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Abstract: Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due
to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver
injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli
liquid diet containing alcohol to produce liver injury. After the mice were adapted gradually to
5% alcohol, Cili (4 mL and 8 mL/kg/day for 4 weeks) were gavaged for treatment. The serum
enzyme activities, triglyceride levels, histopathology and Oil-red O staining were examined. The
RNA-Seq and qPCR analyses were performed to determine the protection mechanisms. Cili decreased
serum and liver triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis
were improved by Cili. The RNA-Seq analyses showed Cili brought the alcohol-induced aberrant
gene pattern towards normal. The qPCR analysis verified that over-activation of CAR and PXR
(Cyp2a4, Cyp2b10 and Abcc4) was attenuated by Cili. Cili alleviated overexpression of oxidative
stress responsive genes (Hmox1, Gsta1, Gstm3, Nqo1, Gclc, Vldlr, and Cdkn1a), and rescued alcohol-
downregulated metabolism genes (Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2). Overall,
Cili was effective against chronic alcohol liver injury, and the mechanisms were associated with
decreased oxidative stress, improved lipid metabolism through modulating nuclear receptor CAR-,
PXR-and Nrf2-mediated pathways.

Keywords: Rosa roxburghii Tratt. fruit juice (Cili); chronic alcohol liver injury; triglyceride; Oil-red O
staining; RNA-Seq; qPCR

1. Introduction

Rosa roxburghii Tratt. fruit is known as “Cili” in China. It grows well in the moun-
tainous region of Guizhou, Southwest China and has been used for medicinal remedies
and healthy foods since ancient times. The effect of Cili in promoting digestion was firstly
recorded in “Ben-Cao-Gang-Mu-Shi-Yi” in 1765 A.D. The decoction of the Ci-Li-Gen is
recorded in “Zhonghua Bencao” for chronic gastritis, stomach ache, acute enteritis, diar-
rhoea, and white diarrhoea in human and livestock [1]. Cili is listed in Pharmacopeia of
China as a medicinal herb [2]. In recent years, Cili juice (also called prickly pear juice)
is used as nutritional beverage and exerts antioxidant and antihyperlipidemic potentials
as functional foods. Phytochemical analysis has revealed that Cili is a good source of
essential nutrients (e.g., sugars, proteins, vitamins, inorganic salts, and various essen-
tial amino acids), and contains polysaccharides, polyphenols especially rich in flavonoid,
triterpenoids, and organic acids [3–5]. It is especially rich in vitamin C, superoxide dis-
mutase and phenolic compounds. At least 52 compounds contained in Cili have been
identified [4]. Shan-Wang-Guo prickly pear juice (Cili) uses organic Rosa roxburghii Tratt.
fresh fruit as a raw material, undergoes eight organic production processes, and is sub-
jected to the high frequency sterilization process. It retains the nutritional composition and
natural fragrance of Rosa roxburghii Tratt. fruit without adding sugar and preservatives
(http://www.shanwangguo.cn/ accessed on 20 January2022).
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Rosa roxburghii Tratt. fruit has been shown to have numerous beneficial effects on
health, including antioxidant, anti-ageing, anti-atherosclerotic, antitumor, antihyperlipi-
demia, hypoglycemia in diabetes, and modulation of gut microbiota as recently reviewed
by Wang et al. [4]. Liver is the main organ of the body detoxification and metabolism
system and liver lesions are common clinical diseases. Juice of Rosa roxburghii Tratt. fruit
has been demonstrated to alleviate high-fat-diet induced hyperlipidemia in mice [6,7]; a
hydro-alcoholic extract from Rosa roxburghii Tratt. fruit decreases hyperlipidemia in high-
fat-fed rats [8]. Rosa roxburghii Tratt. fruit is identified as a promising dietary fibre source,
which produces butyrate and affects microbiota composition [9]. Polysaccharide from Rosa
roxburghii Tratt. fruit attenuates hyperglycemia and hyperlipidemia in diabetic db/db
mice [10], and Rosa roxburghii Tratt. fruit juice ameliorates arsenic-induced liver damage in
rats [11]. However, little is known about Cili on chronic alcohol-induced liver injury.

