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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in most
parts of the world. Although there is no first-line drug approved for the treatment of NAFLD, polyene
phosphatidylcholine (PPC) is used by clinicians to treat NAFLD patients. This study aimed to evaluate
the efficacy of PPC on a mice model of NAFLD, and to study the PPC’s mechanism of action. The mice
were fed a choline-deficient, L-amino acid-defined (CDAA) diet to induce NAFLD and were subsequently
treated with PPC. The treatment effects were evaluated by the liver index, histopathological examination,
and routine blood chemistry analyses. Lipidomics and metabolomics analyses of 54 samples were
carried out using ultraperformance liquid chromatography (UPLC) coupled to a mass spectrometer to
select for changes in metabolites associated with CDAA diet-induced NAFLD and the effects of PPC
treatment. The intestinal flora of mice were extracted for gene sequencing to find differences before and
after the induction of NAFLD and PPC treatment. PPC significantly improved the CDAA diet-induced
NAFLD condition in mice. A total of 19 metabolites including 5 polar metabolites and 14 lipids showed
marked changes. In addition, significant differences in the abundance of Lactobacillus were associated
with NAFLD. We inferred that the protective therapeutic effect of PPC on the liver was related to the
supplement of phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin (PC, LPC, and SM,
resectively) and acylcarnitine metabolism. This study developed a methodology for exploring the
pathogenesis of NAFLD and can be extended to other therapeutic agents for treating NAFLD.

Keywords: NAFLD; CDAA-induced; lipidomics; metabolomics; gut microbiota

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is a metabolic stress-related liver disease
defined as the hepatic accumulation of lipids, mainly triglyceride, in the absence of sub-
stantial alcohol consumption (<20 g/day) or other secondary causes [1,2]. An important
characteristic of nonalcoholic steatosis is the accumulation of triglyceride (TG) and total
cholesterol (TC) in hepatocytes. Some patients with nonalcoholic fatty liver disease develop
NASH and fibrosis, increasing the risk of cirrhosis and even hepatocellular carcinoma [3].
The pathophysiology of NAFLD has not been completely elucidated [4]. Currently, the
“multiple hit” is one of the most widely accepted models to explain the progression of
NAFLD. The “multiple hit” hypothesis considers multiple insults acting together on geneti-
cally predisposed subjects to induce NAFLD. Such hits include insulin resistance, hormonal
secretion from the adipose tissue, nutritional factors, and the gut microbiota, as well as ge-
netic and epigenetic factors [5]. Recent studies show that the gut microbiota is an important
factor that should be taken into consideration when studying NAFLD [6].

As there is no first-line drug for NAFLD, clinicians use polyene phosphatidylcholine
(PPC) to treat these patients [7]. The main component of PPC is extracted from the soybean.
The therapeutic and protective effects of PPC on the liver have been reported in many
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studies [8,9]. However, there have been few systematic studies on its mechanisms of
action, and this study aims to explore the mechanisms of PPC action on non-alcoholic
fatty liver from the perspective of metabolomics, lipidomics, and the gut microbiota. A
choline-deficient, l-amino acid-defined (CDAA) diet can interfere with fat metabolism
in the liver of mice and fat transport from the liver to peripheral tissues, leading to an
excessive fat accumulation in the liver and to the formation of non-alcoholic fatty liver,
which is similar to the pathological state in NAFLD patients [10,11]. This model has been
widely applied to study the therapeutic effect of drugs on NAFLD [12,13]. In this study, we
showed that PPC exerted therapeutic effects on CDAA diet-induced NAFLD mice using
liver histopathological evaluation and serum biochemical indicators.

2. Results and Discussion
2.1. PPC Has Therapeutic Effects on a CDAA Diet-Induced Model of Fatty Liver in Mice

After being fed a CDAA diet for up to two months in mice, the weight gain was
significantly reduced compared with the choline-sufficient, L-amino acid (CSAA) diet
group, even for mice undergoing CDAA diet and treated with PPC (Figure 1A). Being
an important indicator of fatty liver, the liver index (liver weight/body weight) of the
CDAA group was significantly increased, and the liver index of the CSAA group was also
significantly smaller than that of the CDAA group after PPC treatment (Figure 1B). The
degree of fatty liver lesions was evaluated through histological sections and the NAFLD
activity score, as shown in Figure 2 and Table 1.
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Figure 1. Body weights of mice over 12 weeks (A) and the liver index (liver wet weight/body weight 
ratio) at the end of week 12 (B), ** p < 0.01 compared with the negative control (CSAA diet) group; 
## p < 0.01 compared with the disease model (CDAA diet) group. 
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Figure 2. Section with hematoxylin and eosin staining (A), section with oil red O staining (B), and 
section with Sirius red staining (C) of the mouse liver tissue at 100× magnification. 

