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Abstract

Background: Experimental autoimmune encephalomyelitis (EAE) models are important vehicles for studying the effect of
infectious elements such as Pertussis toxin (PTx) on disease processes related to acute demyelinating encephalomyelitis
(ADEM) or multiple sclerosis (MS). PTx has pleotropic effects on the immune system. This study was designed to investigate
the effects of PTx administered intracerebroventricularly (icv) in preventing downstream immune cell infiltration and
demyelination of the spinal cord.

Methods and Findings: EAE was induced in C57BL/6 mice with MOG35–55. PTx icv at seven days post MOG immunization
resulted in mitigation of clinical motor symptoms, minimal T cell infiltration, and the marked absence of axonal loss and
demyelination of the spinal cord. Integrity of the blood brain barrier was compromised in the brain whereas spinal cord BBB
integrity remained intact. PTx icv markedly increased microglia numbers in the brain preventing their migration to the
spinal cord. An in vitro transwell study demonstrated that PTx inhibited migration of microglia.

Conclusion: Centrally administered PTx abrogated migration of microglia in EAE mice, limiting the inflammatory cytokine
milieu to the brain and prevented dissemination of demyelination. The effects of PTx icv warrants further investigation and
provides an attractive template for further study regarding the pleotropic effects of infectious elements such as PTx in the
pathogenesis of autoimmune disorders.

Citation: Yin J-x, Tu J-l, Lin H-j, Shi F-d, Liu R-l, et al. (2010) Centrally Administered Pertussis Toxin Inhibits Microglia Migration to the Spinal Cord and Prevents
Dissemination of Disease in an EAE Mouse Model. PLoS ONE 5(8): e12400. doi:10.1371/journal.pone.0012400

Editor: Lishomwa C. Ndhlovu, University of California San Francisco, United States of America

Received April 20, 2010; Accepted July 6, 2010; Published August 25, 2010

Copyright: � 2010 Yin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors thank Arizona Biomedical Research Commission and Barrow Neurological Foundation for their funding support. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jiong.shi@chw.edu

. These authors contributed equally to this work.

Introduction

Experimental autoimmune encephalomyelitis (EAE) is the

primary animal model of multiple sclerosis (MS). The inflamma-

tory reaction in the central nervous system (CNS) is driven by

induction of auto-reactive immune cells which survey and

penetrate the brain [1,2]. The vulnerability of spinal cord and

the progression of deficits from caudal to rostral in EAE has been

attributed to the increased permeability of the blood brain barrier

(BBB) and susceptibility of the distal motor and sensory fibers to

macrophage/microglia mediated demyelination [3,4,5].

There is growing interest regarding the role of pertussis toxin (PTx)

on autoimmunity and disease processes such as acute demyelinating

encephalomyelitis (ADEM) or MS. PTx is an immune adjuvant

utilized to effectively promote inflammation and compromise the

BBB facilitating leukocyte infiltration/migration into the CNS [6,7].

Microglial activation and migration is essential for the develop-

ment of demyelination and clinical symptoms in EAE [8]. There is

considerable evidence of a primary role of microglia in MS as well,

particularly secondary progressive MS [9,10]. Activation of

macrophage/microglia dominates the pathologic picture early in

the course of disease in EAE, before the onset of clinical symptoms

and to a much greater magnitude than T cells [11,12]. Microglia act

as antigen presenting cells (APC) and are responsible for the

subsequent activation and infiltration of T cells [8,13]. Further-

more, they strip and phagocytize myelin stimulating further the

induction of auto-reactive CD4 cells [14,15]. Persistent activation of

microglia plays an important role in the development of local

inflammatory injury, and the timing of this activation is critical to

the progression of autoimmune disease such as EAE.

A time course study in EAE found evidence of two step process

mediating T cell and macrophage infiltration [11]. Initially T cells

and macrophages access the CNS through the ventricular and

meningeal CSF channels. Although there is considerable accu-

mulation of macrophage/microglia and to a lesser extent T cells in

the subpial and subependymal regions of the brain, the vasculature

appears to be uncompromised. Prior to day 7, there is no evidence

of spinal involvement except in the distal meninges of the cord,

PLoS ONE | www.plosone.org 1 August 2010 | Volume 5 | Issue 8 | e12400



presumably where the BBB is limited. However, subsequent

vascular infiltration and associated demyelination, mediated by

macrophage/microglia localize to the distal motor and sensory

fibers of the spinal cord [11]. There is considerable evidence that

PTx prevents the migration of macrophage/microglia localizing

the inflammatory milieu [16]. We hypothesize that confining

inflammatory infiltration to the brain through the intraventricular

administration of PTx would limit downstream infiltration of the

spinal cord. We demonstrate disruption of the BBB and brain

parenchymal infiltration of macrophage and to a lesser degree T

cells on day 7 in the MOG33–55 induced EAE mice after PTx icv.

