial Peptides
Antimicrobial peptides (AMPs) show tremendous potential for the
treatment of severe and chronic infections. These peptides have a
broad-spectrum antibacterial activity that usually involves attacking
multiple hydrophobic and/or polyanionic targets (216). They have
been shown to induce pore formation, disrupt cellular and organelle
membrane integrity, inhibit protein and nucleic acid synthesis, block
enzymatic activity, inhibit cell wall synthesis, and induce apoptosis
through the generation of ROS (217, 218). In addition to their
antimicrobial effects, AMPs also modulate immune response to
improve bacterial killing by increasing numbers of antigen
presenting cells, facilitating the release of NETs, enhancing of
phagocytosis, modulating dendritic cell differentiation and T cell
activation, suppressing inflammatory signaling and anti-
inflammatory cytokines (218). Further, many AMPs have been
shown to promote wound healing by modulating of keratinocyte
cytokine production and migration, re‐epithelialization and
angiogenesis (219). In addition, several natural and synthetic AMPs
exhibit strong antibiofilm activities, for example by disrupting
bacterial communication networks (quorum sensing), inhibiting
bacterial cell adhesion or by stimulating biofilm dispersal (220).
Here, we discuss just a few examples of these bioactive molecules.

In humans, AMPs are produced by a variety of cell types
including skin epithelia cells. In conditions of health, RNase 5,
RNase 7, psoriasin and calprotectin are produced and have
antimicrobial activity against both Gram-negative and Gram-
positive bacteria (221–223). Alternatively, under conditions of
inflammation or infection, b-defensins (h-BD) and LL-37 are
selectively induced to mount a wide spectrum of antimicrobial
activities including antibiofilm activities (219, 224). In addition to
their microbicidal activity, hBD has been shown to regulate
inflammatory processes by inhibiting TLR signaling pathways and
transcriptionally repressing of pro-inflammatory genes expression
(225, 226). Further, hBD-3 has also been shown to act as a ligand for
the macrophage receptor CCR2, attracting macrophages to sites of
epithelial injury (227). LL37 has also been shown to neutralize the
activation of macrophages via LPS and induce proliferation and
migration of endothelial cells (228). It also contributes to multiple
phases wound repair including the stimulation endothelia cells and
fibroblasts (228, 229) stimulation of keratinocytes (230),
neovascularization (228) and angiogenesis (231). A number of
approaches are currently under development for administering
hBD and LL-37 including poly(vinyl alcohol)/cellulose acetate
(PVA/CA) films (232), nanoparticles (233, 234), and
nanostructured lipid carriers (235). Further, the efficacy of LL-37
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cream in treating DFU is currently in clinical trials (https://
clinicaltrials.gov).

Interestingly, wound healing is a relatively conserved
evolutionarily process and several species including insects
such as Drosophila, Caenorhabditis elegans and amphibians
have been shown produce their own AMPs. For example,
Pseudin-2 isolated from the frog Pseudis paradoxa has been
shown to have a broad-spectrum antimicrobial potency and skin
biocompatibil ity against multidrug-resistant (MDR)
Pseudomonas aeruginosa (236). It has also been shown to
facilitate infected-wound closure by reducing inflammation
through suppression of interleukin-1b (IL-1b), IL-6, and tumor
necrosis factor alpha (TNF-a) (236). Alternatively, the synthetic
peptide A3-APO, derived from natural insect products, has
shown promise in in vivo models. It was shown to efficiently
ameliorate resistant aerobic and anaerobic intradermal
infections, in part by increased recruitment of epithelial
macrophages and their immunomodulatory/anti-inflammatory
effects (237). Epinecidin-1 (Epi-1), an AMP derived from
grouper Epinephelus coioides is also of potential interest. This
molecule has been shown to have antibacterial, antifungal, and
antiviral activity in vitro and in vivo (238). In mice with MRSA,
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Epi-1 has been shown to decrease levels of TNF-a, IL-6, and
MCP-1, while also regulating monocyte recruitment during
wound healing (239). It also enhances wound closure and
angiogenesis (239). These molecules and many others are in
early stages of development but represent promising
antimicrobial and immunomodulatory therapeutics.