Alcohol binge drinking is the seventh leading risk factor for both death and societal
burden of alcoholism [12,13]. Alcoholic liver injury is the main alcohol-related disease,
from simple steatosis to alcoholic steatohepatitis (inflammation), progressive liver fibrosis,
cirrhosis, and liver cancer [13]. Alcohol is mainly oxidized in the liver and produces a large
number of oxidative metabolites such as acetaldehyde and acetic acid that cause oxidative
damage to proteins, lipids, and nucleic acids. Cytochrome P450 2E1 (Cyp2e1), located
in the microsomes, plays a major role in the metabolism of alcohol to generate reactive
oxygen species that contribute to liver injury and in turn induce downstream Cyp2a5 and
the Nrf2 pathways [14]. The Lieber-DeCarli liquid diet containing alcohol is one of the
most widely used experimental models to study chronic alcohol liver diseases in rodents.
It is an easy, accurate, reliable, and inexpensive model to study the pathogenesis of alcohol
liver diseases in experimental settings [15].

In this study, the Lieber-DeCarli liquid diet containing 5% alcohol was used to induce
chronic alcoholic injury. Cili from Shan-Wang-Guo prickly pear juice Co., (Guizhou, China)
was given to mice at 4 mL/kg and 8 mL/kg for 4 weeks to determine the protective effects
of Cili against chronic alcohol liver injury. In addition to routine measures of liver injury
such as serum enzyme activities, blood and liver triglyceride levels, liver histopathology
and Oil-red O staining for steatosis, RNA-Seq analysis was performed to explore molecular
mechanisms, and qPCR analysis was used to verify selected gene expressions. The results
clearly demonstrated the protective effects of Cili against chronic alcohol damage and
provided a molecular mechanism for the protection.

2. Materials and Methods
2.1. Cili, Liquid Diets and Chemicals

The Rosa roxburghii Tratt. fruit juice (prickly pear juice, Cili) was from Shan-Wang-Gou
Co., (Guizhou, China). The Lieber-DeCarli liquid diet was from TROPHIC Animal Feed
High-Tech Co., Ltd. (Haian, China); the 95% analysis pure ethanol was from Tianjin Kemiou
Chemical Reagent Co., Ltd. (Tianjin, China); the isopropanol, anhydrous ethanol, and
chloroform were from Sichuan East Chemical Group, China; the biochemistry kits were
from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

2.2. Experimental Animals

Six-week-old male C57BL/6J mice (20–22 g) were purchased from Zhejiang Vital River
Experimental Animal Technology Co., Ltd. (Hangzhou, China). Mice were housed in an
accredited animal facility at the Key Lab of Basic Pharmacology, Zunyi Medical University.
The mice had free access to food and water, with room temperature of 21–23 ◦C, humidity
at 48–52%, and lighting for 12 h–12 h alternately. All experiments were carried out in
accordance with Chinese guidelines for animal welfare and were approved by the Animal
Use and Care Committee of Zunyi Medical University (SYXK2021-0003).

After one week of adaptation, mice were randomly divided into Control (10), Model
(12), M+Cili-L (12), and M+Cili-H (12) groups. Control mice were given the liquid control
diet without alcohol, and the remaining groups were adapted to the Lieber-DeCarli liquid
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diet with gradual increase in alcohol from 1% on the first day to 5% on the fifth day and
thereafter. On the 6th day, Cili 4 mL/kg (M+Cili-L) and 8 mL/kg (M+Cili-H) was gavaged
daily for four consecutive weeks. Control and Model group mice were given 10 mL/kg of
saline. The dose of Cili was based on the literature [6,7,11] and on data from our preliminary
studies against alcoholic liver injury. Animal body weights and general health conditions
were monitored every two to three days.

Four hours after the last dose of Cili administration, mice were euthanized, and blood
was collected via orbital venous plexus bleeding. The livers were isolated, weighed, and
stored in −80 ◦C for RNA analysis.

2.3. Serum Enzyme Activities

The blood was stood for 2 h and centrifuged at 3000 rpm for 10 min to isolate serum.
The serum activities of alanine transference (ALT) and aspartate transferase (AST) were de-
termined with a Multiskan Go full wavelength microplate reader (Thermo Fisher, Durham,
NC, USA) according to the ALT and AST kit instructions (Jiancheng, Nanjing, China).