This results in the attenuation of the spinal cord motor symptoms

with minimal evidence of infiltration or demyelination. Cytokine

concentration and the inflammatory milieu are localized to the

brain. There is considerable interest in the basis of pathologic

targeting in EAE as well as in MS and its variants [17,18].

Manipulating pathogen administration in EAE may provide us

with clues regarding the role of pathogens in the development of

disease as well as in the containment of the monophasic forms.

Materials and Methods

EAE induction and treatment
All experimental procedures were approved by the Institutional

Animal Care and Use Committee of the Barrow Neurological

Institute (Protocol number 309) and performed according to the

Revised Guide for the Care and Use of Laboratory Animals. The

animals were kept in groups on a 12:12 h light/dark cycle with

food and water ad libitum.

EAE was induced in female C57BL/6 mice (6–8 weeks old,

Taconic Laboratory, New York, USA) by subcutaneous injection

with 200 mg myelin oligodendrocyte glycoprotein (MOG35–55;

M-E-V-G-W-Y-R-S-P-F-S-R-V-V-H-L-Y-R-N-G-K, Bio-synthesis

Inc. Lewisville, TX), dissolved in an emulsion of 50 ml of complete

Freund’s adjuvant containing 0.5 mg of heat killed Mycobacterium

tuberculosis (CFA, Difco Laboratories, Detroit, MI) and 50 ml of

phosphate buffered saline (PBS). On the day of immunization (day

0) and 48 h later (day 2), PTx (List Biological laboratories Inc.)

200 ng in PBS was injected into the mouse tail vein [19].

Neurological functional tests were performed by an examiner

blinded to the treatment status of each animal. Functional data were

collected on 7 mouse groups (n = 12/group), 3 PTx icv treatment

groups (EAE+ PTx icv 1000 ng, 400 ng, and 200 ng), 2 EAE

groups (EAE and EAE+ normal saline (NS) icv) and 2 non-EAE

control groups (normal +1000 ng PTX icv and CFA +1000 ng

PTX icv). Neurological assessments were reported using a five-point

standardized rating scale to evaluate motor deficit: 0 no deficit; 1 tail

paralysis; 2 unilateral hind limb weakness; 3 incomplete bilateral

hind limb paralysis and/or partial forelimb weakness; 4 complete

hind limb paralysis and partial forelimb weakness; 5 moribund state

Figure 1. EAE +PTx icv mice developed an attenuated and delayed course of EAE. Clinical scores were evaluated daily in EAE +PTx icv and
control mice and were plotted as the mean 6 S.D (n = 12/group). Maximum clinical scores as well as scores on day 14 and 23 evidence marked
attenuation of disease severity after PTx icv (P,0.01). A dose response to PTx icv is demonstrated as well. Mice receiving lower doses of PTx icv
(400 ng and 200 ng) continued to manifest a dose dependent benefit compared to the EAE controls (P,0.05).
doi:10.1371/journal.pone.0012400.g001
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or death [20]. Scores were measured daily for 23 days. The onset of

disease was calculated by determining the total number of days from

MOG35–55 immunization to the onset of symptoms in individual

animals. Maximal motor scores and motor scores at day 14 and 21

were compared as were onset of disease.

Stereotactic intracerebroventricular injection
Mice were anaesthetized by injection of a ketamine/xylamine

cocktail on day 7 after MOG35–55 immunization and mounted in a

stereotactic device. A fine hole was drilled through the skull giving

access to the surface of the brain 0.7 mm caudal to bregma and

1.0 mm lateral to the sagittal suture. A guarded, 27-gauge 0.5-in

needle was stereotactically inserted, targeting the lateral ventricle

(3.5 mm depth). A 10.0-ml Hamilton 1700 series gastight syringe was

used to inject 2 ml of normal saline, or PTx (500 mg/ml dissolved in

normal saline) into the lateral ventricle over a five-minute period.

Immunohistochemistry
Mice were euthanized at day 7 14 or day 23 post immunization.

Terminally anesthetized mice were intracardiacally perfused with

saline followed by 4% paraformaldehyde. The spinal cord and

brain were embedded in paraffin and cut into serial 6-mm thick

coronal slides. Histological evaluation was performed by staining

with hematoxylin and eosin (H&E), Luxol fast blue/periodic acid

Schiff agent (LFB/PAS), and Bielschowsky silver impregnation to

assess inflammation, demyelination, and axonal pathology,

respectively.

Histological scores assessing the degree of inflammation,

demyelination, and axonal loss in the spinal cord were evaluated

using a semi-quantitative system. In brief, the degree of

inflammation was assessed by counting the number of cellular

infiltrates in the spinal cord. Digital images were collected using an

Axoplan microscope (Zeiss, Thornwood, NY) under bright field

setting using a 40X objective. Severity of inflammatory cell

infiltration on H&E staining was scored using the following scale as

described [21]: 0, no inflammation; 1, cellular infiltrates only

around blood vessel and meninges; 2, mild cellular infiltrates in

parenchyma (1–10/section); 3, moderate cellular infiltrates in

parenchyma (11–100/section); and 4, serious cellular infiltrates in

parenchyma (.100/section).