Jump-Starting Innate Immune Responses
Using Bacteria/Bacterial Components
Topical application of PAMPs isolated from bacteria has been
used to stimulate wound healing by initiating inflammatory
processes in early stages of healing. In mice, Kostarnoy et al.
have shown that application of lipopolysaccharide (LPS), a
component of the outer membrane of Gram-negative bacteria
and a potent endotoxin, improves healing by accelerating the
resolution of inflammation by increasing macrophage
infiltration, the expression of proinflammatory cytokines (IL-6,
IL-1b, and leukemia inhibitory factor (LIF)), CC-chemokines
(CCL2, CCL7, CCL3 and CCL5), growth factors (VEGF, TGF-
1b, and FGF-2) in the wound microenvironment and by
increasing collagen synthesis in the wound microenvironment
(240). Similarly, the exopolysaccharide or extracellular polymeric
FIGURE 3 | Targeting bacteria-innate immune interactions to restore healing in chronic wounds. Standard therapies such as debridement, NPWT, antiseptics, and
antibiotics have been shown to reduce bacterial bioburden in the wound bed, but they do not always restore healing processes. New therapeutics that have both
antimicrobial and immunomodulatory properties may be able to overcome the limitations of more traditional treatments. Here, we show novel therapeutics that target
these interactions that can be used in early and late stages of healing to restore tissue homeostasis. LPS, lipopolysaccharide; EPS, extracellular polymeric substance;
PGA, peptidoglycan; AMP, antimicrobial peptide; mAb, monoclonal antibody; miRNA, microRNA. Created with BioRender.com.
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substance EPS-S3 derived from the marine bacterium Pantoea
sp. YU16-S3 has been shown to be a potential biomolecule to
promote skin tissue regeneration (241). In vitro, EPS-S3 has been
shown to increase dermal fibroblasts and keratinocytes, and
macrophage activation (241). In vivo, EPS-S3 increases
expression of growth factors and adhesion molecules HB-EGF,
FGF, E-cadherin suggesting this exopolysaccharide may
modulates wound healing through the Wnt/b-catenin pathway
(241). Interestingly, other studies have shown that rats
subcutaneously implanted with PVA sponges inoculated with
non-viable S. aureus or its peptidoglycan have improved healing
responses (242, 243). These responses are associated with
increased macrophage, neutrophil and fibroblast infiltration,
collagen production, and angiogenesis, which contribute to the
formation of reparative tissue.

Improving Antimicrobial Responses
Another area of interest is to develop therapeutics that enhance
antimicrobial immune responses. Yu et al. have developed iron
oxide nanoparticles (IONPs) that are taken up by macrophages
to enhance bactericidal activity against intracellular S. aureus.
They do this by increasing the expression of pro-inflammatory
M1 markers iNOS, IL-1b, and TNF-a and amplifying ROS
production (244). They also found these bactericidal effects
could be enhanced by coupling IONPs with vitamin C in a
Fenton reaction to augment the formation of ROS in the form of
hydroxyl radicals (244). Alternatively, Okumura et al. shown that
the pharmacological agent AKB-4924 can promote antibacterial
immune responses by stabilizing HIF-1a (245). Intracellular
HIF-1a accumulation heightens pro-inflammatory responses
by increasing expression of LL-37 and IL-8 in human
monocytes and enhancing bactericidal activity in vitro and
in vivo (245).