2.4. Triglyceride Determination

The livers were homogenized with 0.9% saline to prepare 10% homogenates. The
liver homogenates were centrifuged at 3000 rpm for 10 min to collect supernatant. The
triglyceride content in the serum and liver supernatant were determined with a triglyceride
kit from Nanjing Jiancheng Bioengineering Institute, following the instructions of the
manufacturer.

2.5. Haematoxylin and Eosin Staining and Oil-Red O Staining

A piece of the liver was fixed in 10% buffered formalin for 48 h at room temperature,
embedded in paraffin at 60 ◦C, and sectioned into 3.5-µm-thick sections using a RM2235
microtome (Leica Microsystems GmbH, Weitzlar, Germany). The sections were deparaf-
finized in xylene and rehydrated using a gradient of ethanol (100, 95, 85 and 75%). The
histological sections were then stained with haematoxylin and eosin at room temperature
for 8–10 min and 4–5 s, respectively. The images of slices were observed with an Olympus
light microscope (Olympus Corporation, Tokyo, Japan).

For fatty liver detection, liver tissue was embedded in OCT and stored at −80 ◦C.
The OCT-embedded samples were sectioned at 4µm and stained with Oil-Red O for the
evaluation of fat droplets under the Olympus light microscope.

2.6. RNA Extraction and Easy RNA-Seq

Total RNA was extracted from the liver using Trizol reagent (Takara, Takara Islands,
Japan) according to the manufacturer’s instructions. The quantity and quality of RNA were
determined with a NanoDrop 2000 Ultra micro-spectrometer (Thermo Fisher, Durham,
NC, USA). The RNA samples were reverse transcribed with Oligo dT primer to produce
cDNA. The generated first-strand cDNA was co-reacted by the RNase H enzyme, DNA
polymerase and T4 ligase to generate double-stranded cDNA; the double-stranded cDNA
was fragmented by the Tn5 enzyme and add the remedial design (RD) sequence required for
sequencing at both ends. The sequencing primers at both ends of P5 and P7 were connected
by RD sequences and enrichment PCR amplification was performed. Successful library
construction was sequenced. Finally, bioinformatic analyses of differentially expressed
genes from the RNA-Seq data between groups were performed by Weilang Biotechnology
Co., Ltd. (Chongqing, China).

2.7. Principal Component Analysis

Principal Component Analysis (PCA) was performed to visualize the gene expression
patterns. The total number of RNA sequencing genes (22,500/sample) was imported into
Partek Flow Server (Partek Inc., St. Louis, MO, USA) with Control, Model, M+Cili-L, and
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M+Cili-H groups (4 samples/group). Images of the PCA were generated to visualize the
gene distribution patterns.

2.8. Heatmap Visualization of Differentially Expressed Genes

The differentially expressed genes (DEGs) were analysed via the DESeq2 method
by Weilang Biotechnology (Chongqing, China) under the criteria of FDR (Padj) < 0.05
as compared to the Control group. The V-Lookup was used to align DEGs generated
from Model vs Control, M+Cili-L vs Control, and M+Cili-H vs Control groups, and the
comparison file was then imported into TreeView version 1.6 (https://treeview.software.
informer.com/1.6/ accessed on 20 January2022) to generate heatmap for visualization.

2.9. Real-Time qPCR

Total RNA was transcribed using the PrimeScriptTM RT reagent Kit (Takara, Japan).
Real-time qPCR was performed on the CFX 96 Real-time fluorescence Quantitative PCR
instrument (Bio-Rad, Inc., Hercules, CA, USA) using SYBR Green dye for relative quantifi-
cation of gene expression. The mouse primers were designed by online Primer3 and syn-
thesized by Sangon Bioengineering Co., Ltd. (Shanghai, China) (Supplementary Table S1).
The relative gene expression level was calculated by the 2−∆∆CT method, and mouse Gapdh
was used as the housekeeping gene. The specificity of each gene expression was confirmed
by the melting curve with a single peak, and the stability of the Gapdh of 32 samples from
four groups had a mean ± SD of 19.79 ± 0.63.