Serial sections of paraformaldehyde-fixed spinal cord were

stained with Luxol fast blue for myelin and were assessed in a

blinded fashion for demyelination using the following scale [22]: 0,

normal white matter; 1, rare foci; 2, a few areas of demyelination;

3, confluent perivascular or subpial demyelination; 4, massive

perivascular and subpial demyelination involving one half of the

spinal cord with presence of cellular infiltrates in the CNS

parenchyma; and 5, extensive perivascular and subpial demyelin-

ation involving the whole cord section with presence of cellular

infiltrates in the CNS parenchyma. Axonal loss was assessed using

the following scale [23]: 0, no axonal loss; 1, a few foci of

superficial axonal loss which involves less than 25% of the lateral

columns; 2, foci of deep axonal loss and that encompasses over

25% of the lateral columns; and 3, diffuse and widespread axonal

loss. At least six serial sections of each spinal cord from each mouse

were scored and statistically analyzed by ANOVA. Data were

presented as Mean 6 Standard deviation (SD).

Immunohistochemistry was performed with rabbit polyclonal

antibodies against IL-6 (1:2000, #ab6672, Abcam Inc; Cam-

bridge, MA), and TGF-b (1:3000, #ab66043, Abcam Inc;

Cambridge, MA) to identify crucial pro-inflammatory cytokines;

and against ionized calcium binding adaptor molecule 1 (Iba-1,

1:2500, Wako Chemicals Inc. LA) for microglia [16] and glia

fibrillary acidic protein (GFAP, 1:400, Millipore Corporation,

Billerica, MA) for astrocytes. Sections of brain and spinal cord

stained with anti-Iba1 allowed quantification of microglia and

assessment of its morphology. We performed a morphological

analysis of the changes observed and quantified the microglia in

sections of cerebral cortex and spinal cord [24].

Figure 2. T cell proliferation responses to the Ag (MOG35–55 peptide) were assessed in triplicate wells for each experiment. It showed
a significant difference in PTx+ EAE and EAE versus control (* p,0.01). But there was no difference between PTx+ EAE and EAE mice. Results are
expressed as Dcpm (mean cpm stimulated cultures – mean cpm unstimulated cultures). N = 6/group.
doi:10.1371/journal.pone.0012400.g002
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Th17 cells were identified by double immunostaining for

CD4 (1:1600, Chemicon, Temecula, CA), and IL-17 (1:3000,

rabbit mAb, #ab40663, Abcam Inc., Cambridge, MA)

with two fluorescent conjugated secondary antibodies (FITC

conjugated and Texas Red conjugated). Immunolabeling

was detected by applying the peroxidase-antiperoxidase pro-

cedure with 3, 39-diaminobenzidine (DAB) as cosubstrate

[25]. Negative control slides received identical preparations

for immunostaining, except that primary antibodies were

omitted.

Western blot protein analysis
Aliquots of equal amount of proteins were loaded onto a 10%

SDS-polyacrylamide gel. After gel electrophoresis, blots were

subsequently probed with primary antibodies (anti- IL-6, 1:1000

#ab6672, anti- IL-17, 1:3000 #ab40663, anti-TGF-b 1:1000

#ab66043 Abcam Inc; Cambridge, MA). For detection, horse-

radish peroxidase-conjugated secondary anti-rabbit antibody was

used (1:10,000, #7074, Cell signaling technology; Danvers, MA),

followed by enhanced chemiluminescence development (ECL kit,

#34077, Thermo Scientific Pierce, Rockford IL).

Figure 3. Flow cytometry analysis of mononuclear cells from the spleen on day 14. PTx icv does not alter the peripheral lymphocyte
subpopulation in acute EAE. Dot plots of flow cytometry results generated after gating on lymphocytes (by forward and versus side scatter) are
shown for T (CD3+, CD4+, CD8+, CD4+/CD25+ and B (CD32/CD19+) cells. WT = wild type group. Absolute numbers of lymphocyte subpopulation,
macrophage/microglia cells are shown in the following table. n = 6/group. * p,0.05 compared with WT, * * p,0.01 compared with WT.
doi:10.1371/journal.pone.0012400.g003
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Normalization of results was ensured by running parallel

Western blots with b-actin antibody (1:25,000 #ab49900, Abcam

Inc; Cambridge, MA). The optical density was quantified using an

image densitometer (Model GS-670, BioRad, Hercules, CA). The

data are presented as a percentage of target protein relative to

b-actin. A value of p,0.05 is considered significant.

