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Abstract.—Understanding variation in rates of evolution and morphological disparity is a goal of macroevolutionary
research. In a phylogenetic comparative methods framework, we present three explicit models for linking the rate of evolution
of a trait to the state of another evolving trait. This allows testing hypotheses about causal influences on rates of phenotypic
evolution with phylogenetic comparative data. We develop a statistical framework for fitting the models with generalized
least-squares regression and use this to discuss issues and limitations in the study of rates of evolution more generally. We
show that the power to detect effects on rates of evolution is low in that even strong causal effects are unlikely to explain more
than a few percent of observed variance in disparity. We illustrate the models and issues by testing if rates of beak-shape
evolution in birds are influenced by brain size, as may be predicted from a Baldwin effect in which presumptively more
behaviorally flexible large-brained species generate more novel selection on themselves leading to higher rates of evolution.
From an analysis of morphometric data for 645 species, we find evidence that both macro- and microevolution of the beak
are faster in birds with larger brains, but with the caveat that there are no consistent effects of relative brain size.[Baldwin
effect; beak shape; behavioral drive; bird; brain size; disparity; phylogenetic comparative method; rate of evolution.]

Rates of evolution are highly variable. While some
species and traits remain nearly unchanged for tens
of millions of years, others undergo dramatic shifts in
mere dozens of generations (Simpson 1944; Eldredge
and Gould 1972; Hendry and Kinnison 1999; Schluter
2000; Gould 2002; Hendry et al. 2008; Uyeda et al. 2011;
Hunt and Rabosky 2014; Gingerich 2019; Reznick et al.
2019; Voje et al. 2020; Zelditch et al. 2020). Explaining
these differences is a key challenge for a theory of
macroevolution (e.g., Hansen and Houle 2004; Eldredge
et al. 2005; Estes and Arnold 2007; Bell 2012; Hansen 2012;
Arnold 2014; Jablonski 2017a,b). Yet, the majority of work
on rates of trait evolution is descriptive and lacking in
quantitative hypotheses and statistical methods derived
from first principles.

While substantial progress may have to wait for a
more mature quantitative theory of macroevolutionary
change, it is important to move beyond mere description
toward testing hypotheses about factors influencing
rates of evolution. Model-based phylogenetic
comparative methods provide a framework for such
tests. The models that are used to translate phylogenetic
relationships into the statistical covariances needed
for statistical analysis usually depend on parameters
related to rates of evolution. In particular, the commonly
used Brownian-motion model includes trait-specific
rates of “diffusion” that are estimated as a part of the
analysis. These can be used to estimate rates of evolution
in different traits or directions of morphospace (e.g.,
Felsenstein 1985; Lynch 1991; Adams 2013). Methods
have been developed to estimate the Brownian diffusion
rate in different parts of the phylogeny, and this allows
testing for clade differences in rates of evolution
(Garland 1992; Martins 1994; McPeek 1995; Gittleman

et al. 1996; O’Meara et al. 2006; Thomas et al. 2006;
Revell 2008; Revell and Harmon 2008; Eastman et al.
2011; Revell et al. 2011; Beaulieu et al. 2012; Adams 2014;
Fuentes et al. 2016; Weir and Lawson 2016; Caetano and
Harmon 2019; May and Moore 2020). Such approaches
make it possible to obtain and compare estimated rates
of evolution from standard comparative data (e.g.,
Pie and Meyer 2017; Alhajeri and Steppan 2018; Chira
et al. 2018; Revell et al. 2018). Estimated rates can then
be used as data in further analyses to test hypotheses
about causes of rate differences, but this approach
entails statistical and interpretational difficulties in
dealing with estimation error and linking rates with
explanatory variables. What is lacking are methods for
combining rates of evolution with explanatory variables
that are themselves treated as evolving entities in a
common model. This would allow direct estimation of
causal links in a statistical framework that accounts for
stochasticity in both response and predictor variables.

Here, we explore some stochastic-process models for
estimating the relationship between rates of evolution
in a quantitative trait, formalized either as the diffusion
parameter of a Brownian motion or as the variance of
recent deviations from a phylogenetic prediction, and
potential explanatory variables modeled as evolving
quantitative traits on the phylogeny. We illustrate the
models with an analysis of rates of evolution in bird
beaks based on data from Cooney et al. (2017) and Chira
et al. (2018). We relate these rates to measures of absolute
and relative brain sizes, thus revisiting the classical
analyses of Wyles et al. (1983) to test whether evolution
is speeded up by increased behavioral flexibility due to a
Baldwin effect (e.g., Baldwin 1896; Popper 1972; Wilson
1985). We argue that the classical tests of this hypothesis
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were inadequate, but that current data based on orders
of magnitude more species, accurate phylogenies, and
better statistical approaches now make it feasible to test
such hypotheses.

THEORY

Models for Testing Macroevolutionary Hypotheses
about Rates

In contrast to standard models used in comparative
methods for continuous traits, most of our models will
not be Gaussian, meaning that the resulting distributions
of the traits will not be normal (Gaussian). This
complicates statistical analyses as standard statistics
based on normal distributions cannot be used.
Additionally, the joint probability distributions are hard
to derive, and this rules out exact likelihood or Bayesian
approaches. It is possible, however, to characterize the
distributions by deriving moments. This allows the
use of methods-of-moments estimators and generalized
least squares, which do not require exact distributional
assumptions. Approximate and numerical likelihood
approaches are also possible but will not be explored
here.

For each model, we will start by deriving moments
of the trait distributions after a time interval t. We
then use this to motivate a regression-based estimator
of the influence of a predictor x on the rate of
evolution of a trait y. Because the state of a Brownian
motion is uncorrelated with its own linear deviation
from the starting point, this will take the form of
a regression of the squared trait deviation on the
predictor. We then derive the variances and covariances
of the relevant functions for phylogenetically related
species, and use this to characterize the residual
variance matrix for the regression. This forms the
basis for generalized least-squares (GLS) estimation.
We present three models that are all based on the
assumption that the variance of the evolutionary rate is
linear in the predictor. This assumption helps generate
approximately linear regressions of y2 on x and will
often be a reasonable choice because independent
components act additively on the variance scale. Some
microevolutionary models also predict approximate
additive effects of microevolutionary parameters on
variances of change (Bolstad et al. 2014).

Model 1: Predictor Evolves as a Brownian motion
In this model, the response variable, y, follows a

Brownian motion with a rate variance that is a linear
function of the predictor variable, x, which itself follows
a standard Brownian motion with constant variance, �2.
The model is

dy=
√

a+bxdW1,

dx=�dW2,
(1)

where the dWi are uncorrelated white noise, and we
assume that the initial conditions are y0 =x0 =0. The
influence of x on the rate of evolution in y is characterized
by the parameter b, and the goal is to find an estimator
of b. This model breaks down when a+bx becomes
negative, and should be seen as an approximation that
may be valid for the range of x values spanned by the
species to be used in the analysis.

As there is no causal influence of y on the evolution of
x, the unconditional distribution of x is Gaussian with
mean equal to the initial condition, x0, and variance
equal to �2t, where t is the time from the root to the
tip of the phylogeny. The moments of y and the cross-
moments between y and x are derived in Appendix A.1
by stochastic integration. This reveals that y and x are
indeed uncorrelated, but the squared deviation of y from
its mean is correlated with x as

Cov[y2,x]= b�2t2

2
, (2)

which suggests that a regression of y2 on x can be used
to estimate the b-parameter. In Appendix B.1, we show
that the best linear predictor of the species vector of y2

from the species vector of the x-variable is(
a−vy

)
1+b

(
I− 1

2
(
T◦T

)
T−1

)
x, (3)

where x is the column vector of species predictor
variables, 1 is a column vector of ones, I is the identity
matrix, T is the matrix of shared branch lengths
between all the species pairs, ◦ denotes Hadamard (i.e.,
elementwise) multiplication, and vy is the error variance
in the prediction of the root value of the y-variable. This
model assumes an ultrametric phylogeny scaled to unit
height and that the x and y variables are centered on
their predicted values. The residual variance matrix for
this model is

Var[r]=4avyT+2
(

a2 +b2vx

)
T◦T

+b2�2
(

T◦T◦T− 1
4
(
T◦T

)
T−1(T◦T

))
, (4)

where vx is the variance in the predicted root value used
to center the x-variable. Equations 3 and 4 can be used
to estimate the parameters a and b in an iterated GLS
procedure conditionally on the phylogeny and previous
estimates of the �2, vy, and vx. The units of the regression
parameters are [a]=[y2] and [b]=[y2/x].