2.10. Statistics

Differentially expressed genes (DEG) from the RNA-Seq analysis were analysed by the
DESeq2 method and compared with the Control group, with a p value < 0.05 considered
significant. The serum enzyme activities, triglyceride levels, and qPCR data were expressed
as Mean ± SEM. One-way analysis of variance (One-way ANOVA) was used to determine
statistical differences between groups, followed by Dunn’s or Tukey multiple range tests.
The significance level was set at p < 0.05.

3. Results
3.1. Cili Protected against Alcohol-Induced Elevation of Triglyceride

After mice were adapted to 5% alcohol in a Lieber-DeCarli liquid diet, Cili was gavaged
from the 6th day to the 34th day for 28 days (4 weeks). Figure 1A shows the body weight
changes during the experiment. Compared to the Control group, the body weight gain of
mice fed a Lieber-DeCarli liquid diet containing 5% alcohol was decreased. No apparent
difference in body weights between the Model and Cili groups was evident except for
a slight difference of the M+Cili-H group at 17 and 20 days of the experiment. At the
end of the experiments, the body weights were 25.16 ± 0.40, 20.21 ± 0.45, 20.76 ± 0.58
and 19.21 ± 0.59 g for the Control, Model, M+Cili-L, and M+Cili-H groups, respectively
(Figure 1A), the liver weights were 1074 ± 18, 1002 ± 31, 878 ± 38 and 904 ± 34 mg for the
Control, Model, M+Cili-L, and M+Cili-H groups, respectively, resulting in an increased
liver index (Liver/body weight, mg/g) by alcohol feeding (Figure 1B), and Cili at the low
dose prevented the liver index increase by alcohol.

Alcohol feeding increased serum ALT (Figure 2A) and AST (Figure 2B) activities. Cili
at both doses tended to decrease serum ALT, but was not significant, while it did not affect
the AST activity compared to the Model group.

Alcohol feeding increased serum triglyceride content (Figure 3A) and tended to in-
crease liver triglyceride (Figure 3B). Cili at both doses decreased serum triglyceride com-
pared to the Model group; Cili at the high dose also decreased liver triglyceride (Figure 3B).

https://treeview.software.informer.com/1.6/
https://treeview.software.informer.com/1.6/
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Figure 1. Animal body weight (A) and liver index (B). Mice were adapted to gradient alcohol increase
from 1% to 5% in a Lieber-DeCarli liquid diet from Day 1 to Day 5, and Cili was gavaged at the 6th
day (arrow) at 4 mL/kg (M+Cili-L) and 8 mL/kg (M+Cili-H) daily for 28 days (4 weeks). Livers were
collected at the end of the experiment. Data are mean ± SEM (n = 9), * Significantly different from
the Control group, p < 0.05; # Significantly different from the Model group, p < 0.05.
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Figure 2. Serum alanine aminotransferase (ALT, (A)) and aspartate aminotransferase (AST, (B)) determi-
nation. Data are mean ± SEM (n = 9–11), * Significantly different from the Control group, p < 0.05.
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Figure 3. Serum triglyceride (Serum TG, (A)) and liver triglyceride (Liver TG, (B)) determina-
tion. Data are mean ± SEM (n = 9–11), * Significantly different from the Control group, p < 0.05;
# Significantly different from the Model group, p < 0.05.
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3.2. Cili Improved Alcohol-Induced Pathology and Lipid Accumulation

The liver sections stained with haematoxylin and eosin (Figure 4, top) showed that the
Model group had fat vacuoles, liver degeneration and foci of apoptosis/necrosis compared
with the Control group; these pathologic lesions were greatly improved in both Cili groups.
Oil-Red O staining (Figure 4, bottom) revealed extensive accumulation of lipid droplets in
the Model group; which was markedly reduced by Cili. The effects of low and high doses
of Cili on lipid droplet accumulation were similar (Figure 4).
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Figure 4. Representative photos of haematoxylin and eosin (H&E) staining (top) and Oil-red O
staining (bottom). Model mice were fed Lieber-DeCarli liquid diet containing 5% alcohol with or
without Cili (4 mL and 8 mL/kg for 28 days). Control mice received liquid diet without alcohol.
Magnification for H&E (200×), for Oil-red O (400×). Thin arrows indicate hepatocyte vacuolation,
slight swelling and degeneration, and thick arrows indicate foci of apoptosis/necrosis.