  

Figure 1. Body weights of mice over 12 weeks (A) and the liver index (liver wet weight/body weight
ratio) at the end of week 12 (B), ** p < 0.01 compared with the negative control (CSAA diet) group;
## p < 0.01 compared with the disease model (CDAA diet) group.
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Table 1. NAS score of the CDAA, CSAA, and PPC groups.

NAS Average Score Variance

CSAA 1.44 0.60
CDAA 3.78 0.97
PPC-treated CDAA 2.56 0.96

Note: a larger the NAS score indicates a greater NAFLD severity.
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The accumulation of TC and TG in liver cells is one of the most important features of
NAFLD. After a period of disease modeling process through diet, the contents of TG and
TC in the liver homogenates in the CDAA group were significantly higher than those in
the negative control group, and were significantly reduced after PPC treatment (Figure 3).
Serum transaminase concentrations (especially ALT and AST) were also increased in the
CDAA diet group, indicating a relatively serious injury to the livers of the mice, whereas
the transaminase concentrations were significantly reduced in the PPC-treated CDAA diet
group (Figure 4A,B). HDL and LDL levels decreased significantly after disease-modeling
and recovered after treatment (Figure 4C,D). A choline-deficient diet could lead to defects
in lipoprotein secretion [14], whereas PPC treatment reversed these defects. We found
that the serum TG and TC levels of the disease model group were significantly decreased
compared with those of the negative control (CSAA), and recovered to some degree after
PPC treatment (Figure 4E,F). This could be caused by the disease-modeling principle of
choline-deficient feeding: when choline is deficient, the content of PC decreases, and the
synthesis and secretion of VLDL in the liver slows down [15], resulting in a reduced rate of
lipid transport to the blood and an accumulation of lipids in the liver cells, finally leading
to a decrease in the serum lipid level. The same result was demonstrated in the study
by Miyaki et al. [16].

The NAFLD model caused by insufficient choline intake includes a number of pro-
cesses including steatosis, fibrosis, and cirrhosis, which are very similar to the NAFLD
development process in humans, and is suitable for studying human NAFLD [17]. His-
tological examination is still the most accurate method for fatty liver diagnosis. Serum
biochemical indicators such as (ALT) are also the most commonly used biochemical markers
to assess liver function. After two months of the CDAA diet, all mice in the disease-model
group developed severe fatty liver disease, and some mice also developed fibrotic lesions.
After one month of PPC administration (150 mg/kg/day), the mice in the treatment group
showed significant improvement compared with the model group. These results demon-
strate that this dose of PPC has a good therapeutic effect on fatty liver disease in mice.
PPC mainly achieves the therapeutic effect from three aspects. Firstly, PPC provides the
liver with a large amount of high-energy phospholipids, which penetrate into the liver
cell membrane in the form of intact molecules, leading to increased cell membrane fluid-
ity and liver cell regeneration [18]; secondly, it converts static cholesterol into a mobile
form, reducing degeneration and necrosis of the liver cells by removing fat from the liver;
and thirdly, it enhances the ability of the cell membrane to absorb metabolic cholesterol
HDL, and improves the lipid metabolism of the blood and liver [19]. In order to further
explore its treatment mechanism, we have evaluated lipidomics, metabolomics, and the
gut microbiota.
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Figure 3. TC (A) and TG (B) levels in the mouse liver tissues at week 12. ** p < 0.01 compared with the
negative control (CSAA diet) group; # p < 0.05, ## p < 0.01 compared with the model (CDAA diet) group.
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2.2. Effect of PPC on Serum Lipidome

As shown in Figure 5, discriminant analysis exhibited distinct clusters between CSAA
and CDAA diet-fed mouse serum samples, indicating considerable variation in the serum
lipid composition. PPC-treated samples were well separated from the CDAA group.
Further analysis of the lipid abundance of each lipid class revealed that all lipid classes
except phosphatidylethanolamines (PE) and ceramide (Cer) were significantly reduced
after CDAA diet-feeding (Figure 6A). The level of these lipids in the PPC-treated group
showed an opposite effect: all of the lipids except PE and Cer were significantly increased
after PPC treatment, compared with the CDAA group (Figure 6B). A reduction in the serum
total TG level was associated with corresponding changes in the serum PC and LPC in the
same direction. Long-term CDAA feeding was previously reported to lead to a decrease
in PC and LPC; the subsequent lack of PC, LPC, and SM led to a decrease in lipoprotein
synthesis and secretion, resulting in decreased TG transport from the liver to the serum,
an accumulation of TG in the liver and a decrease in TG in the serum [20]. PPC treatment
reverses this effect by supplementing PC. The trend analysis between the liver stages and
plasma lipids also showed similar results (Figure 7). The NAFLD activity score (NAS) is
often used to evaluate the degree of fatty liver disease, and a larger NAS score indicates
greater NAFLD severity. The results in Figure 7 show that SM, PC, LPC, and DG were
significantly negatively correlated with NAS scores, with a lower SM, PC, LPC, and DG
associated with worse liver stages in the CDAA group. PE and Cer showed a contrary
tendency, where higher PE and Cer levels in the plasma tended to be accompanied by more
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severe fatty liver. However, the PPC-treated group tended to have increased levels of LPC,
DG, and TG regardless of the NAS stage. Tables 2 and 3 identified differences in lipid levels
(absolute value of fold change > 1.5 and p value < 0.05) between the CSAA and CDAA
groups, and between the CDAA and PPC groups, respectively. Figure 6C,D shows the
lipid species with significant differences before and after disease modeling and treatment.
Except for PC 19:2_19:2, the other lipids decreased significantly after disease modeling and
recovered after PPC treatment (Figure 6C,D).
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Table 2. Fold changes of the serum lipid species in the C57BL/6 mice after being fed a CDAA diet.