Model 2: Predictor Evolves as a Geometric Brownian motion
In Model 1, we assumed that the predictor x follows

a Brownian motion. This yields simplicity and may
be realistic in many cases, but there are also cases in
which this assumption is problematic. In particular,
many candidate predictor variables will be on ratio scale
types. Such variables must be positive and tend to follow
multiplicative dynamics, which is incompatible with
Brownian motions. The usual solution to this problem is
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log transformation, as the logarithm of a multiplicative
process may follow additive dynamics compatible with
Brownian motions, but this does not solve the problem if
the causal influence of the predictor variable on the rate
of evolution is linear on the original scale. To deal with
such situations, we use the model

dy=
√

a+bxdW1,

dx= 1
2�2xdt+�xdW2,

(5)

where x follows geometric Brownian motions, which is
equivalent to Brownian motions of the logarithm of x.
We again assume that the y-variable is centered on an
unbiased predictor of its root value. We also assume
that the x-variable is standardized with an unbiased
predictor of its logarithmic root value. In this model, y is
also uncorrelated with x (and any power of x), but after
a time interval t,

Cov[y2,x]= 2b
3�2

(
e2�2t +2e

1
2�2t−3e�2t

)
, (6)

which shows that the b-parameter can be estimated from
a regression of the squared y-variables on the x-variables.
In Appendix B.1, we show that the best linear predictor
of the vector of squared y-variables from the vector of
x-variables is(

A−vy
)
1+ 2b

�2

(
I− 2

3
e− 1

2 �2
[
e

3
2 �2ta −1

][
e�2ta −1

]−1
)

x,

(7)

where x is centered on its predicted mean (see Appendix
B.1), [f(ta)] denotes a matrix in which the ij’th element
is f(ta) with ta being the shared branch length between
species i and j on the phylogeny, and A is an intercept
equal to a minus a correction term given in the appendix.
We have again assumed an ultrametric phylogeny scaled
to unit height (t=1).

The residual variance matrix for this model is

Var[r]=4avyT+ 8bvye
1
2 vlnx

�2

[
e

1
2�2ta −1

]

+2a2T◦T+ 8abe
1
2 vlnx

�2 T◦
[

e
1
2�2ta −1

]
+ 2b2e2vlnx

�4

(
8
3

[
e2�2ta −e

1
2�2ta

]
−
[
e2�2ta −1

]
−8

9

[
e

3
2�2ta −1

][
e�2ta −1

]−1
[

e
3
2�2ta −1

])
,

(8)

where vlnx is the error variance in predicting lnx0, the
root value of the x-variable on log scale. Note that �2

for this model is the predicted variance of the natural
logarithm of x across the tips of an ultrametric phylogeny
scaled to unit height.

The regression is not linear in the sense that the
covariance of y2 with higher powers of the predictor are

not zero, but these tend to zero as �2 increases. In the
simulations, however, we found some bias when �2 =2,
but not for �2 ≤ 1. Nevertheless, if �2 is below 0.5 or so,
it may be better to use the simpler Model 1 since the
multiplicative dynamics of a ratio-scale variable with
moderate variation can be approximated with additive
dynamics and Brownian motions.

Model 3: Predictor Affects Rates of Recent Microevolution
In a large data set of morphological traits, Uyeda

et al. (2011) observed that recent microevolution was
largely decoupled from macroevolution in a so-called
“blunderbuss” pattern. The best general model for
this pattern was a combination of a white noise with
a million-year-scale Gaussian point process. Gaussian
point processes converge to Brownian motions on long
time scales, and the current phenotype of a species may
thus be reasonably described by the sum of a Brownian
motion on a macroevolutionary scale and a white noise
representing recent evolution on a less than million-year
time scale. In contrast to the previous models, which
represent rates of cumulative macroevolution over the
entire phylogeny, the following model may be used to test
if rates of recent microevolution are related to candidate
predictor variables. In light of the blunderbuss, we can
do this by using the squared deviation of each species
from its macroevolutionary prediction as a response
variable.

We model the species trait vector as y=ymacro +ymicro,
where ymacro is the result of a macroevolutionary process
(e.g., Brownian motion) unfolding on the phylogeny and
ymicro is a microevolutionary deviation, independent of
the macroevolutionary process, but with a variance that
may depend on the predictor variable as

ymicro ∼N
(
0,aI+diag

(
bx
))

, (9)

where x is a vector of species-specific predictor variables.
The diag-function applied to a vector yields a diagonal
matrix with the vector along the diagonal. In this
case, only the recent value of the predictor matters
and we will assume that it does not interact with the
macroevolutionary process.

As the microevolutionary deviation is not directly
observable, we model it as y−ŷ, where ŷ is a vector of
macroevolutionary predictions for each species based on
the other species given the phylogeny and a model of
macroevolution. The best linear unbiased predictor for
each species based on the other species in the phylogeny
is the vector

ŷ= ȳ+
(

V−d(V−1)−1
)

V−1(y−ȳ
)
, (10)

where the d-function sets to zero all nondiagonal
elements of its argument, V is the variance matrix of the y
vector, and ȳ is the mean vector. Technically, the elements
of the mean vector should be calculated separately for
each species by not including that species, but in practice
with many species it makes little difference to use the
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same grand mean for all species. Any fixed effects of
the evolutionary model can be included in the mean
vector. This equation can be used to make predictions
from any evolutionary model by using the phylogenetic
variance matrix and mean vector derived from that
model. It can be derived from the general equation for
best linear unbiased prediction of ancestral states given
in Martins and Hansen (1997) to predict the trait value of
an hypothetical species in the exact phylogenetic position
of the (deleted) species to be predicted. The form of the
equation can be verified by elementwise comparison.
The deviance from the prediction is then

y−ŷ=d(V−1)−1V−1(y−ȳ
)
, (11)

and the squares of the elements of this vector can be used
as a response variable in the regression model. If the
evolutionary process is Gaussian, then these deviations
are normally distributed with mean zero and variance
matrix

Var
[
y−ŷ

]= (d(V−1)Vd(V−1)
)−1

. (12)

The variance matrix of the y-vector is

V=Vmacro +Vmicro +Vmesurement, (13)

where Vmacro is the phylogenetic variance matrix
derived from the assumed macroevolutionary process,
Vmicro(=aI+diag(bx)) is the variance matrix contributed
by recent microevolution (white noise) and Vmeasurement
contains any measurement variances we wish to add
to the model. If we assume that macroevolution is a
Brownian-motion process, Vmacro =�2

yT, where T is the
matrix of shared branch lengths, but other Gaussian
processes, such as an Ornstein–Uhlenbeck process, may
also be used.

In this model, the microevolutionary parameters a,b,
and macroevolutionary parameters such as �2

y could
be estimated with maximum likelihood based on the
normal distribution, but in line with the approach of
the other models, we focus on a GLS regression of the
square of the predicted microevolutionary deviations on
the predictor variable as

A+b
((

d
(

V−1
)−1

V−1
)

◦
(

d
(

V−1
)−1

V−1
))(

x− x̄
)

(14)

as shown in Appendix B.1. The intercept vector is

A=diag
[

d
(

V−1
)−1

V−2d
(

V−1
)−1

]
a

+diag
[

d
(

V−1
)−1

V−1VmacroV−1d
(

V−1
)−1

]
(15)

which is computed by use of the relation y−ŷ=ymicro +
(ymacro −ŷ), and measurement variance can be added to
Vmacro This assumes that micro- and macroevolution are
independent, and that the predictor variable only affects
the microevolutionary deviation. The latter assumption
is not likely to be important in the GLS setting, as the

effects of macroevolution are largely removed by using
the deviation from the macroevolutionary prediction as
a response variable. The units of these parameters are
[a]=[y2] and [b]=[y2/x].

Because predictions for the different species are
correlated with each other, we need to compute the
residual covariances. Assuming that y−ŷ is normally
distributed with zero mean, the vector of their squared
elements follows a multivariate �2-distribution with one
degree of freedom and covariances

Cov
[(

yi − ŷi
)2(yj − ŷj

)2
]
=2Cov

[
yi − ŷi,yj − ŷj

]2

=2[d(V−1)Vd(V−1)]2ij (16)

Because the predictor variable, x, is regarded as fixed,
these covariances are also the residual covariances of
the regression model. In matrix notation the residual
variance matrix can then be written

Var[r]=2
(

d(V−1)Vd(V−1)
)−1 ◦

(
d(V−1)Vd(V−1)

)−1
.