3.3. Cili Reversed Alcohol-Induced Aberrant Gene Expression

The RNA-Seq analysis generated 22500 gene targets. The Principle Component
Analysis (PCA) is shown on Figure 5A. The PCA value is 69.39 %, with PC1 = 40.94%,
PC2 = 12.05%, and PC3 = 10.40%. The distributions of the Control, M+Cili-L, and M+Cili-H
groups were apparently separated from the Model group, while the Control and M+Cili-L
groups had largely the same pattern. The differentially expressed genes (DEGs) were
analysed with the DESeq2 method and compared to the Control group. The DEGs were
screened using FDR < 0.05. The Model group had 804 up-regulated genes, 407 down-
regulated genes, the M+Cili-L group had 78 up-regulated genes and 79 down-regulated
genes, while the M+Cili-H group had 1023 up-regulated genes and 388 down-regulated
genes (Figure 5B).

Based on 1211 DEGs from the Model group compared to the Control group, the
M+Cili-L group had 127 GEGs and the M+Cili-H group had 283 DEGs compared to the
Control group (Supplementary Table S2). Heatmap comparisons among groups are shown
in Figure 6, where red represents upregulated genes and blue represents downregulated
genes. Cili intervention apparently attenuated or reversed alcohol-induced aberrant gene
expressions.
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3.4. The qPCR Analysis of Selected Genes

Based on the fold change and alcohol liver injury associated with the nuclear receptor
biomarkers, Cyp2b10, Cyp2a4, and Abcc4 (typical CAR and PXR biomarkers) were further
analysed using real-time qPCR (Figure 7). The expression of Cyp2b10 was increased 2100-
fold by alcohol, but attenuated with low dose of Cili to 116-fold and high dose of Cili to
10-fold. The expression of Cyp2a4 was increased 50-fold by alcohol, but attenuated in the
M+Cili-L group to 13-fold and in the M+Cili-H group to 6-fold. The expression of Abcc4
was increased 48-fold by alcohol, but decreased to 11-fold with M+Cili-L, and 3.5-fold with
M+Cili-H. A clear Cili dose-dependent effect was evident.
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Figure 7. The qPCR analysis of the constitutive androstane receptor (CAR) and pregnane X receptor
(PXR) biomarkers among groups. Data are mean ± SEM (n = 8), * Significantly different from the
Control group, p < 0.05; # Significantly different from the Model group, p < 0.05.

Based on common oxidative biomarkers in alcohol liver injury, the expressions of
Hmox1, Gstm3, Gsta1, Cdkn1a, Vidlr, Nqo1, Gclc, and Mt1 were further analysed using
real-time qPCR as shown in Figure 8. The expression of Hmox1 was increased 20-fold by
alcohol but was attenuated with Cili-L and Cili-H to 2–3-fold. The expression of Gstm3
was increased 17-fold by alcohol but was attenuated with Cili-L to 4.4-fold and Cili-H to
2.9-fold. The expression of Gsta1 was increased 61-fold by alcohol but decreased to 14-fold
with a low dose of Cili, and 3.3-fold with a high dose of Cili. The expression of Cdkn1a was
increased 6-fold by alcohol but decreased to 4-fold with a high dose of Cili and prevented
by a low dose of Cili. The expression of Vldlr was increased 5-fold by alcohol but decreased
to 2-fold with two doses of Cili. The expression of Nqo1 was increased 11-fold by alcohol
but decreased to 5-fold with two doses of Cili. The expression of Gclc was increased 3-fold
by alcohol but decreased to 1.6-fold with a low dose of Cili and prevented with a high dose
of Cili. The expression of Mt1 was increased 2–3-fold among all three groups.
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Figure 8. qPCR analysis gene expression related to oxidative damage among groups. Data are mean
± SEM (n = 8), * Significantly different from the Control group, p < 0.05; # Significantly different from
the Model group, p < 0.05.