Targeting Inflammatory Balance
As described above, persistent or sustained inflammation is a
central drive of dysregulated healing and chronic ulcer
formation. Therapeutics that neutralize pro-inflammatory
biomolecules such as cytokines, chemokines and bioactive
lipids are under investigation to limit tissue damage and
restore timely healing processes. Among these, Song et al. have
examined the effect of anti-TNF- amonoclonal antibody (MAb)
in a primate model of S. aureus-associated skin (246). Systemic
administration of anti-TNF-a MAb reduced abscess severity
through suppression of circulating proinflammatory IL-8 and
IL-12, benefiting host responses to bacterial challenge (246).
Alternatively, Brandt et al. have shown that therapeutics that
target the LTB4/BLT1 signaling axis can reduce abscess severity
and inflammation by limiting neutrophil recruitment, improving
chemotaxis, and restoring chemokines and cytokine levels (148).
More recently, Vågesjö et al. have developed CXCL12-delivering
Lactobacilli to topically administer chemokines with increased
bioavailability for wound healing processes (247). In mice
models, sustained topical application of CXCL12 increased
proliferation of TGF-b expressing macrophages (247) and
accelerated wound healing in healthy mice, mice with
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hyperglycemia, and peripheral ischemia, and in an in vitro
human skin disk model (247).

Growth factors also play a critical role in modulating
inflammation and inducing cell proliferation, angiogenesis, and
granulation tissue formation during wound healing. Diminished
levels of growth factors, such as VEGF and FGF-2 have been
associated with chronic pressure ulcers (248). To restore this
imbalance novel therapeutics have been focused on delivering
growth factors to the wound bed to promote healing. In a study
on diabetic foot ulcer patients receiving intralesional epidermal
growth factor (EGF) therapy, Garcıá-Ojalvo et al. demonstrated a
reduction in systemic proinflammatory biomolecules C-reactive
protein (CRP), IL-6, soluble FAS (sFAS), and CCL3, as well as
oxidative capacity and nitrosilative (nitrite/nitrate) stress
biomarkers (249). Further, intralesional EGF therapy was
shown to increase soluble RAGE (sRAGE), which may have
protective effects in diabetic patients (249). Another approach to
increase growth factors is to provide bone-marrow mesenchymal
stem cells (BM-MSCs). Bai et al. developed an injectable
hydrogel made from crosslinking N-chitosan and adipic acid
dihydrazide with hyaluronic acid-aldehyde to deliver BM-MSCs
into the wound bed (250). In vitro and in vivo investigations in
diabetic wound healing showed that the hydrogel was able to
stimulate BM-MSC-derived secretion of TGF-b1, VEGF, and
FGF-2 as well as inhibiting chronic inflammation through M2
macrophage polarization (250). It also induced granulation tissue
formation, collagen deposition, tissue vascularization, and
improved wound closure (250). The LeucoPatch uses a similar
approach to promote healing. This circular patch is comprised of
fibrin, white cells and platelets derived from the patient’s own
blood, which concentrates cells and growth factors (e.g., PDGF,
TGF-b, EGF and VEGF) to support healing. In an observed-
masked randomized controlled trial, it was found to improve
healing outcomes and shortened time to healing (251).

Promoting Macrophage Polarization
Towards an M2 Phenotype
Given that M1/M2 macrophages play a key role in regulating
wound healing, reprogramming macrophage polarization
towards an M2 tissue repair phenotype represents an attractive
target in later stages of the healing process. Stem cell therapy has
emerged as a promising treatment for modulating these
processes. In a mouse diabetic wound model, treatment with
hyaluronic acid spongy hydrogels impregnated with
neurogenically conditioned human adipose stem cells (hASCs)
increased neoepidermial thickness and accelerated wound
closure (252). Moreover, addition of hASCs in comparison to
hydrogel treatment alone increased the M2/M1 macrophage
ratio, suggesting that hASCs can promote the transition to the
repair phase of healing (252). A recent systematic review by
Raghuram et al., identified adipose-derived stem cells, bone
marrow-derived stem cells, bone marrow-derived mononuclear
cells, epidermally derived mesenchymal stem cells, fibroblast
stem cells, keratinocyte stem cells, placental mesenchymal stem
cells, and umbilical cord mesenchymal stem cells being used in
vitro and in vivo as potential treatments for chronic wounds,
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however, clinical effectiveness still requires investigation due to
heterogeneity of wound etiology (253).