Lipid ID m/z RT (min) Chemical
Formula Fold Change * p-Value

LPC 18:0/0:0 524.37 3.17 C26H54NO7P −1.63 3.21 × 10−3

LPC 18:1/0:0 522.36 1.85 C26H52NO7P −1.66 1.70 × 10−9

LPC 20:0/0:0 552.40 4.20 C28H58NO7P −3.12 1.49 × 10−9

LPC 22:0/0:0 580.44 5.31 C30H62NO7P −2.24 1.88 × 10−10

LPC 22:1/0:0 578.42 3.73 C30H60NO7P −2.40 5.74 × 10−12

LPC 22:6/0:0 568.34 1.43 C30H50NO7P −1.76 5.97 × 10−9

LPC 24:0/0:0 608.47 6.78 C32H66NO7P −2.15 9.27 × 10−10

PC 12:0_22:1 760.59 9.14 C42H82NO8P −3.28 4.18 × 10−5

PC 12:0_26:5 808.58 8.45 C46H82NO8P −2.81 3.94 × 10−4

PC 14:0_24:2 814.64 10.34 C46H88NO8P −3.47 2.26 × 10−13

PC 14:1_22:4 780.56 8.50 C44H78NO8P −2.33 5.37 × 10−8

PC 14:1_24:5 806.57 8.25 C46H80NO8P −1.78 3.94 × 10−8

PC 16:0_20:1 788.62 10.01 C44H86NO8P −2.33 2.04 × 10−10

PC 16:0_24:5 836.61 9.98 C48H86NO8P +5.36 8.29 × 10−4

PC 17:1_17:1 758.57 8.73 C42H80NO8P −3.29 2.77 × 10−7

PC 17:2_17:2 754.54 8.36 C42H76NO8P −3.12 2.00 × 10−6

PC 18:2_18:2 782.57 8.40 C44H80NO8P −3.60 4.26 × 10−6

PC 19:2_19:2 810.61 9.56 C46H84NO8P −1.96 4.74 × 10−4

PC 20:2_18:3 808.58 8.78 C46H82NO8P +1.75 2.54 × 10−2
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Table 2. Cont.

Lipid ID m/z RT (min) Chemical
Formula Fold Change * p-Value

PC 20:3_18:4 804.56 11.68 C46H78NO8P −3.05 1.91 × 10−9

PC 24:0_14:1 816.65 11.68 C46H90NO8P −3.69 4.29 × 10−11

PC O-35:3 756.59 7.92 C43H82NO7P −2.23 2.12 × 10−7

PC O-38:2 800.66 11.11 C46H90NO7P −1.97 3.88 × 10−7

SM 18:1;2O/14:0 675.55 7.91 C37H75N2O6P −2.01 1.12 × 10−6

SM 18:2;2O/16:0 701.56 8.08 C39H77N2O6P −2.18 4.61 × 10−9

SM 18:1;2O/22:0 787.67 10.77 C45H91N2O6P −2.52 3.60 × 10−8

SM 18:1;2O/22:1 785.66 11.58 C45H89N2O6P −3.72 3.66 × 10−9

SM 18:1;2O/23:0 801.69 13.39 C46H93N2O6P −1.63 1.15 × 10−3

SM 18:1;2O/24:0 815.71 12.39 C47H95N2O6P −1.62 9.68 × 10−5

RT, retention time. * The CSAA group is the reference group. “+” refers to an abundance increase in the CDAA
group, while “−” refers to an abundance decrease in the CDAA group.

Table 3. Fold changes of the serum lipid species in the C57BL/6 mice after PPC treatment.