Based on the common lipoprotein and lipid metabolism biomarkers, the expressions
of Cyp4a14, Acta2, Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2 were further
analysed using real-time qPCR as shown in Figure 9. The expression of Cyp4a14 was
increased 14.5-fold, a low dose of Cili had no effect, while a high dose of Cili decreased it
to 8.8-fold. The expression of Acta2 was increased 3-fold by alcohol, but the increase was
prevented by both doses of Cili. The expression of the key lipid metabolism gene Angptl8
was decreased to 25%, and both doses of Cili brought it to 92% and 105%, respectively. The
expression of Slc10a2 was decreased to 24% of the Control group, and Cili-L and Cili-H
brought it to 48% and 70% of the Control group, respectively. The expression of Ces3b was
decreased to 23% of the Control group by alcohol, and it was recovered to 42 and 49% by
low and high doses of Cili, respectively. The expression of Serpina12 was decreased to 8%
by alcohol and was recovered by the high dose of Cili to 19%. The expression of C6 was
decreased to 11% by alcohol but recovered by both doses of Cili to 20%. The expression of
Selenbp2 was decreased to 17%, and the high dose of Cili brought it to 27%.
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4. Discussion

The present study clearly demonstrated the protective effects of Cili against chronic
alcohol liver injury, as evidenced by serum and liver triglyceride levels, and importantly by
haematoxylin and eosin and Oil-red O staining. The RNA-Seq analysis revealed an aberrant
gene expression pattern produced by chronic alcohol which was alleviated by Cili towards
that of the Control group. The qPCR of selected genes verified the RNA-Seq results, the
over-activated CAR and PXR was attenuated by Cili. The oxidative stress genes induced by
chronic alcohol were ameliorated by Cili and lipid metabolism genes suppressed by alcohol
were recovered to various degrees by Cili. To our knowledge, this is the first research to
demonstrate beneficial effects of Cili against chronic alcohol liver injury, and the altered
gene expressions could provide molecular targets against chronic alcohol diseases.

4.1. Cili Protected against Chronic Alcohol Liver Injury

The general health and biochemical changes from chronic exposure of C57BL/6 mice
to the Lieber-DeCarli liquid diet containing alcohol are characterized by increased liver
index, mild increase in serum enzyme activities, and elevations in triglycerides in serum
and liver [15–17]. The present study replicated all these changes indicating the successful
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establishment of a chronic alcohol liver injury model. Although both doses of Cili did not
alleviate alcohol-induced body weight loss, the low dose Cili decreased the liver index.
Cili at both doses tended to decrease the elevated ALT and AST, although not statistically
significant. On the other hand, Cili at both doses prevented the increase in serum glycerides,
and Cili at the high dose decreased liver triglycerides, even below that of the Control group.
Generally speaking, Cili at both doses was effective in ameliorating the alcohol-increased
liver index, ALT, and triglyceride, but no dose-response was evident.

Liver degeneration and steatosis are the main pathological features of chronic alcohol
liver injury [16–18], characterized by incomplete cell structure, disordered cell arrangement,
blurred boundaries and large space, hepatocyte vacuolation, and hepatocyte fatty degener-
ation. Cili at both doses greatly improved liver pathological lesions. The Oil-red O staining
is a common method to determine lipid accumulation in alcohol-induced fatty liver in
rodents [18]. Extensive lipid droplets were evident in the Model mouse liver, and Cili at
both doses prevented lipid accumulation in the liver (Figure 4), indicating the protection
against alcohol fatty liver.

4.2. Cili Alleviated Chronic Alcohol-Induced Aberrant Gene Expression

Principal component analysis (PCA) is a technique for exploratory data analysis and
for making predictive models [19]. The PCA of 16 RNA-Seq samples revealed distinct
gene expression patterns: the alcohol Model group was separated from the Control group,
Cili at low dose brought the gene expression towards the Control group, while Cili at
high dose distributed it away from the Control group, but opposite to the Model group
(Figure 5A). Compared to the Control group and based on p-value < 0.05, chronic alcohol
produced 2716 DEGs, while a low dose of Cili had 619 DEGs, and high dose of Cili had
911 DEGs (Supplementary Table S2). It can be concluded that the gene expression difference
between the Control and the Model groups was large, while both Cili groups had less
DEGs, and attenuated the magnitude of increased or decreased genes as visualized in the
heatmap (Figure 6).