(17)

METHODS

The Statistical Model
To analyze these models we will use the standard

framework of phylogenetic generalized least squares
(e.g., Martins and Hansen 1997). The statistical model
is

Y=Dβ+r,Var[r]=Vr, (18)

where Y is a vector of species observations, which in our
case will be the species squared deviation from a grand
mean (Models 1 and 2) or prediction (Model 3). The D
is a design matrix with predictor variables, β is a vector
of parameters to be estimated, and r a vector of residuals
with mean zero and, a not necessarily diagonal, variance
matrix, Vr. If the D and Vr are specified, generalized least
squares (GLS) estimates can be used to obtain best linear
unbiased estimates of the parameter vector β, as

β̂=
(

DTV−1
r D

)−1
DTV−1

r Y, (19)

with estimation variance

Var
[
β̂
]
=
(

DTV−1
r D

)−1
, (20)

which can be used to form standard errors. Note
that these standard errors cannot be translated into
confidence intervals when the distribution of the
residuals is unknown. In our models, the Vr matrix
will be a function of model parameters such as a,b
and �2. The parameter �2 in Models 1 and 2 can
be obtained by maximum likelihood based on the
predictor variable alone (since either the predictor or
its logarithm is assumed to be normally distributed).
The other parameters can be estimated with an iterated
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procedure starting from an initial guess (e.g., based
on ordinary least-squares regression). Usually, such
schemes converge in a handful of iterations.

The design matrix, D, will normally contain two
columns. For Model 1, we use

D=
[
1,
(

I− 1
2
(
T◦T

)
T−1

)
x
]
, (21)

with x centered on its predicted root value. This estimates
β̂={Â,b̂}, and an unbiased estimator of a can be obtained
by adding vy to A. For Model 2, we use

D=
[

1,
2
�2

(
I− 2

3 e− 1
2�2

[
e

3
2�2ta −1

][
e�2ta −1

]−1
)

x
]
,

(22)

with x standardized with its predicted root value and
centered on its predicted mean value. Here, we estimate
a by adding vy plus a bias-correction term given in
appendix B to the intercept. For Model 3, we use

D=[diag(d(V−1)−1V−2d(V−1)−1),

(d(V−1)−1V−1)◦(d(V−1)−1V−1)x], (23)

with V as in (13), and with the term
diag(d(V−1)−1V−1VmacroV−1d(V−1)−1) subtracted
from the response vector (i.e., a is estimated according to
equation 15). It is also possible to add columns to these
design matrices to account for various fixed effects that
may influence the squared deviations.

Most of our models require that variables are centered
on or standardized with predicted values at the root
of the phylogeny. Under the assumption of Brownian
motion, the expression

m= 1TT−1y
1TT−11

, (24)

will be an unbiased predictor of the root value of y. Its
variance is vy =a/ne, where a is the variance parameter
of the Brownian motion, and ne =1TT−11 is an effective
sample size. The same equation can be used for the
root value of x or lnx as needed. In principle better
predictors could be found by replacing T with the
estimated variance matrices of the variables, but this is
unlikely to make a difference in practice.

The residual variance matrix, Vr, will contain a
biological component with residual variances and
covariances as described in equation 4 for Model 1,
equation 8 for Model 2, and equation 17 for Model 3.
When available, measurement or observation variances
for response and predictor variables may also be
included in the residual variance matrix and used to
correct for attenuation as described in Appendix B.1.
Observation variances in comparative studies are often
available from standard errors or confidence intervals of
the means (or other statistics) used from the individual
species. Note that the observation variance of the
response variable in this case would be the predicted
variance of the square of the mean. If we assume that the

observation error is normally distributed, observation
variances of squared means can be obtained as 2se4,
where se is the standard error of the mean. Hansen
and Bartoszek (2012), Garamszegi (2014), and Grabowski
et al. (2016) provide further discussion of observation
error in comparative studies.

The three models are set up to explain the variance
of a variance, and we expect a worse fit as compared
to standard linear models of trait means. Indeed, even
an R2 of a few percent could be regarded as a strong
signal in these models. To illustrate, let us assume that,
as in all our models, the y variable conditional on x is
normally distributed with a variance that is linear in x,
as in Var[y|x]=a+bx. Then, assuming that y is mean
centered, the proportion of variance in the square of y
explained by x is

R2 = Var[E[y2|x]]
Var[y2] = Var[E[y2|x]]

E[Var[y2|x]]+Var[E[y2|x]]

= b2Var[x]
2a2 +4abx̄+2b2x̄2 +3b2Var[x] <

1
3
.

Hence, with these assumptions there is a theoretical
ceiling for R2 at less than 1/3. In practice, much less
variance will be explained. For example, in a rather ideal
situation with two equal-sized groups of species with
one group having twice the variance of the other, we get
an expected R2 =1/21≈5% for the simple ANOVA set
up (i.e., a=1,b=1, and Var[x]=1/4 with x as a zero-one
indicator variable); even with infinitely larger variance
in one group (b=∞) the variance explained is limited to
R2 =1/5.

Step-by-Step Summary of Approach.
1. Do exploratory analysis of both the response (y)

and predictor (x) variable to assess their distributional
properties and approximate modes of evolution.
Phylogenetic signal can be assessed by estimating a
phylogenetic heritability (Lynch 1991; Housworth et al.
2004) or a phylogenetic halflife (Hansen 1997). This
will tell if the variables (or their logarithms) can be
approximated by a Brownian motion and help decide
which of the three models is most appropriate.

2. Prepare the data by choosing appropriate scales and
units for the analysis to be used. This may involve log
transformation and centering on the mean or predicted
root value. Be careful about variance standardization as
this may obscure the signal of interest.

3. Formulate the hypothesis to test, and pay attention
to the form of the relationship between predictor and
rates that is predicted by the hypothesis.

4. Fit the predictor variable or its logarithm to a
Brownian motion to estimate the parameter �2. In cases
of low but nonzero phylogenetic signal, it is possible to
fit a mixed model and use the rate parameter (�2) from
the Brownian-motion component.
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5. Choose the model to use. This should be
based both on statistical considerations (distribution of
variables, model adequacy, e.g., Pennell et al. 2015) and
biological considerations (likely or hypothesized modes
of evolution and relations between variables). Model 2
should only be used with predictor variables on ratio
or log-ratio scale types (see Houle et al. 2011), and log-
transformed predictors would not be suitable for this
model. Note that Model 3 is testing a different hypothesis
than Models 1 and 2. In cases of low phylogenetic signal,
Model 3 would be fine to use and will then approximate
an ordinary least-squares regression, but Models 1 and
2 would be problematic to interpret as they assume the
relationship between the variables is built gradually over
the history of the species.

6. Fit the desired models as described above.
7. Calculate the parameters a and b from the regression

parameters, and report results with units and estimated
uncertainty. Interpret effect sizes. The R2 of the model
should be considered, but be aware that we can
only reasonably expect to explain a few percent of
the variance. Resampling procedures can be used to
further explore model adequacy and uncertainty of the
estimates.

We have implemented statistical machinery for
most of the operations in Step 4–7 in the function
rate_gls in the R-package evolvability (Bolstad
et al. 2014). We have also included functions for
simulation of the three evolutionary models (function:
simulate_rate), parametric bootstrapping (function:
rate_gls_boot), and a vignette explaining the use of
the functions (Analyzing rates of evolution). The
package is available at CRAN with the latest version at
“github.com/GHBolstad/evolvability.”