BBB studies
Qualitative (immunohistochemistry) and quantitative (Western

blot) analyses of exogenous rabbit IgG penetration across the BBB

into the CNS were used to evaluate the extent of regional breakdown

of the BBB in EAE and EAE+ PTx icv mice [20]. Normal and PTx

icv (without EAE) were used as controls. Mice were injected

intraperitoneally (i.p.) with 100 mg purified rabbit IgG (Ir-Rb-Gf,

Innovative research, Novi, MI, USA) on day 7 (four hours after PTx

icv in the EAE+ PTx icv group) or day 14. Animals were euthanized

18–19 hours after the injection. For immunohistochemistry, paraffin

embedded sections were probed directly with biotinylated anti-rabbit

IgG (1:100; Vector laboratories, Brulingame, CA). For Western blot,

the horseradish peroxidase-labeled anti-rabbit antibody (1:5000, Cell

Signaling Technology, Davers, MA) was used.

T cell proliferation assays
Animals were sacrificed on day 14. Mononuclear cells were

isolated from the spleen and were suspended in culture medium

containing DMEM supplemented with 1% penicillin-streptomycin

and 10% (v/v) FBS (Invitrogen Life Technologies). Mononuclear

cells were then seeded onto 96-well plates at a concentration of

46105 cells/well. Ten microliters of MOG35–55 peptide (10 mg/

ml), PLP139–151 peptide (10 mg/ml), or Con A (5 mg/ml; Sigma-

Aldrich) were then added in triplicate into the wells. After 3 days of

incubation, the cells were pulsed for 18 h with 10-ml aliquots

containing 1 mCi of [methyl-3H] thymidine (42 Ci/mmol; Amer-

sham Biosciences). Cells were harvested onto glass fiber filters, and

the thymidine incorporation was measured. The results were

expressed as Dcpm (DCPM) (mean cpm stimulated cultures –

mean cpm unstimulated cultures) [19].

Flow cytometry analysis
To evaluate the frequency of CD4+, CD8+, CD4+/CD25+,

CD32/CD19+, CD45+/CD11b+ cells, spleen mononuclear cell

culture was prepared from each group on day 14 (the peak of auto-

immune response). Single cell suspensions (26106 cells/5 ml BD

tube) were incubated with combinations of fluorescent antibodies,

for 30 min at 4uC: CD3 (17A2), CD19 (1D3), CD4 (GK 1.5), CD8

(53–6.7), CD25 PC61.5), CD11b (M1/70), and CD45 (RA3-6B2).

The indicated antibodies were fluorescently tagged with either

FITC, PE, allophycocyanin, PE-Cy5, PE-Cy7 or APC-Cy7. All

purchased from BD Pharmingen. After incubation, each suspen-

sion was washed twice (400 g, 5 min, 4uC) with PBS containing

2% bovine serum albumin (BSA) and was resuspended in PBS

with 0.5% of paraformaldehyde. Appropriate isotype controls

were included. All samples were analyzed on Accuri C6 Flow

Cytometer (Accuri Cytometers Inc, USA). Data were analyzed on

CFlow Plus software. The number of mononuclear cells per mouse

spleen was counted on hemocytometer and the absolute number of

a cell subset was calculated based on the percentage of cells stained

for the appropriate markers [19].

Cytokine quantification by Enzyme-Linked
Immunosorbent Assay (ELISA)

To assess cytokine expression, spleen mononuclear cells were

prepared as described above. Suspensions were incubated in

RPMI-1640 medium at 37uC for 2 days (26106 cells/well) with or

without antigens (MOG35–55 10 mg/ml or Con A 5 mg/ml,

Sigma,USA). Supernatants were collected and aliquoted in 96-well

plate precoated with antibodies to Interferon c (IFN- c), Tumor

Necrosis Factor a (TNF-a), Interleukin-2 (IL-2), Interleukin-4

(IL-4), Interleukin-6 (IL-6) and Interleukin-10 (IL-10) (ELISA

MaxTM Set Deluxe, BioLegend Inc. San Diego, CA). Optical

density was measured at 450 nm on Model 680 Microplate Reader

(Bio-Rad Laboratories, Corston,UK). The optical density was

quantified by GraphPad Prism 4 (GraphPad Software,Inc) using

the standard curve provided by the manufacturer [19].

Primary microglia cell culture
Cortical tissue was harvested from 0 or 1-day-old C57/BL6

mouse pups (Taconic, Hudson, NY). Meninges and visible

vasculature were removed under a dissecting microscope. Cortical

tissue was digested in the DMEM/F12 media (Invitrogen

Corporation, CA) containing 0.25% trypsin and EDTA (1 mM)

at 37uC for 15 minutes. The digested tissue was resuspended in

20 ml media containing DMEM/F12 supplemented with 15%

heat inactivated fetal bovine serum, 5% Horse serum (Sigma, St.

Louis, MO) and 1% Penicillin-Streptomycin and filtered through a

70-mm nylon mesh (BD Biosciences, San Jose, CA). The cells were

washed and seeded in a 75 cm2 flask in fresh culture medium (3–

4 Pups/per flask). The purity of the microglia cultures was assessed

by double-immunostaining with microglial special markers anti

Ionized calcium binding adaptor molecule 1 (Iba-1, 1:2500, Wako

Chemicals Inc. LA) and glia fibrillary acidic protein (GFAP, 1:400,

Millipore Corporation, Billerica, MA). The purity of this primary

microglia cell culture is about 90–95% [26].