Real-time qPCR was performed to verify the RNA-Seq results. The first category was
the constitutive androstane receptor (CAR) and pregnane X receptor (PXR) biomarkers
Cyp2b10, Cyp2a4, and Abcc4 (Figure 7). Alcohol dramatically increased the expression
of the marker genes over 50+ fold, which were markedly attenuated by both groups of
Cili. The CAR can be activated by dietary flavonoids and participates in glucose and
lipid metabolism [20]. The CAR−/− mice showed increased sensitivity to chronic alcohol-
induced liver injury, however, over-activation of CAR by the CAR agonist TCPOBOP
enhanced hepatotoxicity in both acute and chronic alcohol exposures [21]. The PXR-null
mice are resistant to chronic alcohol-induced hepatosteatosis and gene expression changes
in a clear PXR-dependent manner [22]. The functions of CAR and PXR are overlapped
in xenobiotic responses including chronic alcohol [23]. The Cyp2b10, Cyp2a4, and Abcc4
biomarkers are all CAR and PXR target genes [23,24]. Polyphenols (resveratrol and ellagic
acid) protect against chronic alcohol-induced fatty liver in Wild-type but not in CAR-null
mice, implying that appropriate CAR activation is beneficial in protecting against alcohol
liver injury [25]. It should be pointed out that Cyp2a5 was similarly increased as Cyp2a4 in
this study. Alcohol-induced Cyp2e1 co-localized with Cyp2a5 and preceded the induction
of Cyp2a5. The Cyp2a5 knockout mice exhibited an enhanced alcoholic liver injury and
hyperglycemia compared to the Wild-type control mice, suggesting the protective effects
of Cyp2a5 against alcohol-induced oxidative liver injury [14]. Thus, activation of CAR
and PXR could also be considered as an adaptive response to alcohol exposure within the
threshold range.

The second category is the oxidative stress responsible genes (Figure 8). These genes in-
clude Nrf2 antioxidant pathway genes, glutathione detoxification genes, and non-enzymatic
antioxidant gene metallothionein. For example, the Miao ethnomedicine Penthorum chinense
Pursh protected against Lieber-DeCarli alcohol diet induced liver injury by upregulating
Nrf2 and its downstream antioxidant protein Ho-1, and by downregulating Cyp2e1 [26].
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Similarly, Curcumin or Shangxi aged vinegar attenuates chronic alcohol liver injury via
induction of the Nrf2 pathway gene Nqo1, Ho-1, Sod, Gpx through ERK/p38/Nrf2 an-
tioxidant signalling pathways to suppress inflammatory responses [27,28]. The activation
of Nrf2 also induces the downstream gene Vldlr in the liver and adipose tissue to pro-
tect against alcohol-induced oxidative stress and hepatocyte injury [29]. Ursolic acid, a
triterpenoid and a strong Nrf2 activator, protected against chronic alcohol liver injury
by inducing Nqo1, Gclc and glutathione S-transferases [30]. Glutathione detoxification
enzymes including Gsta1, Gstm3, Gstm1, Gstp1, Gclm, and Gclc play important roles
in protecting against alcoholic liver damage and diseases [31,32]. Broccoli sprout extract
alleviates alcohol-induced oxidative liver injury through activation of Nrf2 and glutathione
detoxification system [33]. Cdkn1a encodes P21 and is increased during chronic alcohol
feeding and contributes to modulate alcoholic fatty liver in mice via the ROS-HNE-P21
pathway [34]. Metallothionein is a cysteine-rich, low-molecular weight protein shown to
protect against alcohol liver injury [35]. Similar to the activation of CAR and PXR, activa-
tion of Nrf2 and glutathione detoxification system could also be considered as adaptive
responses to alcohol exposure within the threshold range, but their over-activation could
lead to liver injury. Both doses of Cili attenuated their over-expression, although no clear
dose-response, implying a reduced oxidative damage to the liver.