APPLICATION

Do Beak Shapes Evolve Faster in Large-Brained Birds?
Wyles et al. (1983) argued that animals with larger

brains have faster rates of morphological evolution than
comparable animals with smaller brains. They attributed
this to behavioral drive, a process by which learning
allows individuals to explore new ways of life and
thereby setting up novel selection pressures on their
anatomy and physiology that lead to more extensive
divergence on macroevolutionary time scales. This idea
is part of a broader conglomerate of hypotheses and
theories about how plasticity, learning, preferences,
intentions, culture, and niche construction can influence
evolution and adaptation by altering selection pressures
or allowing organisms to persist in novel environments
long enough to adapt to them (e.g., Baldwin 1896; Popper
1972; Wake et al. 1983; Odling-Smee et al. 2003; Frank
2011; Zuk et al. 2014). The effects of such mechanisms
on rates of evolution are far from obvious, however, and
it has also been argued that behavioral flexibility may
buffer against changes and help explain morphological
stasis (e.g., Bogert 1949; Wake et al. 1983; Hansen

and Houle 2004). Paenke et al. (2007) show that both
scenarios are theoretically plausible and provide general
conditions for plasticity to accelerate or decelerate the
response to selection.

The study of Wyles et al. (1983) was based on
comparing morphological disparity between a few
large clades with different degrees of encephalization
such as primates against other mammals, song birds
against other birds, and mammals against reptiles. This
procedure yields only a handful of comparisons and is
vulnerable to spurious third-variable effects and artifacts
of measurement stemming from the many biological
differences that must exist at such broad phylogenetic
scales. It can only be regarded as crudely suggestive.

Application: Methods
To illustrate our models, we capitalize on recent

large-scale phylogenies and open-source data bases for
bird morphology to test the hypotheses of Wyles et al.
(1983) and Wilson (1985) more rigorously. We use 3D
morphometric beak-shape data taken from Cooney et al.
(2017) and brain- and body-size data from Fristoe et al.
(2017) and Tsuboi et al. (2018) for 651 bird species to
test if rates of beak-shape evolution are influenced by
brain size. We excluded the paleognaths, comprising
four species of ratites and one species of tinamou, from
the analysis, as this group is both a sister group to the
rest and biologically different from most other birds. We
also removed the emperor penguin (Aptenodytes forsteri),
as this species was a strong outlier in terms of both
brain and body size. This left us with 645 species that
we used for the analyses presented here. Results were
qualitatively similar when including all species.

The 3D-landmark data (4 landmarks and 75
semilandmarks) of beak shape were standardized
by generalized Procrustes analysis before principal-
component analysis in Cooney et al. (2017). We studied
the first eight principal components from this analysis,
which collectively explain more than 99% of the variance.
The principal components are in units of centroid size
(i.e., mean linear distance of landmarks to centroid).
The phylogeny was taken from Jetz et al. (2014), and
we used a maximum credibility tree from a sample of
thousand phylogenies based on family-level topologies
from Ericson et al. (2006) using TreeAnnotator version
2.4.5.

We tested for the effects of both absolute and relative
brain mass. To obtain relative brain mass we performed
an allometric analysis of brain mass on body mass (Fig. 1)
with the R-package slouch (Hansen et al. 2008; version
2.0.0. documented in Kopperud et al. 2020). Following
Grabowski et al. (2016), we fitted a direct-effect model
and accounted for estimation error in species means
based on reported standard errors of the means of
logged brain and body masses. The estimated allometric
exponent corrected for attenuation due to observation
error was 3/5(=0.60±0.01), and log body size explained
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FIGURE 1. Brain–body allometry for the 645 species of birds
used in this study. The data points are species means taken from
Tsuboi et al. (2018). The regression line −2.21(±0.12)+0.598(±0.008)
log(body mass), R2 =88.4%) was estimated from a “direct-effect”
Ornstein–Uhlenbeck model and corrected for estimation error in
species means (including attenuation) as described in Grabowski
et al. (2016). The phylogenetic half-life and stationary variance of the
Ornstein–Uhlenbeck model were t1/2 =5 h with 2-unit support interval:
(1.35–∞) and �2

ou =0.43 with 2-unit support interval: (0.14–0.49). The
tree length was h=104 myr. The long half-life means that the residuals
evolve similarly to a Brownian motion.

88% of the variance in log brain size. Relative brain mass
is based on the residuals from this allometric model.

The basic statistics of the traits are in Table 1. The
brain- and body-size data show a strong phylogenetic
signal and good fit to Brownian motion on log scale.
For the beak-shape data, the first principal component,
which is an axis of stoutness to pointedness of the beak,
likewise show strong phylogenetic signal and good fit to
Brownian motion. The other seven “shape” traits show
a moderately strong phylogenetic signal, leaving room
for Ornstein–Uhlenbeck-type dynamics or a component
of recent evolution. The two-unit support intervals for
the phylogenetic halflife exclude both infinity (Brownian
motion) and zero (white noise) for all these.

We tested the hypotheses that either absolute or
relative brain size influence the rate of evolution of beak
shape, and whether this happens on average throughout
the phylogeny (Models 1 and 2) or in terms of recent
“within-species” microevolution (Model 3). The models
were fitted with the functions in the evolvability package
as described above. Estimates are shown ± se if not
otherwise indicated. Reported standard errors are based
on equation 20. With some exceptions, these were similar
to bootstrap estimates (see Supplementary material).
The predictor variables in the plots are phylogenetically
weighted values that account for correlation with related
species (i.e., values correspond to the entries in the
design matrices in equations 21–23).

Application: Results

Starting with absolute brain mass, we note that
this is a ratio-scale variable that we expect to evolve
on a multiplicative scale. This makes the geometric
Brownian-motion Model 2 is the most natural choice,
and the mean-scaled variance for brain mass of 1.19(=
�2t)>1 means that Model 1 may be less good on an
untransformed scale. The results from this model mix
small to moderate positive effects of absolute brain size
on the rates of evolution in most shape variables (PCs 2,
3, 7, 8) with a large positive effect on PC 6, and essentially
no effects on PCs 1, 4, and 5 (Fig. 2). The phylogenetic R2

of the positive effects are small in absolute terms, 5%
for PC 6 and 0.6–2% for the others, but still give room
for substantial influence on rates. The predicted rate
variance, in units of squared centroid size (cs) per tree
length (h=104 my), for PC 6 is −7.5×10−4 +12.4×10−4x,
where x is mean-standardized brain mass, which means
that a doubling of brain mass from the phylogenetic
mean (x=1) would increase the rate variance from 4.9×
10−4cs2/h to 17.3×10−4cs2/h. This means that expected
variance (disparity) in this shape variable of a clade with
twice the average brain mass would be expected to be 3.5
times as large as the average. In other words, doubling
the brain mass of a lineage would increase the expected
change in PC 6 over an arbitrary time period, and thus
the classic rate of evolution (i.e., the darwin), with a factor
of

√
3.5, or 88%. Similar calculations for PCs 2, 3, 7, and

8 yield factors of, respectively, 27%, 25%, 65%, and 60%.
An alternative is to use Model 1 with log brain mass

as predictor variable. This is equivalent in terms of
its assumptions about the evolution of brain mass, but
differs in that the assumed causal link to the rate variance
is now linear on a proportional scale (i.e., linear on log
brain mass rather than linear on brain mass). The results
of this analysis are congruent with the fitting of Model 2
in that the strongest effect is for PC 6, but both this and
the other effects are weaker (Supplementary Fig. S1). For
PC 6 the predicted rate variance is 9.5+10.5 log brain
mass, which means that doubling brain mass from the
clade mean (x=0) by setting log brain mass to x= ln 2
would increase the rate variance from 9.5×10−4cs2/h to
17×10−4cs2/h, or the expected rate of evolution with a
factor of 34%. The other “significant” effects, on PC 7 and
8, correspond to increases of 32% and 25%, respectively.

For relative brain mass, which is on an interval scale
type, the Brownian-motions-based Model 1 is the natural
choice. Fitting this model to the beak-shape variables
shows little effect (Fig. 3). The estimated slopes are all
positive, but small, with phylogenetic R2 below 1% in
all cases except for PC 7. Taken in isolation the results
on PC 6, 7, and 8 are consistent with some effect, but
we interpret the results collectively as evidence against
any substantial effect of relative brain size on rates of
beak-shape evolution.

Fitting Model 3 tests a different hypothesis, namely
that the rate of recent (within-species) evolution of beak

https://doi.org/10.5061/dryad.gb5mkkwq9
https://doi.org/10.5061/dryad.gb5mkkwq9
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TABLE 1. Basic statistics for the among-species data: the phylogenetic heritability, PH2, is the fraction of among-species variance attributable
to Brownian motion (Lynch 1991). The �2

Brownian is the rate variance of the Brownian motion in units per tree length (h=104 my), and �2
residual

is the nonphylogenetic residual variance. The phylogenetic halflife, t1/2, is the time in units of tree length to lose half the expected ancestral
influence in an Ornstein–Uhlenbeck model of evolution (Hansen 1997). Body and brain size are in units of ln (gram), and principal components
of beak shape in units of 100 × centroid size (cs). The variances are in units of the squares of the trait units. The phylogentic heritability and the
variance components were estimated with the function Almer in the evolvability package, and the halflife was estimated with slouch.