Lipid ID m/z RT (min) Chemical
Formula Fold Change * p-Value

LPC 18:0/0:0 524.37 3.17 C26H54NO7P +1.65 8.89 × 10−5

LPC 19:0/0:0 538.39 3.38 C27H56NO7P +1.91 1.19 × 10−6

LPC 20:0/0:0 552.40 4.20 C28H58NO7P +1.66 1.66 × 10−6

LPC 20:4/0:0 544.33 1.74 C28H50NO7P +2.51 4.60 × 10−5

LPC 22:6/0:0 568.34 1.43 C30H50NO7P +1.55 6.80 × 10−7

PC 12:0_22:1 760.59 9.14 C44H82NO8P +1.71 2.43 × 10−4

PC 14:1_20:2 756.56 8.50 C42H78NO8P +1.76 8.47 × 10−4

PC 14:1_24:5 806.57 8.25 C46H78NO8P +2.49 5.88 × 10−6

PC 16:0_22:3 812.62 10.01 C46H86NO8P −2.51 6.82 × 10−5

PC 16:0_24:5 836.62 9.98 C48H86NO8P −2.18 1.82 × 10−4

PC 17:1_17:1 758.57 8.73 C42H80NO8P −3.96 4.88 × 10−6

PC 17:2_17:2 754.54 8.36 C42H76NO8P +9.50 9.62 × 10−5

PC 18:1_18:1 786.60 10.89 C44H84NO8P −4.16 1.12 × 10−3

PC 18:2_18:2 782.58 8.40 C44H80NO8P +1.75 1.70 × 10−2

PC 19:2_19:2 810.61 9.56 C46H84NO8P −1.93 3.97 × 10−3

PC 24:0_14:1 816.65 11.68 C46H90NO8P +1.69 1.14 × 10−4

PC O-35:1 760.62 11.95 C43H86NO7P +5.26 1.63 × 10−4

PC O-35:3 756.59 11.10 C43H82NO7P +2.24 8.92 × 10−5

PC O-36:1 774.64 11.44 C44H88NO7P +2.17 6.66 × 10−4

PC O-37:1 788.65 13.09 C45H90NO7P +4.43 5.72 × 10−5

PC O-37:5 780.58 8.33 C45H82NO7P +3.31 3.22 × 10−4

PC O-38:1 802.67 12.32 C46H92NO7P +3.15 1.29 × 10−5

PC O-38:2 800.66 11.63 C46H90NO7P +2.20 4.31 × 10−8

PC O-39:3 812.66 13.46 C47H90NO7P +1.57 2.86 × 10−5

PC O-39:4 810.62 9.71 C47H88NO7P −2.97 7.49 × 10−4

PC O-40:1 830.70 13.13 C48H96NO7P +2.97 2.73 × 10−5

SM 18:1;2O/14:0 675.55 7.91 C37H75N2O6P +1.52 1.40 × 10−6

SM 18:1;2O/16:0 703.58 8.83 C39H79N2O6P +1.51 1.77 × 10−10

SM 18:2;2O/16:0 701.56 8.08 C39H77N2O6P +1.56 1.96 × 10−6

SM 18:1;2O/22:0 787.67 11.93 C45H91N2O6P +1.65 3.00 × 10−6

SM 15:2;2O/25:0 785.66 11.17 C45H89N2O6P +1.86 1.37 × 10−4

SM 18:1;2O/23:0 801.69 12.71 C46H93N2O6P +2.53 9.02 × 10−6

SM 20:1;2O/21:0 701.56 11.66 C46H93N2O6P +3.29 1.09 × 10−5

SM 22:2;2O/19:0 785.63 11.58 C46H91N2O6P +1.60 1.44 × 10−4

SM 15:2;2O/26:6 787.67 10.77 C46H79N2O6P +2.59 1.38 × 10−2

SM 18:1;2O/24:0 785.66 12.87 C47H95N2O6P +1.57 4.55 × 10−6

SM 23:3;2O/20:4 801.69 13.39 C48H85N2O6P +1.77 1.26 × 10−7

RT, retention time. * The CDAA group is the reference group. “+” refers to an abundance increase in the PPC
group, while “−” refers to an abundance decrease in the PPC group.
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and after PPC treatment (D).
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Figure 7. Analysis of the trend between the NAS score and the relative value of the lipids in the
serum; a larger NAS value indicates a greater NAFLD severity.