Microglia migration assay
The migration of microglia in vitro was determined by using

Transwell (pore size 8-mm, Corning, VWR, San Dimas, CA). Cell-

free DMEM/F-12 media (0.8 ml) with or without IFN-c (20 ng/

ml, BD Biosciences, San Jose, CA) was placed in the lower

chamber. Microglia suspension (0.1 ml, 56104 cell/per well) was

placed in upper chamber and incubated with or without PTx

(100 ng/ml, Campbell, CA) for 24 hours at 37uC. The inserts

were then removed and the upper surface was carefully cleansed

with cotton pads. Cells on the lower surface were air dried and

stained for microglia. Microglial migration was quantified and

compared among the groups by counting the number of cells that

migrated through the membrane to the lower chamber. Five

random fields at 40X fields were counted for each condition under

Table 1. Splenocytes from EAE and EAE+ PTx mice expressed
elevated levels of TNF-a, IFN-c, IL-2, IL-6, and IL-4 compared to
WT controls.

pg/ml WT EAE EAE+PTx

TNF-a 3.060.9 46.762.0* 49.361.9*

IFN-c 9.968.9 2385.96556.9* 2636.26186.9*

IL-2 5.460.6 105.9626.0* 138.2623.1*

IL-6 14.163.8 1144.06211.5* 1047.06186.1*

IL-4 1.360.4 170.9662.5* 144.3611.3*

There was no significant difference in cytokine production in EAE and EAE+ PTx.
* P,0.001, compared with WT. Abbreviation: WT: wild type, EAE: Experimental
autoimmune encephalomyelitis model group, EAE+ PTx: EAE mice with cerebral
ventricle injection of Pertussis toxin (PTx).
doi:10.1371/journal.pone.0012400.t001
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a phase contrast microscope. Each experiment was repeated three

times. Results were shown as the cells counted per 40X field [27].

Statistical analysis
Data were analyzed with SPSS version 10 for windows. The two-

way analysis of variance was applied to determine the significance of

the difference among the experimental groups. Kruskal-Wallis

nonparametric analysis was used for data presented as percentage.

The Mann-Whitney U test was used when Kruskal-Wallis showed

significance among groups. P,0.05 was considered significant.

Results

1. PTx icv prevents against dissemination of motor
deficits in EAE and has a dose effect

PTx icv (1000 ng) delayed the onset of motor symptoms

(11.660.64 versus 8.560.75, p,0.05) and decreased the severity

of motor impairment (maximal clinical score 0.3560.07 vs.

3.2560.37, p,0.01) (Fig. 1). We evaluated whether there was a

dose effect associated with administration of PTx icv (200 ng,

400 ng, and 1000 ng). There was a significant dose effect. The

1000 ng group provided a significantly greater therapeutic

response than the 400 ng, and the 400 ng greater than the

200 ng (p,0.05) which also provided a significant therapeutic

response relative to EAE (p,0.05) (Fig. 1).

To control for potential effects of icv administration, EAE mice

were treated with same volume of normal saline icv (EAE +NS

icv). Motor deficits were unchanged compared to EAE alone

(Fig. 1). To determine whether the effects of the spinal cord lesion

could be alleviated following symptom onset, PTx icv was

administered immediately after the onset of measurable motor

deficits (clinical score.0.5; day 9+ post MOG35–55 inoculation).

The delayed administration did not alter the clinical course of

EAE (n = 6; data not shown).

2. The variation in clinical disease is not due to
differences in auto-reactive T cell priming

To investigate whether an enhanced expansion of auto-reactive

T cells could be responsible for the observed clinical differences in

EAE versus EAE +PTX icv, T cells were re-challenged with

MOG35–55 in vitro. No differences were observed between EAE

and EAE +PTX icv regarding the capacity of T cells to proliferate

in response to recall antigen (Fig. 2). Furthermore there was no

difference in T cell subpopulations (CD4+, CD8+, CD4+/CD25+),

B cell (CD32/CD19+), and macrophage/microglia (CD45+/CD

11b+) (Fig. 3). Nor is there a pattern shift in Th1/Th2 between the

two groups (Table 1).

3. PTx icv attenuates spinal cord leukocyte infiltration
and demyelination in EAE

On day 14 and 23, H&E staining in the cross-sectional of the

spinal cord of EAE mice showed widespread infiltration of

inflammatory cells in the spinal cord (Fig. 4D–F). In contrast,

EAE+PTx icv mice exhibited markedly decreased infiltration of

inflammatory cells in the spinal cord on day 14 and 23. (Fig. 4A–

C, Table 2).