The third category is the lipid metabolism genes (Figure 9). Cytochrome P450 omega-
hydroxylase 4a14 (Cyp4a14) plays an important role in the lipid metabolism and its overex-
pression is implicated in pathogenesis of alcoholic fatty liver disease. In the present study,
Cyp4a14 was induced 14-fold, which was attenuated to 8.8-fold with the high dose of Cili.
The Cyp4A antagonist HET0016 attenuated Cyp4a10 and Cyp4a14 induction by alcohol
and prevented alcohol-induced fatty liver [36]. Smooth muscle α actin (Acta2) induction is
associated with liver injury and transforms resident hepatic stellate cells into liver specific
myofibroblasts for cellular motility and contraction [37]. In the present study, alcohol in-
creased Acta2 3-fold, which was prevented by both doses of Cili. Angiopoietin-like protein
8 (Angptl8) is a novel important regulator in metabolic disorders, and plays a crucial role
in lipid metabolism [38]. Chronic alcohol decreased the expression of Angptl8 by 75%, and
Cili rescued such a downregulation. The apical sodium-dependent bile acid transporter
(ASBT, Slc10a2) is important in the enterohepatic cycling of bile acids and plays an impor-
tant role in fatty liver diseases [39]. Chronic alcohol also decreased its expression to 24%
of the Control group, and Cili-L and Cili-H doses brought its expression towards normal
(48% and 70% of the Control group, respectively). Carboxylesterase 3B (Ces3b) hydrolyses
long-chain fatty acids and thioesters that would play a role in the lipid metabolism. The
Ces3b helps provide substrates for the assembly of very low-density lipoprotein (VLDL) in
the liver. Downregulation of Ces3b by high-fat diet in obese mice could be reversed by the
fermentation extract of the larva of the edible insect Tenebrio molitor with amelioration of
fatty liver [40]. Similarly, Cili administration recovered alcohol-induced downregulation
of Ces3b to certain extent. Serpin family A member 12 (Serpina12, also called vaspin) is
protective against alcohol-induced steatosis but is decreased in serum and liver tissues in al-
coholic patients and animals [41]. A chronic alcohol diet markedly decreased its expression,
and the high dose of Cili rescued it from 8% to 19% of the Control group. Complement
C6-deficient rats were more sensitive to alcohol-induced liver damage that C6+/+ rats [42].
In the present study, C6 was decreased 90% by chronic alcohol, and was slightly recovered
by both doses of Cili (from 11% to 20% of the Control group). The selenium binding
protein 2 (Selenbp2) and Selenbp1 are involved in lipid metabolism via the peroxisome
proliferator-activated receptor-α pathway [43]. Cili at the high dose slightly ameliorated
the downregulation of Selenbp2. Overall, Cili was beneficial in recovery of these lipid
metabolism and steatosis-related genes in alcohol-induced liver damage.
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4.3. Multiple Components in Cili Could Function in an Intergraded Manner to Achieve
Beneficial Effects

The comprehensive review on Cili in Food and Function [4] clearly demonstrated
that Cili is not only a good source of essential nutrients, but also contains polysaccharides,
polyphenols, triterpenoids, and organic acids and at least 52 beneficial compounds. Various
raw extracts from Rosa roxburghii Tratt. fruit [8,44,45], including polysaccharide [46,47],
polyphenols [48,49], triterpenoids [30] and many other components [3–5] have been found
to exert beneficial effects. Juice of Rosa roxburghii Tratt. fruit (Cili) has been proven to
be very effective in alleviating high-fat-diet induced hyperlipidemia in mice [6,7] and
arsenic-induced liver damage in rats [11]. It is very likely that multiple components in
Cili could exert their biological functions in an integrated way to target multiple targets to
achieve beneficial effects of Cili beverage as functional foods.

5. Conclusions

The present study is among the first to demonstrate the protective effects of Cili against
chronic alcohol liver injury by routine measures, especially by serum and liver triglyceride
levels, histopathology, and Oil-red O staining. The RNA-Seq and qPCR analyses further
revealed the underlining mechanisms, including the attenuation of over-activated CAR,
PXR, and Nrf2 pathways, and amelioration of metabolism disturbance. This study provided
experimental evidence for Cili as functional foods to protect against alcohol binge drinking
and improve metabolic disorders through multiple molecular events (Figure 10) to achieve
liver protection.
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