2.3. Effect of PPC on Serum Metabolome

Tables 4 and 5 show the absolute value of a fold change > 1.5 (p value < 0.05)
of the metabolites between the CDAA and CSAA groups, and between the PPC and
CDAA groups, respectively. The levels of hexanoylcarnitine, octadecenoylcarnitine, and
L-carnitine were significantly decreased in the CDAA group compared with the CSAA
group. After treatment with PPC, the abundances of the two acylcarnitines increased
significantly, while L-carnitine decreased further. Carnitine is known to be an important
biological factor in fatty acid oxidation. It is essential for transporting long-chain fatty
acids from the cytoplasm to the mitochondria. Derived from long chain fatty acids and
carnitine, acyl-arnitines are transported to the mitochondria by ester linkage. They are
converted into acyl CoA on the inner mitochondrial membrane and serve as a substrate
for β-oxidation [21]. L-carnitine is reported to have adjuvant therapeutic effects on fatty
liver disease and insulin resistance [22–24]. PPC has been shown by in vitro experimen-
tations to improve the oxidative substrates of the mitochondria, restore the respiratory
chain activity stimulated by ADP, and improve the activity of mitochondrial cytochrome
oxidase [25]. Katz et al. reported that PPC can prevent oxidative phosphorylation of
the mitochondria, changes in mitochondrial skeleton, loss of mitochondrial cristae, and
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inhibition of the activities of caspase-3 and caspase-9, thereby inhibiting mitochondrial
apoptosis [26]. An association between NAFLD and decreased muscle mitochondrial activ-
ity has been reported [27,28]. Pérez-Carreras and colleagues showed that NASH patients
presented hepatic mitochondrial abnormalities, which were most likely related to liver
fibrosis [29]. Mitochondrial dysfunction is an important factor leading to NAFLD and its
disease progression. We hypothesized that PPC could alleviate the appearance of insulin
resistance through the protection of the mitochondria, and might reduce the degree of fatty
liver disease and delay the progression of further liver fibrosis. PPC could also improve
the absorption and utilization of L-carnitine by cells. In the PPC treatment group, the
L-carnitine level was further decreased but the acylcarnitine levels increased compared
with the CDAA group. PPC and L-carnitine may have a synergistic effect, which needs to
be verified by further experimentations.

Table 4. Differences in metabolite levels between CDAA and the CSAA groups.

Metabolite Name m/z RT (min) Chemical
Formula Fold Change * p-Value

L-Phenylalanine 166.08 2.8 C9H11NO2 +1.7254 0.0019
Hexanoylglycine 174.11 6.7 C8H15NO3 −1.5767 0.0477
L-Carnitine 184.09 0.8 C7H15NO3 −2.3805 0.0006
Tryptophan 227.07 4.5 C11H12N2O2 +1.8593 0.0181
Hexanoylcarnitine 260.18 6.3 C13H25NO4 −4.0906 0.0069
Octadecenoylcarnitine 426.35 10.88 C25H47NO4 −1.5700 0.0033

RT, retention time. * The CSAA group is the reference group. “+” refers to an increase in abundance in the CDAA
group, while “−” refers to a decrease in abundance in the CDAA group.

Table 5. Differences in metabolite levels between the PPC and CDAA groups.

Metabolite Name m/z RT (min) Chemical
Formula Fold Change * p-Value

L-Phenylalanine 166.08 2.8 C9H11NO2 −1.4643 0.0307
Hexanoylglycine 174.11 6.7 C8H15NO3 +1.8401 0.0002
L-Carnitine 184.09 0.8 C7H15NO3 −2.8127 0.0354
Hexanoylcarnitine 260.18 6.3 C13H25NO4 +2.0028 0.0495
Glu-Ile 261.14 5.3 C11H20N2O5 −2.3478 0.0006
21-Deoxycortisol 347.22 8.8 C21H30O4 +2.1645 0.0057
Octadecenoylcarnitine 426.35 10.88 C25H47NO4 +2.0037 0.0001

RT, retention time. * The CDAA group is the reference group. “+” values refer to an increase in abundance
increase in the PPC group, while “−” values refer to a decrease in abundance decrease in the PPC group.

2.4. Effect of PPC on Gut Microbiota

Abnormal changes in the gut microbiota are closely related to NAFLD [6]. To better
explore the therapeutic mechanism of PPC on NAFLD, we conducted a gut microbiota
analysis in the mice. Figure 8 shows the overall differences in the gut microbiota of mice in
the CSAA, CDAA, and PPC groups. The dominant species of intestinal flora in the three
groups of rats were Firmicutes, Actinobacteria, Bacteroidetes, Epsilonbacteraeota, Proteobacteria,
Deferribacteres, Verrucomicrobia, and Spirochaetes (Figure 8). Firmicutes was the phylum with
the highest abundance in any group. However, compared with the normal CSAA diet, the
CDAA diet resulted in a significant increase in Firmicutes and Bacteroidetes, and the same
results were seen in both the CDAA and PPC groups. This suggests that treatment with
PPC had no effect on these two phyla. The top ten genuses that have significant differences
among the CSAA, CDAA, and PPC groups are shown in Figure 9. The CDAA diet resulted
in a significant increase in Streptococcus, Collinsella Romboutsia, Sellimonas, Brachyspira, and
Erysipelatoclostridium, and a significant decrease in Helicobacter, Lactobacillus, and Lactococcus.
Only Sellimona and Lactobacillus were the two species affected by PPC treatment, wherein
PPC reversed the effects of the CDAA diet. Studies have found that a significant feature
of NAFLD patients on a high-fat diet was an increase in Firmicutes and a decrease in