To determine the degree of demyelination, we stained sections

of spinal cord with Luxol fast blue and observed widespread

demyelination zones in the white matter of the spinal cord of

EAE mice on day 14 and 23 (Fig. 4H). In contrast, on day 14 and

23, mice that received PTx icv had minimal evidence of

demyelination indicated by a markedly attenuated course of

disease (Fig. 4G, Table 2). Marked axonal loss characterizes the

MOG35–55 model of EAE, and this is evident in the spinal

sections of the EAE mice assessed with Bielschowsky silver

impregnation. Attenuation of axonal injury is evidenced in EAE

+PTx icv mice (Table 2).

4. PTx icv increases BBB permeability in EAE
We determined BBB integrity by localizing rabbit IgG in the

CNS in EAE and EAE +PTx icv before (day 7) and during

the peak (day 14) of symptomatic disease. On day 7, rabbit IgG

immunoreactivity was observed in the brains of EAE +PTx icv

but not in EAE mice (Fig. 5, 6). In the spinal cord no

immunoreactivity was observed in either group. On day 14,

EAE mice demonstrated immunoreactivity diffusely throughout

the parenchyma of the spinal cord with minimal evidence of

reactivity in the brain. EAE +PTx icv mice showed rabbit

IgG immunoreactivity in the brain, but not in the spinal cord

(Fig. 5, 6).

To control for potential effects of PTx on BBB integrity,

separate from its exacerbation of EAE related inflammation, mice

were treated with 1000 ng PTx icv but were not exposed to

MOG35–55. In contrast to EAE +PTx icv mice (Fig. 5, 6), mice that

received only PTx icv exhibited no accumulation of rabbit IgG in

the brain or the spinal cord (data not shown). Thus, the BBB

Figure 4. Attenuation of the progression of inflammation and tissue injury in the CNS of mice that received PTx icv. Pathological
examination of spinal cord sections from EAE +PTx icv and EAE mice were performed at 7, 14, and 23 days post EAE induction to evaluate CNS
inflammation, demyelination and axonal damage. In EAE +PTx icv mice, the number of immune-cell infiltrates (H&E staining, Fig. 4A–C) and
demyelination (Luxol fast blue staining, Fig. 4G) were both significantly reduced at day 14 and 23 post EAE induction. Representative day 14 images
of H&E staining (A–F) and LFB/PAS staining (G, H). B and C were inserts in A; E and F were inserts in D. Original magnification 640 in A, D, G and H;
6200 in B, C, E, F, and inserts in G and H.
doi:10.1371/journal.pone.0012400.g004

Table 2. Histopathological analyses of inflammatory
parameters, demyelination and axonal damage in the spinal
cord of C57BL/6 mice at 7, 14, and 23 days after MOG35–55 EAE
induction.

EAE EAE+PTx icv P value

Inflammation (H&E)

day 7 0.2560.27 0.0860.20 0.260

day14 3.3360.75 1.3360.75 0.001*

day 23 3.4260.58 1.3360.68 ,0.001*

Demyelination (Fast blue)

day 7 0.2560.27 0.0860.20 0.260

day 14 3.6660.98 0.8360.98 0.001*

day 23 3.7560.93 1.1660.98 0.001*

Axonal loss (silver staining)

day 7 0.8360.20 0.0460.10 0.664

day 14 2.4260.86 0.6660.51 0.002*

day 23 2.5860.97 0.5860.49 0.001*

Data were presented as Mean 6 SD.
doi:10.1371/journal.pone.0012400.t002
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Figure 5. Rabbit immunoglobulin G (IgG) penetration into the frontal lobe parenchyma and thoracolumbar spinal cord in control,
EAE, and EAE +PTx icv (n = 7/group). Normal +IgG: age-controlled normal mice without EAE receiving a single i.p. injection of rabbit IgG (100 mg/
mouse). 7 days EAE: EAE mice on day 7 post immunization; no penetration of rabbit IgG observed in the brain or spinal cord. 14 days EAE: EAE mice on
day 14; marked penetration of rabbit IgG noted in both brain and spinal cord. 7 days EAE +PTx: EAE +PTx icv mice on day 7 post immunization; marked
penetration of the brain, but no penetration of the spinal cord. 14 days EAE +PTx: EAE +PTx icv mice on day 14 post immunization, continued evidence of
brain penetration, no penetration of the spinal cord. Note the dramatic opening of the BBB on Days 7 in EAE +PTx icv group relative to EAE on day 7.
doi:10.1371/journal.pone.0012400.g005
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breakdown described above was caused by the effect of PTx icv in

the context of EAE.

5. PTx icv preferentially induces the development of
myelin-reactive Th-17 cells in the brain

T helper cell lineage development depends on local cytokine

milieus and specific immune factors. Emerging evidence supports

the pathonogmonic role of Th-17 cells in EAE and the role of PTx

in the induction of Th-17 [28]. For the Th-17 cells, TGF-b and

IL-6 drive the initial lineage commitment. We quantified the Th-

17 cell concentration in our model after PTx icv was administered.