Trait PH2 t1/2 �2
Brownian �2

residual

Log body mass 0.97 4.5a 2.54 0.082
Log brain mass 0.99 ∼∞a 1.12 0.012
Relative brain size 0.91 2.2a 0.091 0.0095
Beak shape pc1 0.95 8.2 289 15
Beak shape pc2 0.76 0.37 156 48
Beak shape pc3 0.88 0.57 43 6.0
Beak shape pc4 0.88 0.75 20 2.9
Beak shape pc5 0.88 0.55 12 1.7
Beak shape pc6 0.75 0.34 5.0 1.7
Beak shape pc7 0.83 0.54 2.7 0.56
Beak shape pc8 0.69 0.27 1.6 0.75
aCorrected for estimation error in species means.

shape is influenced by brain size. We used a Brownian-
motion-based mixed model to predict the states of the
shape variables at the tips of the phylogeny and used
the squared deviance of the observed states from these
predicted states as response variables in the regression.
This model makes no assumptions about the evolution
or distribution of the predictor variables, which can
then be transformed and fitted on any scale that is
deemed biologically reasonable. As with Model 1 there
are only tiny, inconsistent effects of relative brain size
(Supplementary Fig. S2), but increasing absolute brain
size elevates the rates of all PCs except the first and
marginally the third with R2 ranging from 0.5% to 4%
(Fig. 4). The lack of an effect on PC 1 is perhaps not
surprising given that the strong phylogenetic signal of
this variable leaves a lesser fraction of “recent” variation
to be explained. The estimates from the other shapes
indicate that the predicted residual variance at the tip
would increase from 18% to 57%, corresponding to 9%
to 25% increases in conventional rates of evolution.

The general lack of effect of relative brain size may
suggest that the effects of absolute brain size may be
caused by body size. For this reason, we also tested body
mass as an explanatory variable. With Models 1 and 2,
we found generally weaker effects of body mass than
we found with brain mass although 3.4% of the variance
in PC 6 was explained with the geometric Brownian-
motion Model 2 (results not shown). This is still weaker
than the effect of brain mass, but it is possible that body
size may explain some of the large effect of brain mass
on PC 6 in particular. For the recent-evolution model,
however, the effects of body mass were similar to those
of brain mass (Supplementary Fig. S3).

DISCUSSION

The variation in tempo and mode of evolution is
such that even the basic concept of a rate of evolution
defined as character change per time, as in the classic
darwin and haldane measures, is problematic. Beyond a

few generations, evolutionary change rarely resembles
a deterministic trend, but instead becomes stochastic
with huge variations in both rate and direction (e.g.,
Gingerich 1983, 2019; Bookstein 1987; Hunt 2012; Voje
2016). These variations are such that one cannot compare
rates of change across different time intervals; in
fact, below species-level time scales the amount of
change is often independent of time span (Gingerich
1983, 1993, 2001, 2009; Roopnarine 2003; Uyeda et al.
2011; Voje et al. 2018) rendering conventional rates
meaningless. A relationship between change and time
span appears at longer, among-species, time scales,
but change remains stochastic and often with scaling-
relationships resembling Brownian motion (Uyeda et al.
2011). This means that rates of macroevolution cannot be
measured on the scale of the trait. Instead, it is necessary
to measure rates as “intensities,” variance of change per
time. Over the last decades, it has become common to
use the diffusion parameter of a fitted Brownian motion
as a measure of rate of evolution on macroevolutionary
time scales (e.g., Hunt and Carrano 2010, and references
in the introduction).

Estimating rates as variances of change has a downside
as compared to the estimation of a trend in that it is
less statistically efficient and demands larger samples
to reach comparable levels of accuracy (e.g., Slater and
Pennell 2014). Our theoretical analysis illustrates this
point. Variables affecting rates of evolution are not
expected to correlate with the state of the evolving traits
in the absence of directional trends. Correlations only
appear with disparity on the scale of the squared traits
and statistical analysis of causal effects on the tempo
of evolution must be conducted on this scale. We have
shown that even strong effects on the rates of change
only generate weak correlations with the causal variable
implying that we do not expect to explain more than a
few percent of the among-species variance in squared
deviations. This means that large samples of species are
necessary to detect an effect. Fortunately, databases of
morphological traits and phylogenetic relationships are

https://doi.org/10.5061/dryad.gb5mkkwq9
https://doi.org/10.5061/dryad.gb5mkkwq9
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FIGURE 2. The effect of absolute brain size on beak-shape evolution. The plot shows the magnitude of the deviance from clade mean of
beak-shape variables in units of centroid size (×100) plotted against (phylogentically weighted) log brain mass for 645 bird species. The fitted
line and parameter estimates (± SE) are based on Model 2 in the main text assuming that brain mass evolves like a geometric Brownian motion.
The estimated slopes (b) of PCs 2, 6, 7, and 8 are statistically significant in the sense that they are more than two standard errors above zero.
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FIGURE 3. The effect of relative brain size on beak-shape evolution. The plot shows the magnitude of the deviance from clade mean of beak-
shape variables in units of centroid size (×100) plotted against relative brain size for 645 bird species. The fitted line and parameter estimates are
based on Model 1 in the main text assuming that relative brain size evolves like a Brownian motion. The estimated slopes (b) of PCs 6 and 7 are
statistically significant in the sense that they are more than two standard errors above zero.
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FIGURE 4. The effect of log brain size on recent beak-shape evolution. The plot shows the magnitude of the deviance of beak-shape variables
from the macroevolutionary prediction in units of centroid size (×100) in Model 3 plotted against (predicted) log brain mass for 645 bird species.
The fitted line and parameter estimates are based on Model 3 in the main text, and the intercept used for plotting is the average of the prediction
in equation 15. The estimated slopes (b) of PCs 2 and 4 to 8 are statistically significant in the sense that they are more than two standard errors
above zero.
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accumulating and it is becoming increasingly possible
to do comparative analyses with the hundreds of species
necessary to test hypotheses about causal effects on rates
of evolution.

Despite the mathematical complexity, the underlying
idea of our method is simple: The effect of a variable
on rates of evolution can be detected by a regression of
squared trait deviance on the variable. The mathematics
yields two refinements to a naive regression of this type.
First, it shows how we can translate the coefficients
of the raw regression to effects on underlying rates
of evolution (the a and b parameters), and second, it
shows how to calculate residual covariances so as to use
statistically more efficient GLS estimation that accounts
for phylogenetic relatedness. As with most comparative
methods, both interpretation and the optimal statistical
model depend on assumptions about the underlying
evolutionary process. Our three models differ in these
assumptions and apply under different circumstances.

Do Large-Brained Birds Evolve Faster?
We have illustrated our methods with a data set of

645 species of birds from Cooney et al. (2017), which
we used to test the hypothesis that brain size influences
rates of evolution in beak shape. This hypothesis, derived
from Wyles et al. (1983), may be motivated as the
outcome of a Baldwin effect in which presumptively
more behaviorally flexible larger-brained species are
more able to discover new sources of food or novel uses
of their beaks, which may introduce more frequent novel
patterns of selection acting on their beaks and thus more
frequent evolutionary changes in morphology. This is
consistent with the recent finding of increased speciation
rates in large-brained birds (Sayol et al. 2019), and with
findings of increased body-size disparity in bird families
with large brains (Sol and Price 2008).

Our results support this idea in finding indications
that absolute brain size is related to the rate of evolution
of some aspects of beak shape, but with the caveat
that relative brain size had little effect. Our models
never explained more than a few percent of the variance
in beak-shape disparity, but in the cases explaining
more than a percent or so of the variance, the best
estimates of effects usually indicated that the variance
in shape change and thus the disparity would increase
substantially. For example, assuming that brain mass
evolved as a geometric Brownian motion and had a linear
effect on the rate variance of the shape variables leads
to the prediction that a clade of birds with twice the
brain mass of another would have between 1.5 and 3.5
times the disparity (among-species variance) in many
of the beak-shape variables. The recent-evolution model
(Model 3) also showed rather consistent positive effects,
which indicates that the rapid stationary fluctuations
that characterize evolution on short below-species-level
time scales are more pronounced in larger-brained birds.