Int. J. Mol. Sci. 2023, 24, 1502 10 of 16

Bacteroidetes, which could be due to different energy residues in the feces [30,31]. The
abnormal bile acid level caused by high-fat diet changed the intestinal pH; Firmicutes and
Bacteroidetes had a different adaptability to the environmental pH [32]. In contrast with
using a high-fat diet, we chose choline-deficient diet to develop an NAFLD model. The
change in the weight of the mice was opposite to NAFLD patients on a high-fat diet.
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Studies have shown that Lactobacillus is an important probiotic that is beneficial for
maintaining health [33,34]. Jiang et al. isolated two Lactobacillus species from Chinese
longevity geriatrics, and found that Lactobacillus could regulate lipid metabolism in hyper-
cholesterolemic mice models [35]. In a study of 20 adult patients with histology-proven
NASH who were randomly allocated to receive a probiotic formula containing Lactobacillus
plantarum, Lactobacillus delbrueckii, Lactobacillus acido philus, Lactobacillus rhamnosus, and
Bifidobacterium bifidum, the authors found that patients who had received this formula had
a reduced intrahepatic triglyceride content [36]. The development of NAFLD was also
associated with the production of alcohol by some intestinal bacteria. A study showed that
the blood and respiratory levels of ethanol in NAFLD mice were significantly higher than
those in the normal mice, and the activation of AMPK by the Lactobacillus rhamnoides GG
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strain attenuated the accumulation of fat in the liver caused by alcohol [37]. An abundance
of Lactobacillus may be associated with PPC treatment. The amount of Lactobacillus in the
CDAA group was significantly reduced compared with the CSAA group; after PPC treat-
ment, Lactobacillus was significantly improved. PPC improves NAFLD possibly by multiple
mechanisms, one of which is restoring the abundance of Lactobacilli in NAFLD mice. Eight
weeks of CDAA diet resulted in a significant reduction of Lactobacilli in the mouse intestines,
while 8 weeks of PPC treatment resulted in a significant recovery of Lactobacilli. Whether
PPC alleviates fatty liver disease by directly restoring the abundance of Lactobacilli or by
indirectly leading to an increase in Lactobacilli needs further investigation.

3. Materials and Methods
3.1. Animal Model

Male C57BL/6 mice aged 6 weeks, SPF grade, were purchased from Pengyue Exper-
imental Animal Breeding Co., Ltd., Jinan, China. All healthy male mice were allowed
1 week of acclimatization before the onset of experiments. All mice were randomly di-
vided into two groups: one group (n = 18) was fed with choline-sufficient, l-amino acid-
defined (Nantong Trophic Feed Technology Co., Ltd., Nantong, China), and another group
(n = 38) was fed with CDAA (Nantong Trophic Feed Technology Co., Ltd., Nantong, China).
After eight weeks of feeding, two mice were selected from the CDAA group to confirm that
the model of fatty liver disease was established successfully by liver section. The group of
mice fed with CDAA was divided into two groups (CDAA/model and PPC groups with
each group consisting of 18 mice), such that the two groups had a comparable average
weight. The mice fed with CSAA (negative control group) and the disease model groups
were intragastrically fed 10 mL/kg of normal saline every day, and the PPC group was
intragastrically fed the same amount of PPC (15 mg/mL, Sanofi Pharmaceutical Co., Ltd.,
Beijing, China). The mice were weighed once a week and treated with PPC for a total of
four weeks. The body weights of the mice in each group were recorded and a two-way
analysis of variance was performed to ensure no significant difference between the two
groups. At the end of the 8 weeks, the mice were fasted for 12 h and sacrificed. The livers
and intestine were rapidly excised and flash frozen in liquid nitrogen. Blood samples were
collected and centrifuged at 14,000× g rpm for 10 min to obtain the serum samples. All of
the serum and tissues samples were stored at −80 ◦C until analysis. The study protocols
were approved by the Institutional Animal Care and Use Committee of Ocean University
of China (OUC-AE-2020).

3.2. Histological Analysis

The liver tissues of mice were immobilized with 4% paraformaldehyde and embedded
in paraffin. The liver was sectioned and stained with hematoxylin and eosin (H&E). To
observe the degree of liver fibrosis, liver sections were stained with a picric acid-Sirius
red solution. To observe lipid precipitation, the liver tissue was frozen in tissue-Tek OCT
(Tissue-Tek, Sakura Finetek, Osaka, Japan) and the sections were stained with oil red
O reagent. All of the histological procedures were performed following the standard
procedures, as indicated in the reagent specifications. All of the images were captured
using an optical microscope (ECLIPSE 80i, Nikon, Tokyo, Japan). Each slice was captured
using two different magnifications of light microscopy; NAS scoring was performed on
each slice.