In the spinal cord, the presence of IL-17 CD4 cells was rare and

limited to the meninges in the EAE +PTx icv mice (Fig. 7A–C),

whereas a considerable number of Th-17 cells were identified in

the spinal parenchyma of the EAE mice (Fig. 7D–F). The protein

levels of IL-17, IL6 and TGF-b (Fig. 7G–I) were significantly

Figure 6. The western blot depicts measures of rabbit IgG. Lane 1: purified rabbit Ig G as the positive control; lane 2–7 correlates the plotted
graph below. Statistical evaluation of optic density (OD) normalized to b-actin was obtained for each group. Mean 6 SD are depicted (n = 7 per
group). *P,0.01, compared with normal control; **P,0.01, compared with normal control group and EAE.
doi:10.1371/journal.pone.0012400.g006
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elevated in the spinal cord of the EAE relative to the EAE +PTx

icv mice (p,0.05), correlating the spinal cord pathology in EAE

mice.

In the brain, the EAE +PTX icv mice exhibited infiltrating

leucocytes which stained positive for CD 4 and IL-17. The

majority of these colocalized cells were in the periventricular white

matter, confirming the infiltration of proinflammatory of Th-17

cells induced by PTx icv. Whereas, in the EAE alone mice, the

presence of Th-17 cells in the brain was limited to the meninges.

The protein level of IL-17, IL-6, and TGF-b were significantly

elevated in the brain of EAE+ PTx icv mice, relative to the

controls and the EAE alone mice (Fig. 8) (p,0.05). In normal

control and CFA+ PTx icv groups, no IL-17+ cells were detected

in brain.

Figure 7. Inflammatory cytokines and cells in the spinal cord of EAE and EAE +PTx icv mice (n = 6/group). IL-17+/CD4+ cells were
detected in the meninges of the spinal cord in the EAE +PTx icv mice (A–C), whereas these cells were diffusely identified in the spinal parenchyma in
the EAE mice (D–F). Original magnification 6400. The western blot depicts measures of IL-17 (G), IL-6 (H) and TGF-b (I). In the spinal cord, elevated
levels of all three were identified in the EAE mice relative to the EAE +PTx icv mice. Statistical evaluation of optic density (OD) normalized to b-actin
was obtained. Mean 6 SD are depicted (n = 6 per group). *P,0.05, compared with normal control group; #P,0.05, compared with EAE group.
doi:10.1371/journal.pone.0012400.g007
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6. PTx icv retains macrophage/microglia and to a lesser
degree T cell infiltration to the brain preventing
dissemination to the spinal cord

The most salient finding of PTx icv on day 7 post immunization

was the parenchymal infiltration of macrophage/microphage

(Iba1), and to a lesser magnitude T cell (CD4), in the brain

(Fig. 9). In the brain of EAE+ PTx icv mice, anti-Iba1 antibody

reacted strongly with amoeboid-shaped cells, corresponding to

activated microglia on day 7. Wild type controls manifest ramified

or resting microglia; whereas EAE mice manifest intermediate

responsiveness and ramification (Fig. 9-C, D, F). In contrast, the

spinal cord of EAE mice showed amoeboid-shaped cells that

stained strongly with anti-Iba1 antibody, corresponding to

activated microglia (Fig. 9-A, B, E). To further determine the

effect of PTx on microglia migration, we utilized the Transwell to

assess in vitro migration. PTx significantly inhibited the migration

of microglia with and without IFN-c stimulation (Fig. 10).

Discussion

Several studies in different animal models have demonstrated

that macrophage/microglia activation and infiltration are essential

for the development of clinical EAE [29,30,31]. This has been

verified in numerous studies which traced the therapeutic effects to

the disruption of macrophage/microglia function [15,32,33].

Macrophage cells differentiate into both microglia-like and

dendritic-like cells in the CNS during EAE [34]. They function

as antigen presentation cells to the encephalitogenic T cells

[13,35]. Macrophage/microglia strip off myelin from axons and

through receptor mediated pathways phagocytize myelin [36,37].

Activated microglia through the production of a proinflammatory

milieu disrupt the blood-brain barrier (BBB) integrity, attract and

activate of T cells and monocytes which augments the destruction

of myelin [33].

Time course studies on MOG induced EAE indicate that

immune cell initiation of EAE occurs in stages and inflammatory

interactions among resident microglia, invading T lymphocytes

and neuronal elements occur prior to the onset clinical EAE in

lawful temporal and spatial relationship to one another [11]. Their

emergence before the onset of EAE clinical symptoms and their

localization in the inflammatory lesions indicate that they play a

major role in the initiation and progression of EAE [38].