The absence of consistent effects of relative brain size is
surprising, but consistent with the idea that it is absolute

more than relative brain size that matters for intelligence
(e.g., MacLean et al. 2014; and discussed in Striedter
2005). There is a serious caveat, however, in that brain size
is related to many other ecological and behavioral factors
in birds (e.g., Burish et al. 2004; Shultz and Dunbar 2010;
Vincze 2016), and we cannot exclude that some factor
other than intelligence mediates the causal effect on the
tempo of evolution. We tested the effect of body size on
rates and found that these could not fully explain the
effect of absolute brain size in Model 2, but that they
mirrored the effects of absolute brain size when using
the recent-evolution model. It is therefore possible that
the elevated microevolutionary rates of large-brained
species are mediated through some other correlate of
larger bodies.

Relation to Other Methods
As mentioned in the introduction, there are several

methods for studying rates of evolution in phylogenies
or fossil time series based on stochastic models. The
approach most similar to ours is the likelihood-based
method pioneered by O’Meara et al. (2006) and Thomas
et al. (2006). Here, Brownian motions with different
rate parameters are fitted to different sections (regimes)
of a phylogeny. This is similar to our Model 1, but
with the predictor variable as a categorical fixed effect
mapped onto the phylogeny. This approach is superior
to ours when the predictor categories can be mapped
reliably onto the phylogeny, because the assumption
of a fixed (nonevolving) predictor allows a Gaussian
process and hence the application of likelihood methods
based on the normal distribution. Our models should
be considered an alternative to this only when the
predictor is continuous or uncertain such that mapping
is unreliable. In this situation a full stochastic model
for the joint evolution of both response and predictor
variables is preferable. In fact, Revell (2013) has shown
that rate estimates from different regimes are biased to
be more similar when mapping of regimes is uncertain.
Also be aware that the low power we have illustrated is
not a particular flaw of our models but apply similarly
to all statistical estimators of variance of change.

Another approach to the study of rate involves the
estimation of ancestral states on a phylogeny and
then computation of rates over ancestor–descendant
pairs or contrasts between such estimates. This
is often done without consideration of statistical
uncertainty and is problematic because estimated
ancestral states and derived contrasts are generally
uncertain, heteroscedastic, and correlated (Martins and
Hansen 1997). As discussed in Hansen (2014), this
approach is at best a roundabout way of estimating rate
parameters with many pitfalls and no advantages to a
direct approach.

A related approach is to correlate disparity at higher
taxonomic levels with trait means at those levels, as was
done by Wyles et al. (1983) and Sol and Price (2008).
See also Weir and Lawson (2016) for a pairwise-contrasts
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method to study the effects of predictors on evolutionary
rates with an application to song complexity in birds.

Our three basic models are far from exhaustive,
and there are many conceivable modifications and
extensions. Some flexibility can be achieved by scale
transformations of the variables, such as use of log
scale or not. A more challenging extension would be
to multivariate rates. In our example, we decomposed
a multivariate character into principal components and
analyzed these separately with our univariate models.
It is well known, however, that principal-component
analysis of comparative data can be misleading because
it mixes phylogenetic structure with trait dependence
(Uyeda et al. 2015). The fundamental problem with
multivariate extensions, however, is that the number of
rate parameters will increase, and given the low power
of the univariate approaches, any method not involving
some form of dimensionality reduction is unlikely to be
useful. Extension to more than one predictor variable
in the fashion of a multiple regression is also possible
but increases mathematical complexity and would likely
need to assume independent evolution of the predictors
to keep a manageable number of parameters.

The Ornstein–Uhlenbeck process is a common
extension to Brownian motion in the stochastic modeling
of evolution. Parameters in the Ornstein–Uhlenbeck
process are sometimes used to describe rates of evolution
(e.g., Martins 1994) or rates of adaptation (Hansen 1997,
2012). These parameters have a less direct interpretation
as rates, however, and are perhaps better considered
as collectively describing dynamically changing tempo
and mode of evolution in relation to selective optima.
Nevertheless, one could consider models with either
the “rate of adaptation” or the stochastic diffusion of
an Ornstein–Uhlenbeck model being influenced by an
evolving trait. The moments of such a process would be
calculable, but more complicated than in the models we
have presented. The regressions would also be nonlinear.
Likelihood methods for estimating the influence of
mapped “fixed effects” on parameters in Ornstein–
Uhlenbeck models have been presented by Beaulieu et al.
(2012). Another, simpler, extension would be to allow
the predictor variable to follow an Ornstein–Uhlenbeck
process in place of the Brownian motion or geometric
Brownian motion. Finally, May and Moore (2020) have
recently proposed a model similar to ours but with
a discrete predictor variable evolving according to a
Markov chain. This complements the models in the
present article.

The recent-evolution model provides a different
perspective on rates of evolution than in most
approaches derived from comparative methods or
fossil time-series analysis. Instead of studying rates
of evolution as change per time over phylogenetic
branches or time intervals, this approach focuses on
recent evolution after removing the effects of past
change. In fact, the different models we have presented
resemble two positions from the early days of the
phylogenetic comparative-methods literature (reviewed

in Martins and Hansen 1996). One position, exemplified
by the autoregressive approach of Cheverud et al.
(1985), sought to remove the phylogenetic component
and study adaptation in the reminder, while another
position, exemplified by Lynch’s (1991) mixed model,
sought to remove the species-specific component and
study adaptation in the phylogenetic component.
While the latter position, being implicit in Felsenstein’s
(1985) independent-contrasts and related process-
based phylogenetic comparative methods, won out for
conventional analysis of trait evolution, our analysis
illustrates how this can be seen as a distinction between
studying evolution at two different time scales, a
macroevolutionary, above species-level time scale,
and a microevolutionary, below species-level time
scale. As argued by Uyeda et al. (2011) and Hansen
(2012), evolutionary rates behave differently at micro-
and macroevolutionary time scales and likely reflect
different evolutionary mechanisms. This justifies the
development of distinct models to study rates at
different time scales.

The recent-evolution model also resembles
comparative methods designed to make inferences
about changes at single branches; typically aiming to
test if particular changes are unusual as compared to
the overall rate of evolution on the phylogeny (e.g.,
McPeek 1995; Revell 2008; Nunn and Zhu 2014). In fact,
our equation 11 could be used to pick out the deviance
for any species or subset of species, and test these for
conformity to an expected Gaussian distribution with
the predicted variance matrix in equation 12. See also
Uyeda et al. (2018) for more extensive discussion of the
role of singular events in comparative studies.

Our motivation for developing these models was
to explore the potential for testing hypotheses about
factors influencing rates of evolution or the disparity
of a clade. For example, as reviewed in Bolstad et al.
(2014), there have been many claims that rates of
divergence and among-species variance are related to
within-species variance, or to more specific measures of
species evolvability. Such claims are usually based on
comparing clade variances to estimates of evolvability
from one or a few species across different traits, and thus
do not fit the framework we have set up. It is, however,
desirable to develop direct comparative tests of how
measures of evolvability and other microevolutionary
parameters influence rates of divergence, and the models
presented here illustrate both how this can be done and
the limitations in doing so.

SUPPLEMENTARY MATERIAL

Data and supplementary analyses are available from
the Dryad Digital Repository: https://doi.org/10.5061/
dryad.gb5mkkwq9. Software is available at CRAN:
https://CRAN.R-project.org/package=evolvability.

https://doi.org/10.5061/dryad.gb5mkkwq9
https://doi.org/10.5061/dryad.gb5mkkwq9
https://CRAN.R-project.org/package=evolvability
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A.1 CALCULATION OF MOMENTS

In this appendix, we compute the necessary moments
for the different models by integration. The general
strategy is to use the multivariate Itô formula (e.g., Gard
1988, p. 59) to derive stochastic differential equations
for powers of the variables x and y and then integrate
over x and y to form differential equations for moments
and cross moments. We then solve these differential
equations by standard integration over time.