3.3. Biochemical Indexes Analysis

Commercial kits were used to measure the contents of TG, TC, LDL-C, HDL-C, AST,
and ALT (Changchun Huili Biotech Co., Ltd., Changchun, China) in the mice serum
according to the manufacturer’s instructions.
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3.4. Mice Liver Lipid Analysis

A portion of the dissected liver tissues was ground nine times with anhydrous ethanol.
After centrifugation at 4000× g for 10 min, the supernatants were collected. Commer-
cial kits were used to measure the contents of TG and TC (Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China) in the liver homogenate of the mice, according to the
manufacturer’s instructions.

3.5. Lipidomics Analysis

To evaluate the effect of CDAA feeding on the serum lipidome, lipid extracts of the
mouse sera were analyzed using a UPLC-Orbitrap mass spectrometer (Thermo Scien-
tific, Waltham, MA, USA). Spectral data were analyzed using MSDIAL (ver 4.24, RIKEN
Center for Sustainable Resource Science, Kanagawa, Japan) software, and eight impor-
tant lipid subclasses were identified [38]. A partial least squares discriminant analysis
(PLS-DA) was performed for sample clustering, using the Metaboanalyst 4.0 web portal
(www.metaboanalyst.ca, accessed on 20 May 2022). Serum samples were extracted using
a method reported previously [39]. A volume of 40 µL serum was mixed with 20 µL
internal standard mixture containing lysophosphatidylcholine (LPC) (17:0) and PC (17:0).
Then, 800 µL chloroform/methanol (2:1, v/v) was added and shaken at room tempera-
ture for 30 min. The mixture was centrifuged at 14,000× g rpm/min at 4 ◦C for 10 min.
The less dense lipid phase was collected and dried under a vacuum at 30 ◦C. The lipid
residue was dissolved in 40 µL isopropanol/acetonitrile (1:1, v/v). Ultraperformance liq-
uid chromatography–mass spectrometry (UPLC–MS) lipidomic profiling analyses were
performed on an Agilent 1290 Infinity UPLC system, equipped with a Waters Acquity
UPLC BEH C8 column (2.1 × 50 mm, 1.7 µm particle size; Waters Corporation, Milford,
MA, USA), and coupled to an LTQ Orbitrap XL mass spectrometer (Thermo Scientific).
Gradient elution was employed in the chromatographic separation method using ace-
tonitrile/water (6:4, v/v) containing 10 mM ammonium formate and 0.1% formic acid
(mobile phase A), and acetonitrile/isopropanol (1:9, v/v) containing 10 mM ammonium
formate and 0.1% formic acid (mobile phase B), with the following program: 0–25 min
32% to 97% B, 25–29 min 97% B, and 29–35 min 32% B. The flow rate was maintained at
0.25 mL/min for 35 min. Both positive and negative ionization mode data were collected,
and the mass range was 200–1600 m/z. MS and MS/MS were collected at a resolution
of 70,000 and 17,500, respectively. The electrospray ionization (ESI) conditions were as
follows: capillary voltage and temperature were set at 35 V and 300 ◦C in the positive
and negative modes. Quality control (QC) samples prepared from the pooled sera of mice
were used to monitor the overall quality of the lipid extraction and mass spectrometry
analyses. QC samples were included in the batches of analytical samples during the study.
The average coefficient of variation of major lipids detected in the QC samples was <20%.
The acquired MS and MS/MS spectral data were analyzed using MSDIAL software for
lipid identification according to the instructions in the software tutorial [38,40]. The mass
tolerance was set at 10 ppm.

3.6. Metabolomics Analysis

A volume of 150 µL serum was mixed with 450 µL methanol and vortexed for 30 s.
After centrifugation at 14,000× g rpm at 4 ◦C for 15 min, 500 µL of supernatant was added
to a 1.5 mL centrifuge tube. The supernatant was dried under vacuum at 4 ◦C vacuum.
The residue was dissolved in 100 µL acetonitrile/water (1:1, v/v) and vortexed for 30 s.
The samples were centrifuged at 14,000× g rpm at 4 ◦C for 15 min, and the supernatant
was collected for analysis. The metabolomics analysis was performed using an Agilent
1290 Infinity UPLC system coupled to a Thermo LTQ Orbitrap mass spectrometer equipped
with a heated electrospray ion source (Thermo Scientific, Waltham, MA, USA). Metabolite
extracts were separated on a Waters ACQUITY BEH C18 column (2.1 × 50 mm, 1.7 µm)
with the column temperature maintained at 40 ◦C. The mobile phase was water (A) and
methanol (B), both containing 0.1% formic acid. The sample was eluted with the following
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program: 0–1 min 2% B, 1–9 min 2% B to 98% B, 9–12 min 98% B, 12–12.1 min 98% to 2% B,
and 12.1–15 min 2% B. The flow rate was 250 µL/min, and the sample injection volume
was 8 µL. The mass spectrometer was operated in a positive ionization mode. The full
scan was collected at a resolution of 60,000. The data were imported to Progenesis QI
(Waters, Milford, MA, USA) software for data processing and analysis. Compounds with a
p value < 0.05 and fold change value > 1.5 were considered as metabolites with significant
change. The MS/MS spectra were compared with those from online databases (HMDB:
http://www.hmdb.cal and METLIN: http://metin.scrippsed, accessed on 20 May 2022)
for compound identification.