A multitude of micro-RNAs (miRNAs) have been associated
with each phase of wound healing, from pro-inflammatory
cytokine signaling to proliferation and remodeling, and offer a
potential therapeutic strategy for the treatment of chronic
wounds (254). Saleh et al. developed adhesive hydrogels
containing miR‐223 5p mimic loaded hyaluronic acid-based
nanoparticles (255). In vitro, miR-233 5p had the ability to
polarize M1 macrophages towards an M2 phenotype, with
increased expression of anti-inflammatory gene Arg-1, and
suppression of proinflammatory cytokines TNF-a, IL-1b, and
IL-6 (255). In vivo experiments on a mouse wound model, miR-
233 5p was able to promote tissue vascularization and accelerate
wound healing (255).
DISCUSSION

Ageing and immobile individuals as well as those with co-morbid
conditions such as diabetes are at high risk for developing non-
healing or chronic wounds. These wounds reduce quality of life
and increase pain levels, risk for infection and prolong hospital
stays. Chronic wounds are also difficult to treat and represent a
significant financial burden on all healthcare systems. Globally,
as the size of these populations grow, there is an urgent need to
understand the pathophysiology of delayed wound healing and
to develop effective therapies that repair tissue damage. Critical
for the development of these new therapeutics is a
comprehensive understanding of the cellular and molecular
mechanisms underpinning bacteria-innate immune interactions.

There is still a lot to learn about the microbiological and
immunological processes underlying bacteria-innate immune
interactions in chronic wounds and their relative contributions
to delayed healing. From the microbiological perspective, the use
of molecular methods, such as RNA sequencing, has allowed for
the identification of a larger diversity bacterial species in the
wound. These methodologies have also been used to elucidate
microbial activities, behaviors, strategies, and processes during
infections (12). However, these approaches are associated with a
substantial demand for financial, time and bioinformatic support
and cannot be readily transferred into the clinic. Further, they
cannot distinguish between living, dead or dormant bacteria and
might overlook minority species (52). Moving forward, it will
also be critical develop more standardized sampling and analysis
to ensure reproducibility across studies (256–258). It is also
important to note that, to date, most studies have been
performed over an acute timeframe with the longest being over
a 28-day period (75). Considering that chronic wounds can take
up to 12 months to heal (259), or may not heal at all (55), there is
little information about how bacterial populations change over
longer time frames. We believe combining single cell analyses
(transciptomics, flow, etc.), advanced microscopy and other
techniques will provide critical insights into how biofilm
structures as well individual cells contribute to chronic wound
formation and chronicity across diverse microenvironments and
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patient populations. Further, we believe more long term
longitudinal in vivo studies with larger samples sizes and
standardized sample collection/analysis are urgently needed to
fully understand the importance of microbial diversity, biofilms
and the wound microbiome in chronic wounds infections and to
elucidate the impact of aerobic, anaerobic, pathogenic and
commensal bacteria in inflammation and wound healing across
wound types.