The Model 1 was

dy=
√

a+bxdW1,

dx=�dW2,

with initial conditions y0 and x0. Since x follows standard
univariate Brownian motions, its moments at time t are

E
[(

x−x0
)k]={�ktk/2(k−1)!! if k is even

0 if k is odd ,

where the !! signifies semifactorial. We illustrate the
computation of the other moments by an example,
E[y2x]. The Itô formula yields

dy2x= (a+bx)xdt+2yx
√

a+bxdW1 +�y2dW2.

Taking the expectation, and using the fact that the dWi
have mean zero and are independent of previous history,
yields

dE[y2x]=E[(a+bx)x]dt=
(

aE[x]+bE
[
x2
])

dt

=(a+bx0
)
x0 +b�2tdt.

Integrating yields

E[y2x]=y2
0x0 +(a+bx0

)
x0t+ b�2t2

2
,

and since E
[
y2
]
=y2

0 +(a+bx0
)
t, we get

Cov[y2,x]= b�2t2

2
.

The differential equation for a general moment obtained
from the Itô formula is

dE
[
ymxk

]
dt

= k
(
k−1

)
�2

2
E
[
ymxk−2

]
+ m

(
m−1

)
2

E
[(

a+bx
)
ym−2xk

]
,

which can be solved iteratively in m and k. In the
following we specifically need the fourth moment of y,
which is

E
[
y4
]
=y4

0 +6
(
a+bx0

)
y2

0t+3
(
a+bx0

)2 t2 +b2�2t3,

which yields

Var
[
y2
]
=4

(
a+bx0

)
y2

0t+2
(
a+bx0

)2 t2 +b2�2t3.

Note that this shows that the distribution of y is
leptokurtic and not Gaussian.

To obtain the necessary cross-species covariances
needed for the GLS regression, we use an approach from
Hansen and Martins (1996) based on conditioning on
the values of the most recent common ancestor of the
two species in question, and assuming that they evolve
independently after they split apart. This requires the
following conditional expectations:

E
[
y2

i |ya,xa

]
=y2

a +(a+bxa)tai,

E
[
xi|ya,xa

]=xa,

where ya and xa are the values of an ancestor of i and tai
is the time that separates the ancestor a and the species
i. For an ultrametric tree, tai = taj = t−ta with ta the time
from root to the most recent common ancestor of i and j.
From this, we get

Cov[y2
i ,y2

j ]=Cov[E[y2
i |ya,xa],E[y2

j |ya,xa]]
=Var

[
y2

a +(a+bxa)(t−ta)
]

=Var
[
y2

a

]
+b2(t−ta

)2Var[xa]

+2b
(
t−ta

)
Cov

[
y2

a ,xa

]
=4

(
a+bx0

)
y2

0ta +2
(
a+bx0

)2 t2
a

+b2�2t3
a +b2(t−ta

)2
�2ta +b2�2(t−ta

)
t2
a

=4
(
a+bx0

)
y2

0ta +2
(
a+bx0

)2 t2
a

+b2�2ta

(
t2 −tat+t2

a

)
,

Cov[y2
i ,xj]=Cov[E[y2

i |ya,xa],E[xj|ya,xa]]
=Cov

[
y2

a +(a+bxa)(t−ta),xa

]
= 1

2 b�2t2
a +b

(
t−ta

)
�2ta =b�2

(
t− ta

2

)
,
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Cov
[
xi,xj

]
=Cov

[
E[xi|xa],E[xj|xa]

]
=Var[xa]=�2ta.

These moments are all we need to construct the
necessary variance and covariance matrices for GLS
regression. This is detailed in Appendix B.1.

The Model 2 was

dy=
√

a+bxdW1,

dx= 1
2�2xdt+�xdW2,

which implies that x follows a log-normal distribution
with moments

E
[
xk
]
=xk

0e
1
2 k2�2t

.

Using the Itô formula and taking moments yield, the
following differential equation for an arbitrary moment
of the process:

dE
[
ymxk

]
dt

= k2�2

2
E
[
ymxk

]
+ m

(
m−1

)
2

E
[(

a+bx
)
ym−2xk

]
,

which can be solved iteratively in m. Most pertinently

E
[
yxk

]
=y0xk

0e
1
2 k2�2t

,

E
[
y2xk

]
=y2

0xk
0e

1
2 k2�2t+axk

0te
1
2 k2�2t

+ 2bxk+1
0(

1+2k
)
�2

(
e

1
2
(
k+1

)2
�2t−e

1
2 k2�2t

)
,

E
[
y3xk

]
=y3

0xk
0e

1
2 k2�2t+3ay0xk

0te
1
2 k2�2t

+ 6by0xk+1
0(

1+2k
)
�2

(
e

1
2
(
k+1

)2
�2t−e

1
2 k2�2t

)
,

E
[
y4xk

]
=y4

0xk
0e

1
2 k2�2t+3axk

0

(
2y2

0 +at
)

te
1
2 k2�2t

+
12bxk+1

0

(
at+y2

0

)
(
2k+1

)
�2

(
e

1
2
(
k+1

)2
�2t−e

1
2 k2�2t

)

+ 6b2xk+2
0(

2k+3
)(

2k+1
)(

k+1
)
�4((

2k+3
)
e

1
2 k2�2t+(2k+1

)
e

1
2

(
k2+4k+4

)
�2t

−4
(
k+1

)
e

1
2
(
k+1

)2
�2t
)

,

which shows that Cov[y,xk]=0 and Cov[y3,xk]=0 for all
k. The even powers of y covary with x, however, and this
justifies the regression of the square of y on x. Using these
moments we can compute the cross-species covariances
with the same method as for Model 1. To do this, we

specifically need

E
[
yi|ya,xa

]=ya,

E
[
y2

i |ya,xa

]
=y2

a +atai + 2b
�2

(
e
�2

2 tai −1

)
xa

This yields

Cov[y2
i ,y2

j ]=Cov[E[y2
i |ya,xa],E[y2

j |ya,xa]]

=Var

[
y2

a +a
(
t−ta

)+ 2b
�2

(
e
�2

2
(
t−ta

)
−1

)
xa

]

=Var
[
y2

a

]
+ 4b2

�4

(
e
�2

2
(
t−ta

)
−1

)2

Var[xa]

+ 4b
�2

(
e
�2

2
(
t−ta

)
−1

)
Cov

[
y2

a ,xa

]
,

Cov[y2
i ,xj]=Cov[E[y2

i |ya,xa],E[xj|ya,xa]]

=Cov

[
y2

a +atai + 2b
�2

(
e
�2

2 tai −1

)
xa,e

1
2�2taj xa

]

=e
1
2�2(t−ta

)
Cov[y2

a ,xa]

+ 2b
�2

(
e�2(t−ta

)
−e

1
2�2(t−ta

))
Var[xa],

Cov
[
xi,xj

]
=Cov

[
E[xi|xa],E[xj|xa]

]
=e�2(t−ta

)
Var[xa].

The specific moments needed to solve this are

Var
[
y2
]
=4ay2

0t+2a2t2 +
8bx0

(
at+y2

0

)
�2

(
e

1
2�2t−1

)

+ 2b2x2
0

�4

(
e�2t −1

)2
,

Cov
[
y2,x

]
= 2bx2

0e
1
2�2t

3�2

(
2+e

3
2�2t−3e

1
2�2t

)
,

Var[x]=x2
0e�2t

(
e�2t −1

)
,

which yields

Cov[y2
i ,y2

j ]=4ay2
0ta +2a2t2

a + 8bx0

�2

(
y2

0 +ata

)(
e

1
2�2ta −1

)

+ 2b2x2
0

�4

((
e�2t −1

)2 −
(

e�2t −e�2ta
)2

+8
3

(
1−e

3
2�2ta

)(
e

1
2�2t−e

1
2�2ta

))
,

Cov[y2
i ,xj]=

2bx2
0

�2 e�2t
(

e�2ta−1−2
3

(
e

1
2�2(3ta−t

)
−e− 1

2�2t
))

,
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Cov
[
xi,xj

]
=x2

0e�2t
(

e�2ta −1
)
,

which is what is needed to set up the GLS regression in
Appendix B.1.