The earliest stage of EAE, appears to occur on and prior to day

7 (prior to the onset of clinical features), is characterized by a

Figure 8. The western blot depicts measures of IL17 (A), IL6 (B) and TGF-b (C) in the brain of EAE +PTx icv compared with in EAE
alone mice as well as controls. Statistical evaluation of optic density (OD) normalized to b-actin was obtained. Mean +/2 SD are depicted (n = 6
per group). *P,0.05, compared with normal control group; #P,0.05, compared with EAE group.
doi:10.1371/journal.pone.0012400.g008
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marked accumulation of activated macrophage/microglia in the

sub-ependymal (periventricular) and subpial regions of the brain

parenchyma. The presence of limited infiltration in these regions

and the sparing of vascular structures indicates this stage involves

modest infiltration primarily through CSF venues. Furthermore, T

cell presence considered primary in the development of EAE is

modest compared with the accumulation of macrophage/microg-

lia suggesting a greater T cell stimulatory role of microglia possibly

involving their APC potential [11]. This is supported by evidence

that subsequent stages (. = 10–14 d) are distinguished by more

pronounced infiltration of T cells which define inflammatory foci

as well as the onset of motor symptoms [11,38].

The findings described above in our studies and others indicate

that the initial APC and T-cell recruitment in EAE occurs at the

meninges and choroid plexus rather than at the vasculature and

suggested that the inflammatory responses in the form of

microglial activation at distal levels of afflicted pathways might

be involved in subsequent macrophage and T cell transit across

the vasculature in the spinal cord [11]. After PTx icv however,

rapid disruption of the BBB in the brain was detected indicating

macrophage and T cell transit across vasculature. PTx icv early in

the course of disease prevented downstream disruption of the BBB,

whereas later administration (. = 10–14 days) did not alter the

course of disease in the spinal cord. This indicates a time

dependent cascade mechanism regarding prevention of down-

stream vasculature compromise.

PTx has a multitude of effects on the immune system. In EAE, the

animal model for MS, it has been considered an immune adjuvant

responsible for a more severe course of disease and the induction of

disease in animals not previously susceptible [39]. PTx degrades of

integrity of the BBB, activates microglia, and induces the infiltration

of effector T cells and macrophages creating a proinflammatory

milieu of cytokines [28,39,40]. However, there is considerable

evidence that PTx through its direct effect on T cells and antigen

presenting cells (APC) inhibits the migration of immune cells

preventing dissemination of inflammation [41].

Figure 9. Anti-Iba1 immunostaining of spinal cord and brain of WT, EAE and EAE + PTx icv mice. Brain and spinal cord sections were
immuno-stained at 7 days post MOG immunization with the anti-Iba1 antibody. A: Low-magnification image of spinal cord section (Scale
bar = 200 mm). The anti-Iba1 antibody reacted strongly with amoeboid-shaped cells, corresponding to activated microglia in the spinal cord of EAE
mice. This was significantly less prominent in the EAE+ PTx icv mice. In WT controls, the antibody also effectively, but rather weakly, recognized
ramified or resting microglia; these cells have small bodies and finely branched processes. B: High-magnification image of the spinal cord sections
(Scale bar = 50 mm). C: Low-magnification image of cerebral cortex (Scale bar = 200 mm). The anti-Iba1 antibody reacted strongly with amoeboid-
shaped cells, corresponding to activated microglia in the brain of EAE+ PTx icv mice. WT controls manifest ramified or resting microglia; whereas EAE
mice manifest an intermediate stage. D: High-magnification image of the brain sections (Scale bar = 50 mm). E-F. Microglia were quantified and
compared among the groups by counting the number of cells in the field. Five random fields at 40X fields were counted for each condition under a
digital axoplan microscope. Results were shown as the cells counted per 40X field. * p,0.05 compared with wt; * * p,0.01, Compared with EAE.
doi:10.1371/journal.pone.0012400.g009
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In this study we demonstrate that PTx icv prevents the

dissemination of disease into the spinal cord. PTx icv administered

on day 7 inhibits the migration of macrophage/microglia

mitigating further infiltration and evidence of inflammation and

demyelination distally. Our studies confirm evidence of microglial

infiltration in the brain early in the course of disease (day 7), in

both the EAE and EAE +PTX icv model. However, in the EAE

model the infiltration is limited in magnitude and location to the

subpial and subependymal regions of the brain, whereas in the

EAE +PTX icv model the microglial are prolific throughout the

brain parenchyma. It has been hypothesized that downstream

accumulation of macrophage/microglia stimulated by Wallerian

degeneration which begins rostrally and is responsible for the distal

vasculature mediated infiltration and ascending paralysis. Our

data suggests that arrest of microglia migration rostrally prevents

degeneration and spinal cord infiltration distally by retaining

microglia locally abrogating dissemination to the spinal cord.

Our study applied PTx icv to an in vivo model to determine the

effects of early icv administration of PTx on microglia migration,

BBB integrity, lymphocyte infiltration, and subsequent demyelin-

ation and dissemination of the disease. Our PTx+EAE model

reflects some key features of multiple sclerosis lesions and provides

a novel approach to study the mechanism responsible for the

localization of demyelinating lesion in the brain versus spinal cord.

It may also provide a model to investigate the variable nature of

lesions in diseases such as relapsing remitting MS and indicate why

the development of lesions in one region of the neuroaxis may

temporarily preclude the lesions elsewhere. Finally this model

encourages the investigation of the pleotropic effects of infectious

elements such as PTx in the pathogenesis of MS and other

autoimmune disease.
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