To further our immunological understanding, we require
clinically relevant model systems that mimic the complex,
dynamic interplay between the wound microbiome, innate
immune cells, and the various other factors that contribute to
dysregulated healing in chronic wounds (260). To date, many
studies have investigated interactions in the context of murine
S. aureus abscess models. While S. aureus is a major causative
agent of skin and soft-tissue infections, it is a specific type of skin
infection. Other studies have evaluated how heat-killed bacteria
and planktonic bacteria modulate immune responses but
generally only evaluate short term and localized responses.
Emerging research has started to evaluate the effects of single-
species and polymicrobial biofilms on host immune responses in
vivo. However, most of these studies have characterized
differential responses to S. aureus and P. aeruginosa
planktonic, single-species biofilm, and polymicrobial biofilms
(69–71, 73, 74). Given that the wound microbiome is made of a
wide diversity of bacterial species in polymicrobial biofilm
communities, it is unclear how these findings can be translated
into the clinical setting. We also think it is important to note, that
much of what we know about the microbial diversity and
immune responses in chronic wounds has been derived from
models and clinical samples from patients with DFU. In this
review, we found a few studies that evaluated interactions in
other or non-DFU ulcers such as venous/arterial ulcers and
pressure ulcers, but they were somewhat limited in scope (77,
160, 161). Future studies are required to evaluate how host
immune responses are modulated by complex polymicrobial
biofilms commonly found in wound beds and to better
understand if these processes are affected by the wound type/
tissue microenvironment.
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203. Nikolić N, Kienzl P, Tajpara P, Vierhapper M, Matiasek J, Elbe-Bürger A.
The Antiseptic Octenidine Inhibits Langerhans Cell Activation and
April 2021 | Volume 12 | Article 648554

https://doi.org/10.1073/pnas.1808353115
https://doi.org/10.3201/eid1211.060190
https://doi.org/10.1056/NEJMoa055356
https://doi.org/10.1056/NEJMoa055356
https://doi.org/10.1089/wound.2014.0523
https://doi.org/10.1038/sj.jid.5700070
https://doi.org/10.1038/sj.jid.5700070
https://doi.org/10.1016/j.vph.2012.06.004
https://doi.org/10.1016/j.vph.2012.06.004
https://doi.org/10.1111/dgd.12542
https://doi.org/10.1074/jbc.M116.731216
https://doi.org/10.1038/srep36416
https://doi.org/10.1038/srep36416
https://doi.org/10.1111/jgs.13332
https://doi.org/10.1111/jgs.13332
https://doi.org/10.1046/j.0022-202x.2001.01539.x
https://doi.org/10.1007/s00268-003-7397-6
https://doi.org/10.1016/j.coi.2005.07.013
https://doi.org/10.1111/j.1749-6632.2000.tb06651.x
https://doi.org/10.1152/ajpregu.1999.276.2.R482
https://doi.org/10.1152/ajpregu.1999.276.2.R482
https://doi.org/10.1111/j.1474-9728.2004.00110.x
https://doi.org/10.1056/nejmra1615439
https://doi.org/10.1056/nejmra1615439
https://doi.org/10.1007/s12325-014-0140-x
https://doi.org/10.2337/diabetes.52.11.2805
https://doi.org/10.1017/S1462399409000945
https://doi.org/10.1016/j.chom.2018.12.006
https://doi.org/10.1016/j.chom.2018.12.006
https://doi.org/10.12968/jowc.2010.19.8.77709
https://doi.org/10.12968/jowc.2010.19.8.77709
https://doi.org/10.1007/s10482-018-1045-5
https://doi.org/10.1111/iwj.13197
https://doi.org/10.1002/bjs.9636
https://doi.org/10.1111/eci.13067
https://doi.org/10.1111/eci.13067
https://doi.org/10.1016/j.gene.2018.05.032
https://doi.org/10.1016/j.diabres.2019.02.024
https://doi.org/10.1159/000318264
https://doi.org/10.1093/jac/dkq212
https://doi.org/10.12968/jowc.2016.25.8.419
https://doi.org/10.1016/j.ijsu.2017.06.073
https://doi.org/10.1111/jocd.13280
https://doi.org/10.1111/bjd.13677
https://doi.org/10.1111/j.1524-475X.2010.00573.x
https://doi.org/10.12968/jowc.2011.20.11.543
https://doi.org/10.25270/owm.2018.3.1431
https://doi.org/10.1016/j.jinf.2019.12.017
https://doi.org/10.1016/j.jinf.2019.12.017
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Versey et al. Host-Pathogen Interactions in Wounds
Modulates Cytokine Expression upon Superficial Wounding with Tape
Stripping. J Immunol Res (2019) 2019:1–11. doi: 10.1155/2019/5143635
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