3.7. Gut Microbiota

With a sterile scalpel, the entire intestine was taken out in a sterile state. The outer
surface of the intestine was cleaned with sterile water. The contents of the intestinal seg-
ment up to 3–4 cm of cecum were cut for the intestinal microbial analysis. Microbial
genomic DNA was extracted from the intestinal contents of the mice using the E.Z.N.A.®

soil DNA Kit (Omega Bio-tek, Norcross, GA, USA), according to the manufacturer’s
instructions. The DNA extract was placed on 1% agarose gel; the DNA concentration
and purity were determined with NanoDrop 2000 UV–VIS spectrophotometer (Thermo
Scientific, Wilmington, DE, USA). The hypervariable region V3–V4 of the bacterial 16S
rRNA gene were amplified with primer pairs 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
and 806R 5′-GGACTACHVGGGTWTCTAAT-3′) by an ABI GeneAmp® 9700 PCR ther-
mocycler (ABI, Foster City, CA, USA). The PCR amplification of the 16S rRNA gene was
performed as follows: initial denaturation at 95 ◦C for 3 min, followed by 27 cycles of
denaturing at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s and extension at 72 ◦C for 45 s,
and single extension at 72 ◦C for 10 min, and ending at 4 ◦C. The PCR mixtures contained
4 µL 5 × TransStart FastPfu buffer, 2 µL 2.5 mM dNTPs, 0.8 µL forward primer (5 µM),
0.8 µL reverse primer (5 µM), 0.4 µL TransStart FastPfu DNA Polymerase, 10 ng template
DNA, and finally ddH2O of up to 20 µL. The PCR reactions were performed in triplicate.
The PCR product was extracted from 2% agarose gel and purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according to the
manufacturer’s instructions and was quantified using a Quantus™ Fluorometer (Promega,
Madison, WI, USA). The purified amplicons were pooled in an equimolar and a paired-end
sequenced on an Illumina MiSeq PE300 platform/NovaSeq PE250 platform (Illumina, San
Diego, CA, USA) according to the standard protocols by Majorbio Bio-Pharm Technology
Co., Ltd. (Shanghai, China). The raw 16S rRNA gene sequencing reads were demultiplexed,
quality-filtered by Fastp version 0.20.0 (HaploX Biotechnology Co., Ltd., Shenzhen, China),
and merged by FLASH version 1.2.7 (Adobe Systems Incorporated, San Jose, CA, USA)
with the following criteria: operational taxonomic units (OTUs) with 97% similarity cut-
off were clustered using UPARSE version 7.1 (Shanghai Infinity Biotechnology Co., Ltd.,
Shanghai, China), and chimeric sequences were identified and removed. The taxonomy of
each OTU representative sequence was analyzed using an RDP Classifier version 2.2 (Ma-
jorbio Bio-Pharm Technology Co., Ltd., Shanghai, China) against the 16S rRNA database
(e.g., Silva v138) using a confidence threshold of 0.7.

4. Conclusions

Non-alcoholic fatty liver disease (NAFLD) is a complex disease arising from both genetic
and environmental factors. Our study showed that the choline-deficient diet could induce mice
to develop severe NAFLD and even NASH. Lipidomics, metabolomics, and gut microbiota
analyses combined with histopathological examination and blood routine examination were
employed to study the protective effect of PPC against CDAA diet-induced NAFLD mice and
its possible mechanisms. The content of major lipids in CDAA diet-induced NAFLD mice
was significantly changed compared with that in normal mice, and PPC treatment improved
these lipid abnormalities to a certain extent, especially for lipids such as PC, LPC, and SM that
are associated with the synthesis of VLDL. Five metabolites were identified to have significant
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changes before and after disease modeling and treatment. The therapeutic effect of PPC on
NAFLD might be related to acylcarnitine metabolism. In addition, the gut microbiota of
the three groups of mice also showed significant differences. Further studies are needed to
elucidate the mechanism of PPC treatment on NAFLD. Our study evaluated the effect of
PPC treatment on an in vivo model of NAFLD, from the perspective of changes in lipidomics,
metabolomics, and the gut microbiota.
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