B.1 CONSTRUCTING THE REGRESSION MATRICES

In this appendix, we derive the variance and
covariance matrices for the GLS regression of squared
y-values on the predictor x-variables. Let y2 denote
the column vector of species squared y-values.
Proposition 2.22 in Eaton (1983) then gives

ŷ2 =E
[
y2
]
+Cov[y2,x]Var[x]−1(x−E[x]),

as the best linear predictor of the y2 vector from the
x vector in the least-squares sense. This has residual
variance matrix

Var[r]=Var
[
y2 −ŷ2

]
=Var

[
y2
]
−Cov[y2,x]Var[x]−1Cov[y2,x]T,

where Cov[y2,x] is the matrix with elements Cov[y2
i ,xj],

Var[x] is the matrix with elements Cov
[
xi,xj

]
, and

Var[y2] is the matrix with elements Cov[y2
i ,y2

j ].
For Model 1, the moments derived in Appendix A.1

then gives:

ŷ2 =
(

a+bx0 +y2
0

)
1+b

(
I− 1

2
(
T◦T

)
T−1

)
x,

Var[r]=4
(
a+bx0

)
y2

0T+2
(
a+bx0

)2T◦T

+b2�2
(

T◦T◦T− 1
4
(
T◦T

)
T−1(T◦T

))
,

where T=[ta] is the matrix of shared branch lengths in
units of total tree length, I is the identity matrix, 1 is a
column vector of ones, and y0 and x0 are the initial values
of y and x at the root of the tree.

Centering the variables around estimates of the root
values would in principle justify setting y0 =x0 =0,
but the estimation error in the root values can be
substantial if there are only a few branches near the
root of the phylogeny. To account for this we assume
that the estimates of the root values are unbiased and
uncorrelated with variance vy for y0 and vx for x0.
Furthermore, we have to account for the fact that the
error in estimating y0 is correlated with y2. To do this,
assume the y-variable has evolved as a Brownian motion,
so that the y-vector is distributed as y ∼ N(y0 1, aT). Let

m= 1TT−1y
1TT−11

be our (unbiased) estimator of y0. Then for species i,

E
[(

yi −y0 −(m−y0
))2]=E

[(
yi −y0

)2]+Var[m]

−2Cov[yi,m]=E
[(

yi −y0
)2]−vy,

which follows because Cov[yi,m]=Var
[
yi
]
/1TT−11=vy.

Hence, to get an unbiased estimate of a from the intercept
in the regression we subtract vy. To correct the residual
variance we take the expectation over y0 and x0. This
yields

ŷ2 =(a−vy
)
1+b

(
I− 1

2
(
T◦T

)
T−1

)
x,

Var[r]=4avyT+2
(

a2 +b2vx

)
T◦T

+b2�2
(

T◦T◦T− 1
4
(
T◦T

)
T−1(T◦T

))
,

and thus equations 3 and 4 in the main text.
For Model 2, the moments derived in appendix A give

the following matrix form of the regression

ŷ2 =
(

a+ 2b
�2

(
e

1
2 �2 −1

)
x0 +y2

0

)
1

+ 2b
�2

(
I− 2

3
e− 1

2 �2
[
e

3
2 �2ta −1

][
e�2ta −1

]−1
)

(
x−E[x]),

Var[r]=4ay2
0T+ 8by2

0x0

�2

[
e

1
2�2ta −1

]
+2a2T◦T

+ 8abx0

�2 T◦
[

e
1
2�2ta −1

]

+ 2b2x2
0

�4

(
8
3

[
e2�2ta −e

1
2�2ta

]
−
[
e2�2ta −1

]
−8

9

[
e

3
2�2ta −1

][
e�2ta −1

]−1
[

e
3
2�2ta −1

])
,

where the notation [f(ta)] means a matrix in which the
ij’th element is f(ta) with ta being the shared branch
length between species i and j. In this notation T=[ta]. As
for Model 1, we center the y-variable on its estimated root
value, but for the x-variable we standardize by dividing
with the predicted root value. To model the error in this
root value, we assume that ln(x0) is normally distributed
with zero mean and variance vlnx. Then

E[x0]=e
1
2 vlnx ,

E
[
x2

0

]
=e2vlnx ,

E
[
y2

0x0

]
=vye

1
2 vlnx .

Using these expectations, we get

ŷ2 =
(

a+ 2be
1
2 vlnx

�2

(
e

1
2 �2 −1

)
−vy

)
1

+ 2b
�2

(
I− 2

3
e− 1

2 �2
[
e

3
2 �2ta −1

][
e�2ta −1

]−1
)

(
x−e

�2
2 − vlnx

2 1
)

,
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Var[r]=4avyT+ 8bvye
1
2 vlnx

�2

[
e

1
2�2ta −1

]
+2a2T◦T

+ 8abe
1
2 vlnx

�2 T◦
[

e
1
2�2ta −1

]
+ 2b2e2vlnx

�4

(
8
3

[
e2�2ta −e

1
2�2ta

]
−
[
e2�2ta −1

]
−8

9

[
e

3
2�2ta −1

][
e�2ta −1

]−1
[

e
3
2�2ta −1

])
,

assuming that y is centered and x standardized on their
predicted root values. This yields equations 7 and 8 in the
main text. Note that the second term in the intercept of
regression depends on the regression slope. This caused
numerical problems in our estimation procedure, which
we solved by treating the whole intercept (except vy) as
a constant, A, and the subtracting the second term at the
end to estimate a.

For Model 3, let
(
y−ŷ

)◦(y−ŷ
)

be the column vector
of squared deviations from the prediction as given
in equation 11. The linear regression of the squared
deviations vector on the vector x is(

y−ŷ
)◦(y−ŷ

)=E
[(

y−ŷ
)◦(y−ŷ

)]
+Cov

[(
y−ŷ

)◦(y−ŷ
)
,x
]
Var[x]−1(x− x̄

)+r,

where r is a vector of residuals. To compute this we use

E
[(

y−ŷ
)◦(y−ŷ

)]
=diag

[
Var

[(
y−ŷ

)]]
=diag

[
Var

[
d
(

V−1
)−1

V−1(y−ŷ
)]]

=diag
[

d
(

V−1
)−1

V−1Var
[(

y−ŷ
)]

V−1d
(

V−1
)−1

]
=diag

[
d
(

V−1
)−1

V−1(Vmacro+Vmicro
)
V−1d

(
V−1

)−1
]

=diag
[

d
(

V−1
)−1

V−1VmacroV−1d
(

V−1
)−1

]
+diag

[
d
(

V−1
)−1

V−1(aI

+E
[
diag

(
x−x̄

)])
V−1d

(
V−1

)−1
]

and

Cov
[(

y−ŷ
)◦(y−ŷ

)
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)
,x
]
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d
(
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)−1

V−1 ◦d
(

V−1
)−1

V−1
)

Var[x],

which can be verified by elementwise comparison using
the assumption that Cov[yryk , xi]= Cov[E[yryk|x],xi]=

bCov[xi,xj] if r=k = j, and zero if r 	=k. Note that we have
treated predictor as fixed, and V as a constant in the
macroevolutionary prediction. This yields equations 14
and 15 in the main text.

Observation, that is measurement, error in the species
means can also be added to the residual variance
matrices. Let Vmy and Vmx be the measurement variance
matrices for the response (i.e., the y-squared vector) and
predictor (i.e. the x-vector). These matrices will typically
be diagonal, but in principle measurement covariances
can also be included. The terms added to the residual
variance will be then be

Vmy +b2
(

I− 1
2
(
T◦T

)
T−1

)
Vmx

(
I− 1

2
(
T◦T

)
T−1

)T

for Model 1 and

Vmy + 4b2

�4

(
I− 2

3 e− 1
2�2

[
e

3
2�2ta −1

][
e�2ta −1

]−1
)

Vmx

(
I− 2

3 e− 1
2�2

[
e

3
2�2ta −1

][
e�2ta −1

]−1
)T

for Model 2. For Model 3, measurement variance can be
added as described in the main text.

Observation error in the predictor variable may also
cause attenuation, a downward bias in the estimated
regression slope. Attenuation is not corrected by
including observation error in the residual variance.
Expressions for attenuation with correlated data are
given in Hansen and Bartoszek (2012). Applying this to
our situation yields the attenuation factor

K =1−

(
x−1

)T(Cov[y2,x]Var[x]−1
)T

Cov[y2,x]Var[x]−1Var[r]−1Cov[y2,x]Var[x]−1

VmxVar[x]−1(x−1
)

(
x−1

)T(Cov[y2,x]Var[x]−1
)T

Var[r]−1Cov[y2,x]Var[x]−1(x−1
)

.

Dividing the estimated slope with K would give an
approximately unbiased estimate of the true slope.
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